
ISSN 1392 – 124X INFORMACINĖS TECHNOLOGIJOS IR VALDYMAS, 2004, Nr.3(32)

DESIGN OF DISTRIBUTED GENERIC EMBEDDED COMPONENTS

Robertas Damaševičius, Mindaugas Genutis, Vytautas Štuikys
Software Engineering Department, Kaunas University of Technology

Studentų st. 50, LT – 3031, Kaunas, Lithuania

Abstract. The increasingly complex nature of embedded system design is forcing designers to jointly use the
available resources, both CAD tools and IP componentry, which are distributed between different design teams. We
argue that the existing collaborative design practices demand that the abstraction level in design must be raised above
the traditional soft IP. Markup languages can be used to structure and hierarchically organize the domain content. Such
structuring makes the representation, processing, and distribution of a domain content much easier. This paper
proposes to adopt XML for representation, parameterization, modification and distribution of embedded components.
The XML-based representation of soft IPs can be considered as the next generation of IP - distributed generic
embedded components (DGECs). We discuss their features, design problems and propose a design framework.

Keywords: collaborative design, distributed generic embedded component, XML.

1. Indroduction

Semiconductor design industry aims to design
low-cost microelectronic components and subsystems
for embedded systems (ES) as fast as possible, with
maximum chance of success. These aims are pursued
using pre-designed Intellectual Property components
(IPs) assembled on a System-on-Chip (SoC). This
solution frees a designer from the implementation de-
tails and allows focusing on integration of IPs at a
higher abstraction level.

However, the list of required IPs may become so
large and diverse that it is impossible for a single
design company to develop, maintain, and distribute
the entire catalog of IPs required by their customers.
The increasingly complex nature of ES are forcing
designers to join their resources: not only in terms of
IP libraries, but in terms of distributed IPs, libraries
and design tools connected into a global distributed e-
Design framework, which brings new problems into
focus: IP evaluation, IP delivery, IP protection.

Since the IPs developed by the third-party IP
vendors usually use different interface standards and
have different technological characteristics (clocking
frequency, voltage, etc.), the problem of integrating
IPs into a system is currently considered a top priority
in ES design. We believe that the solution to this
problem lies within the concept of a component as an
ultimate design abstraction itself.

Abstraction is key to software (SW) design, and it
must be so for hardware (HW) and ES design, too.
Design complexity can be addressed by raising the
level of abstraction to increasingly abstract and formal

levels. However, at any level of abstraction, structural
design information is as important as functionality.
The representation of structural design data is an
important problem, because it can be used to pre-
specify other design issues, such as reuse and docu-
mentation of components and systems. Also customi-
zation and adaptation of domain components is much
easier to achieve if applied to the structured represen-
tations of these components.

Currently existing HW description languages
(HDLs), such VHDL, Verilog or SystemC, are not
good for structuring domain components, because the
structure and behavior of a system is usually mixed in
a HDL specification. Such specifications are difficult
to analyze and modify. Decomposing a HDL specifi-
cation into an Abstract Syntax Tree and then analyzing
its correctness on the syntactical level are common
steps. Such low-level analysis also complicates further
application of the derived design data for optimization
or customization of domain components.

Therefore, we need to represent domain compo-
nents more abstractly and structurally than now. One
solution could be using a high-level specification
language such as UML. For example, UML class dia-
grams allow representing the structure of domain sys-
tems using classes and relationships between them.
However, the object-oriented techniques, which are
good for conceptual high-level design of ES, may not
be suitable when applied for representing individual
domain components.

The other solution is to use the so-called markup
languages. Markup languages are used to markup
data, i.e., to encode data with information about itself.

61

R. Damaševičius, M. Genutis, V. Štuikys

One of the most popular and widely known markup
languages is XML [1]. XML is a standard for storing
and exchanging hierarchically structured data, as well
as for defining other domain-oriented markup
languages.

Our contribution is as follows: We (1) analyze
and demonstrate the application of the XML techno-
logy in the domain of HW design, (2) propose a
concept of distributed generic embedded component,
which is a next generation of IP for ES design, and (3)
discuss its features and design problems.

The structure of the paper is as follows. Section 2
reviews the related works. Section 3 discusses the IP
generations used in HW design. Section 4 analyzes the
role of XML in ES domain and presents a design
framework. Section 5 presents a case study. Section 6
evaluates the features and problems of distributed IP
design. Finally, Section 7 presents the conclusions.

2. Related works

Research on e-Design practices in the ES domain
focuses on (1) distributed CAD tools, environments
and frameworks for collaborative web-based design
[2-12]. (2) Virtual libraries (databases, exchange
systems, reuse management systems) of IPs [13-15].
These systems usually contribute to the reuse of IP,
automatic web-based exchange of design data, IP
searching, remote evaluation, simulation and valida-
tion of IPs, IP protection and delivery issues. IP ex-
change systems are usually implemented using the
traditional client/server model [16] or different exten-
sions to it (see, e.g., [17]). The proposed systems
usually aim at integrating design tools, data and ser-
vices. However, the aspect of integration of IPs into
target systems is usually left to a local designer.

Application of XML technology in ES design
domain is steadily increasing. Most often XML is used
to represent structured design information such as
VHDL components or intermediate design data, and
generate design documentation [18-20]. Other resear-
chers use XML to structure the domain at a higher
level of abstraction than components and represent the
entire ES architectures and platforms [21-23]. In IP
exchange frameworks, XML usually serves as an
interface between IP provider and IP user as well as
represents infrastructure and content of IP catalogues
and provides support for IP management and reuse
[13, 14]. The most recent research stream focuses on
XML as a metalanguage capable of specifying para-
meterized domain components [24].

Our novelty is that we suggest distributing the
effort of design and integration of IPs, by introducing
a concept of distributed generic embedded component
(DGEC), which is a continuation of our previous
research on embedded component design [25]. We
understand the DGEC within the context and frame-
work of the existing distributed internet-based CAD
environments and virtual IP libraries. Therefore, we

do not focus on such general aspects as IP protection
that should be the same for all types of IP compo-
nentry. Instead, we focus on structural representation
and parameterization aspects using XML, which are
unique to our embedded component model.

3. Generations of IP Components

IP components used in HW design have evolved
in generations, which correspond to quantum leaps in
IC design methodologies, tools and design practices.
According to [26], currently there are three genera-
tions of IP. Further, we consider these generations in
brief.

The first generation of IP is hard IP and firm IP
cores. Hard IPs are technology-dependant cores that
have been fully implemented into the mask-level data
required for implementing the block in silicon. They
are described in GDSII data format, which is used for
transferring/archiving 2D graphical design data. Firm
IPs have been floor-planned and synthesized into one
or more silicon technologies to get performance, area,
and power estimated values. Firm IP is delivered in
technology-specific netlist formats.

The second generation of IP is soft IP - the most
common type of commercial IP today. Soft IPs are
specified in RTL code described using a high-level
standard HDL, such as VHDL or Verilog, that can be
read and interpreted by a synthesis tool. Soft IP has
virtually no physical information.

The third generation of IP is user-configurable
customizable (generic) soft IP. These components re-
present the application of SW development methodo-
logies such as SW generators, multi-language design,
metaprogramming, scripting, preprocessing, etc., to
the HW domain. Generic IPs are usually described
using multiple languages (e.g., a HDL for expressing
domain content, and a metalanguage (scripting langua-
ge) for parameterization), and may have graphical user
interfaces for selection of parameters. The user-guided
configurability minimizes the need to perform
modifications by hand in order to adapt IPs to the
specific SoC requirements.

In [25], we introduced a concept of generic
embedded component (GEC), which belongs to the
third generation of IP. GEC is a parameterized descrip-
tion of a family of reusable domain (SW or HW) com-
ponents intended for integrating into ES designs. A
family includes several (from dozens to hundreds or
even thousands) reusable component instances that
differ in functionality and characteristics. The environ-
ment for generic embedded components is a generic
library of IP providers or large ES design organi-
zations.

Additionally, we envision the next generation of
IP: distributed generic embedded component (DGEC),
which is an embedded component (subsystem, sys-
tem) assembled from multiple geographically distri-
buted sources and transferred via the Internet to a local

62

Design of Distributed Generic Embedded Components

4.2. Design framework designer. The fourth generation of IP represents the
application of WWW-based technologies to HW and
ES design domain. This vision is in compliance with
recent trends towards the distributed collaborative de-
sign and E-commerce in future silicon IP market.

The distributed ES design framework is presented
in Figure 1. Different DGECs may be located in diffe-
rent remote IP libraries on different servers. The client
retrieves the IPs represented in XML (IPXML) and
assembles a target system (SXML). The IPs that may re-
quire adaptation can be modified using XSLT style
sheets that describe design transformation processes
(DPXSL). A design process [27] is a representation of a
common designer actions aimed at implementing a
well-proven domain model or design pattern. Finally,
the XML-based representation of a system is trans-
lated into HDL (SHDL) and further used for modeling
and synthesis.

In the next section, we describe representation
and implementation of DGEC using the XML tech-
nology.

4. Implementation of dgec using XML

4.1. Introduction to XML technology

XML [1] is a markup language that provides a
common syntax for describing the structure of data
according to its content or meaning. XML also is a
metalanguage that allows defining domain-specific
markup languages for different types of data. Additio-
nally, XML allows to simplify data export, transfer
and storage, creation and usage of string libraries and
description of the metalevel functionality (e.g., gene-
ration of target code).

Client

SXML SHDL

IPXML

Server1

DPXSL

Server2

Internet

 XML has several advantages as a representation
language. The hierarchical organization of data ref-
lects the logical structure of data. The XML tags data
embed the information structure within the data,
which makes processing of data easier. The advantage
of XML over other markup languages is that a desig-
ner is not restricted to a limited set of tags defined by
proprietary vendors. By defining his own set of tags, a
designer can create a markup language oriented at a
specific domain of application.

Figure 1. Distributed design framework

An abstract design flow is presented in Figure 2.
The translation tools are used to derive the DGEC,
which is the XML-based representation of soft IP(s).
The transformation code in XSLT is used to modify
the DGEC. The result is the XML-based specification
of the target system. A lower-level implementation of
the target system is obtained when the XML-based
specification is translated into the domain language
specification using XSLT.

XSLT is a language for describing transformation
of XML documents. An XSLT program (style sheet) is
a set of template rules for transforming a source tree
into a result tree. Each template rule has two parts. A
pattern is used to match nodes in a source tree of the
input XML document. A template is used to form a
result tree of the output XML document. The transfor-
mation is achieved by associating patterns with temp-
lates. The structure of the result tree can be completely
different from the source tree, thus allowing a wide
range of transformations.

Soft IP
(HDL)

Processing

Target System
(HDL)

Transformation code
(XSLT)

DGEC
(XML)

Translation

Target System
(XML)

Translation

Design
process

Translation
code

(XSL)

In the domain of ES design, XML technology can
be applied for the following tasks. (1) Representation
– to structure, hierarchically organize and represent
the domain content. (2) Parameterization – to describe
generic domain components and architectures (pat-
terns). (3) Modification – to describe automatic modi-
fication of components for adaptation to user- and
application-specific requirements and optimization.
(4) Translation – to translate XML-based domain
component representation into domain language(s) of
the designer's choice using XSLT. (5) Generation – to
generate API documentation in various formats using
XSLT. (6) Distribution – to distribute domain compo-
nent s between geographically distributed design
teams.

Figure 2. Design flow

5. Case study

In this case study, we demonstrate the application
of XML technology for specifying HW wrappers. An
example of the wrapper specification for a particular
DGEC is presented in Figure 3, a. It uses <WRAP-
PER> tag to concisely specify a handshake wrapper
(HsWr) of the core_6502 component with common
clock signal. The wrapped IP is specified using <IP>

63

R. Damaševičius, M. Genutis, V. Štuikys

tag and is located on a remote server specified using
XInclude tag. The DGEC is also represented using
XML (see Figure 3, b, the interface is given only). We

have adopted the VHDL-based description style,
where <ENTITY> tag specifies component interface
and <PORT> tag specifies the I/O signals.

<DGEC>
 <ENTITY name="core_6502" source="http://www.free-ip.com/6502/">
 <PORT name="clk" dir="in" type="std_logic" width="1"/>
 <PORT name="reset" dir="in" type="std_logic" width="1"/>
 <PORT name="irq_in" dir="in" type="std_logic" width="1"/>
 <PORT name="nmi_in" dir="in" type="std_logic" width="1"/>
 <PORT name="addr" dir="out" type="std_logic_vector" width="16"/>
 <PORT name="din" dir="in" type="std_logic_vector" width="8"/>
 <PORT name="dout" dir="out" type="std_logic_vector" width="8"/>
 <PORT name="dout_oe"dir="out" type="std_logic" width="1"/>
 <PORT name="we_pin" dir="out" type="std_logic" width="1"/>
 <PORT name="rd_pin" dir="out" type="std_logic" width="1"/>
 <PORT name="sync" dir="out" type="std_logic" width="1"/>
 </ENTITY>
</DGEC>

<WRAPPER type="handshake" clock="clk">
 <IP name="core_6502" xmlns:xi="http://www.w3.org/2001/XInclude">
 <XI:INCLUDE href="http://soften.ktu.lt/~damarobe/xml/free6502.xml"/>
 </IP>
</WRAPPER> (a)

(b)

Figure 3. XML-based specifications of handshake wrapper (a) and DGEC (b)

Table 1. DGEC source code increase and Synthesis results of VHDL code

Soft IP VDHL XML/XSL
increase

Area, cells
(soft IP)

Area, cells
(HsWr)

Overhead

Free-6502 [29] 100% 10%/30% 4670 471 10%
i8051 [30] 100% 15%/45% 24258 1016 4%

We generate a VHDL code from the HsWr speci-

fication using XSLT style sheet. The architecture of
the HsWr is presented in Figure 4. The Handshake
wrapper uses the handshake protocol to control com-
munication of IP with its environment. Note that the
IP data signals are represented abstractly as Data_in
and Data_out signals. More details about wrapper
architecture can be found in [28].

Handshake wrapper

Data_in IP

Handshake
FSM

Req Ack
Data_in

Data_out
Reset

Clock

En_data
Evnto

Figure 4. Architecture of handshake wrapper

In our experiments, we have used 2 freely avail-
able third-party soft IPs. The synthesis results of the
original soft IPs and the generated handshake wrap-
pers (Synopsys; CMOS 0.35 um) using XML are pre-
sented in Table 1.

6. Evaluation of Distributed IP design

 Collaborative design is gaining more and more
support in EDA community, because integration of
multiple third-party soft IPs from different IP vendors
onto a single chip requires a large variety of design

skills that may not be available to a local design team.
There are several aspects in distributed CAD: (1)
distributed tools, (2) distributed libraries, and (3)
distributed components. Further, we will discuss those
aspects in detail.

The distributed CAD environments are based on
the following principles: (1) there are many actors in
the design process (IP designers, IP providers, IP
users), (2) the design information is geographically
distributed (distributed IP), (3) the designed system is
a joint effort from many design institutions. The latter
implies the need for IP exchange networks and IP
protection.

Storing generic IPs in distributed libraries has
several benefits as follows: (1) the genericity of IPs
allows them to be offered to a large number of desig-
ners, (2) common library allows all designers to share
design data, (3) generic component specifications are
separated from component instances.

The features of DGECs are as follows (some of
them are inherited from the previous generations of
IP): (1) high level of abstraction – not less than a (sub-
)system level; (2) technology and language-indepen-
dence – DGEC is represented independently from the
implementation HDL, i.e., the solution of a particular
HDL should be the designer's last choice; (3) generici-
ty – DGEC represents families of domain components;
(4) customizability – DGEC can be adapted to the
context of application automatically; (5) mobility –
DGEC can be easily moved across the Internet, while
preserving the requirements for IP protection.

64

Design of Distributed Generic Embedded Components

The distributed CAD environment should inte-
grate the existing design tools and IP libraries using
common media (Internet), XML-based domain repre-
sentation formats, integration standards, and legal
agreements. It must integrate multiple, independently
managed design frameworks and have a flexible struc-
ture adapted to new E-business models and electronic
services. The entire EDA community currently moves
towards a single, integrated, distributed E-design envi-
ronment, which encompasses distributed CAD tools,
IP libraries, IP design, qualification, acquisition and
distribution services, and is constantly evolving to
meet increesing user requirements.

7. Conclusions

We argue that the next generation of IP should be
implemented using XML – a flexible technology for
creating domain-oriented markup languages. It allows
for convenient representation, access, management,
and distribution of various types of the structured do-
main information, including HW/SW components and
ES architectures. Furthermore, the designer has the
ability to implement automatic modification of IPs
and generation of documentation files in various for-
mats using XSLT style sheets. Systematic application
of XML/XSLT for ES design could contribute to
increase in design productivity and IP reuse and re-
mote share as well as to provide the better documenta-
tion capabilities.

References
 [1] T. Bray, J. Paoli, C.M. Sperberg-McQueen, E.

Maler. Extensible Markup Language (XML). W3C
Recommendation, 2000.

 [2] M.J. Silva and R.H. Katz. The Case for Design
Using the World Wide Web. Proc. of Design Automa-
tion Conference (DAC 1995), June 12-16, San Fran-
cisco, CA, USA, 1995, 579-585.

 [3] L. Benini, A. Bogliolo, G. De Micheli. Distributed
EDA tool integration: the PPP paradigm. Proc. of
IEEE Int. Conf. on Computer Design (ICCD), October
7-9, 1996, Austin, TX, USA, 448-453.

 [4] M.D. Spiller, A.R. Newton. EDA and the Network.
Proc. of Int. Conf. on Computer Aided Design
(ICCAD), November 9-13, 1997, San Jose, CA, USA,
470-476.

 [5] H. Lavana, A. Khetawat, F. Brglez, K. Kerminski.
Executable Workflows, a Paradigm for Collaborative
Design on the Internet. Proc. of Design Automation
Conference (DAC'97), June 9-13, 1997, Anaheim, CA,
USA, 553-558.

 [6] K. Hines, G. Borriello. A Geographically Distributed
Framework for Embedded System Design and
Validation. Proc. of Design Automation Conference
(DAC 98), June 15-18, 1998, San Francisco, CA,
USA, 140-145.

 [7] G. Konduri, A. Chandrakasan. A Framework for
Collaborative and distributed Web-based Design.
Proc. of Design Automation Conference (DAC'99),
June 21-25, 1999, New Orleans, LA, USA, 898-903.

 [8] A. Fin, F. Fummi. A Web-CAD methodology for IP
core analysis and simulation. Proc. of Design
Automation Conference (DAC 2000), June 5-9, 2000,
Los Angeles, CA, USA, 597-600.

 [9] M. Dalpasso, A. Bogliolo, L. Benini, M. Favalli.
Virtual Fault Simulation of Distributed IP-based
Designs. Proc. of IEEE Design Automation and Test is
Europe Conference (DATE 2000), March 27-30, 2000,
Paris, France, 99-103.

[10] K. Yang, A. Windisch, T. Schneider, J. Mades, W.
Ecker. IVE: An Environment for Internet Based
Distributed VHDL Design. Proc. of the 16th World
Computer Congress, August 21-25, 2000, Beijing,
China, 516-525.

[11] D. Kirovski, M. Drinic, M. Potkonjak. Hypermedia-
Aided Design. Proc. of Design Automation
Conference (DAC 2001), June 18-22, 2001, Las
Vegas, NV, USA, 407-412.

65

