
ISSN 1392 – 124X INFORMACINĖS TECHNOLOGIJOS IR VALDYMAS, 2004, Nr.3(32)

ANALYSIS OF CORBA LOAD BALANCING STRATEGIES

Arūnas Andriulaitis
Business Informatics department, Department of Applied mathematics, Kaunas University of Technology

Studentų st. 50-324, LT – 3031, Kaunas, Lithuania

Abstract. Load balancing strategy describes how system handles and distributes workload among several
machines. There are several load balancing strategies in CORBA technology. This article analyses architectures and
workflows of the existing and theoretical load balancing strategies of CORBA. The article includes created mathe-
matical aggregate model for load balancing strategies simulation, investigation results of strategies performance and
results description and analysis. The mathematical aggregate model lets theoretically make conclusions of load
balancing strategies fitness in various environments.

1. Indroduction

The count of online Internet services during the
past decade has increased. For example, e-commerce
systems and online stock trading systems concurrently
serve many clients who transmit a large number of
requests. When the number of clients and the number
of connections to servers increases, servers become
more loaded and this prolongs the response time of
client operation. It is possible to invest in hardware,
increase network speed or use load balancing as a
problem solution. Just by using load balancing it is
possible to get surprising results. By using load
balancing, every server on the system receives similar
load, therefore there are no overloaded servers.

There are many strategies of load balancing, seve-
ral of them are listed below:
• IP, DNS based load balancing strategy [1]. This

strategy is used in WWW systems.
• OS based load balancing strategy [1]. This strate-

gy is mostly used in closed systems with large
specific tasks.

• Middleware load balancing strategy [1,2,5]. Every
technology has its own load balancing solution.
IONA Orbix ORB and Inprise VisiBroker are the
most popular realizations of CORBA ORB that
have load balancing. These ORB realizations
have similar load balancing strategies.

This article covers architecture and workflow
analysis of all middleware CORBA load balancing
strategies. The real test of such strategies requires ma-
ny resources and is very expensive. In order to test fit-
ness and effectiveness of the load balancing strategies,
we created and described mathematical model for all
load balancing strategies and provided analysis of

statistical test results. Mathematical method provides
statistical evidence of load balancing strategies
effectiveness.

2. Existing CORBA strategies of load
balancing

VisiBroker supports grouping function (cluster-
ing) [1, 5], which enables uniform objects to be
grouped into one group and have one name. Every
server stores its own objects into some group of ob-
jects. The group comprises many objects from diffe-
rent servers. All these groups are saved into Naming
service reference table of one general ORB. In
general, clients know only the object name, which is
resolved by Naming service to object reference in one
of servers, containing object in this object group. This
way, Naming service can select one server from the
group of servers, check server load and perform load
balancing. When the client gets reference, it is redirec-
ted to another server (different than server with global
Naming service), where the real object is deployed.
This is the first and simpliest load balancing strategy.

3. Other CORBA strategies of load balancing

The above described VisiBroker load balancing
strategy is able to check server load and perform load
balancing only at the object name-reference resolution
moment. This means that load balancing is provided
on the client session basis, when client gets real object
reference from CORBA Naming service. This strategy
is called session based load balancing strategy.

It is possible to use another load balancing stra-
tegy, which provides load balancing on each object

75

A. Andriulaitis

4. A short introduction to aggregate systems method usage not only at the moment of object
creation [2]. This strategy is theoretical (does not have
a realization). The client always communicates with
servers through the load balancer (specific server).
The load balancer contains only interfaces, it acts as
proxy for real objects. Firstly, client gets reference to
the object, which exists in the load balancer. When
client calls this object method, the load balancer per-
forms analysis of servers load and redirects client to
server with the lowest load. This strategy is called per-
method call based load balancing strategy.

Aggregate is interpreted as an object, defined by a
set of states Z, input signals X, and output signals Y
and set of system events E [3, 4]. Aggregate func-
tioning is considered in a set of time moments t∈T.
The state z∈Z, inputs x∈X and outputs y∈Y are
considered to be time functions. The system state
consists of discrete)(tυ and continuous

components. The aggregate system has events

, where is external

events set and is the set of inter-
nal events. External events unambiguously correspond
to the arrival of inputs . Internal events un-
ambiguously correspond to defined conditions on con-
tinuous components. For every event control

sequences{

)(tzv
'EE = ''E∪

}i

},..., '
2

'
neE =

}, '
2

''
1 ee

X

''ei ∈

,{ ''
1 ee

,..., '''
ne

'E→

{''E =

''E

ζ are assigned, where iζ,i ∞= ,1 have
meaningful physical values of continuous or discrete
components (i.e. this may mean operation duration
time, speed, weight, etc). Transition operator H descri-
bes system states transitions after any event e∈E.
Output operator G describes system outputs y∈Y after
any event e∈E .

Every strategy listed above has own disadvan-
tages. Session-based load balancing strategy performs
load balancing only at the moment of object creation
and does not control servers load after that. Per-
method call based load balancing strategy performs
check of servers load everytime. This may be the time
consuming operation. The client is always calling the
method twice: once on load balancer and the second
time on the server of the real object (second call is
performed by ORB).

O.Othman, C.O’Ryan and D.C.Schmidt resear-
ched, described and suggested on-demand load ba-
lancing strategy [1]. By using this strategy it is pos-
sible to check server load at the moment of object
creation and perform periodical load balancing and
monitoring of servers load. When client wants to re-
solve object name-reference, it is calling load balancer
Naming service methods. The load balancer analyses
servers load and returns reference of server with the
lowest load. This is the same functionality as in the
session-based load balancing strategy. The load
balancer periodically performs checking of servers
load. If servers are loaded very differently, then the
load balancer sends a command to the most loaded
server to return the client to the load balancer. The
client is redirected back to the load balancer. Now, the
client ORB calls the same method of object, which is
on the load balancer. The load balancer checks servers
load and returns reference to the object, which is on
server with the lowest load. The client is again
redirected to the server, but this time the server has
lowest load. This way, the load balancer always keeps
servers loaded similarly and most effectively. These
redundant operations (2 additional calls of method and
two redirects) are performed by ORB and are trans-
parent for client (client does not need to add any ad-
ditional code).

General model of aggregate description is
provided below:

≠υ)(mt ∅, ≠)(mv tz

≠

∅,

∅, ∅,≠'E ''E),[)),(,(1+∈= mmmv ttttztf
),

vz&
[,

,
)(∈=υ tttwhenconstt 1+mm

)),(()(1 imm etzHtz
,

=+

)),((im etzGy

,

= , e ''' EEi ∪∈

When the state of the system
is known, the moment of the following event is
determined by a moment of input signal arrival to the
aggregate or by the following equation:

,...2,1,0),(=mtz m

1+mt

'''*
11 },min{ EEett i

i
mm ∪∈= ++

i

, where is
time of every possible event e .

*
1

i
mt +

PLA (piece linear aggregate) is a simplified
version of the general aggregate. In PLA are
linear continuous timers and the system coordinates

 and in the time intervals [,
when m=0, 1, 2, ... vary according to the following
equation:

)(tzv

, mm tt)(1 tzv)(2 tzv]1+Per-method and on-demand based strategies do
not support object with the state. These strategies
cannot be used with the objects, which have to keep
their state. ,...2,1,1

)(
=−= i

dt
tdzvi

The last two load balancing strategies do not have
real performance check, when there are many servers
and many clients. The real check of these systems is
very expensive (requires many resources). Creating a
mathematical model of systems and performing simu-
lation could solve this issue.

5. Mathematical model of load balancing

We included only essential objects into the mathe-
matical model: client aggregate, server aggregate, load
balancer aggregate (load balancer and monitor) and

76

Analysis of CORBA Load Balancing Strategies

channels. One client aggregate represents all real
clients. It simulates N processes, where one process is
one client. One server aggregate represents all real
servers. It simulates M processes, where one process

is one server. Further, we will write client not client
aggregate. The same will be with server and load
balancer.

Load balancer
process

Monitor
process

j-server
process

i-client
process

Client Load balancer Server

31
jQ

21 Q

i K

1D

2D

j S

11 Y

12 Y

21Y

22

31Y

32Y

11 X

12 X

21 X

22 X

31X

33X

32X

Y
23

Y

The client process imitates the real client work-

flow by sending signals through channel 12Y to server
and by waiting for the response. When the signal
arrives, the server process imitates operation with
some duration and returns answer trough channel

31Y . Before the act with the server, the client process
sends a signal to load balancer (channel 11Y) to get
identifier of server with the lowest load. After the
client process receives the server identifier, it starts
sending signals to the server. The client could be
redirected to load balancer from the most loaded ser-
ver (load balancer sends a command to the server to
return client requests to load balancer). A formal
description of the client aggregate is provided below:

IieeE iii ..1,},{ ''
2

''
1

'' ==
''

1ie
, I is the total number of

clients. represents internal event, when the client

is prepared to start a new session, e represents
internal event, when the signal to the server is pre-
pared.

''
2i

4. Set of controling events.

Iie r
r
ii ..1,}{ 11

''
1 =τ⇒ ∞

= , is duration of any
client idle time.

r
i1τ

Iie g
g
ii ..1,}{ 12

''
2 =τ⇒ ∞

= , is duration of any
client any operation.

g
i2τ

5. States of aggregate. 1. Input.
,})(),(),(),({)(mimimimimi trsvtrlbtoptsvt =ν i

= 1..I, identifier of server process,
is the count of operations in the client session. The
client session consists of a number of request opera-
tions, which are performed without stopping. If

=1, then the client needs to get identifier of
server from the load balancer. If =0, then the
client continues sending requests to the server. If

=1, then the client needs to start sending
requests to the server. If , then the client
needs to define a new count of operations in
session .

)(, mi tsv (i top

)(mt
)(mi trlb

)(mt
0)(=mi trsv

)(mi top

)m

irlb

irsv

Input signal (answer from the load balancer) to
, j – identifier of server process, i – identi-

fier of client process.
),(11 ijX =

Input signal (answer from the server) to
, k — type of signal (0 — continue, 1 —

back to load balancer).
),(12 kiX =

2. Output.

Output from Y and Y .)(11 i=),(12 ij=

3. Sets of events.

},{ '
2

'
1

' eeE =

11

, represents event, when signal to

the input

'
1e

X is got, represents event when signal

to the input

'
2e

12X is got.
)},(),,({)(''

2
''

1 miimiimi teWteWtz = . i = 1..I
represents the end of client idle operation (between

),(''
1 mii teW

77

A. Andriulaitis

sessions), represents the end of client or-
dinary operation (request to the server).

),(''
2 mii teW

,1,1{) −−=

i ,},{) 1
2τ∞=

)

jm =+)1





=+)1m op

0)1 =+mt





=+ ,0
,1

)1m if
if

t

mmi tt 1
''

2), =+

∞=+), 1
''

1 mi t

''
2i

()1 im tsvt =+



 −

=
)(
,1

)
mi top

()1 im trlbt =+





=+ ,1
,0

)1mt

∞=+),(1
''

2 mii teW

∞=+),(1
''

1 mii teW
6. Starting state.

The client sends new signal (j, i) to the server if flag
0)(=mi trlb is set and the client sends new signal (i)

to the load balancer if is set. 1)(=mi trlb

Iiti ..1,}0,0(0 =ν

Iitzi ..1(0 =

1)(),(

0)(),,(
11

12

==

==

mi

mi

trlbifiY

trlbifijY

7. Some operators of transitions.

('
1eH represents the transition of system state,

when external event is got from the
load balancer.

'
1e),(11 ijX =→ When load balancer receives client request for

identifier of server, it returns identifier of server with
the lowest load (channel 21Y). This aggregate has an
additional process, which periodically monitors ser-
vers load (channels 22Y , 23Y) and sends commands to
servers to return client to load balancer. In this case,
the client at any server call could be redirected back to
load balancer just to retrieve a new identifier of server.

New identifier of the server is stored.
tsvi (

New count of operations is calculated.

=
=
1)(),(

0)(,
(

mimi

mi
i trlbift

trlbifRANDOM
top

The above described aggregates imitate all three
strategies of load balancing. It is enough for session-
based load balancing strategy imitation that client
calls load balancer once. The client has to perform
only one operation per session and immediately start
again a new session for per-method call based load
balancing strategy imitation. In order to imitate the
third load balancing strategy this model does not need
any change.

Flag is set to continue session.
(irlb

Flag is set to generate or not the count of operations.

=
=

0)(
1)(

(
mi

mi
i trlb

trlb
rsv

The time moment when the client request will be pre-
pared is set. In order to detune workload of the system, the

client must use a different number of calls per session
or/and operation duration must be different. This
model imitates only a different number of calls per
session.

g
ii eW 2(τ+

The time moment when the client will start new ses-
sion is unknown.

(i eW 6. Results of experimental simulation

)(''
2ieH represents the transition of system state, when

internal event e occurs.

The experimental environment was the following:
100 clients, 10 servers, one part of the client processes
perform 10 operations per session and the second part
perform 1 operation. Average duration of the client
operations and servers load are illustrated in Figures 1
and 2.

The same identifier of the server is stored.
)(misv

The count of operations is decreased (–1 means ses-
sion is stoped).

≠≠−
==

+ 0)(0)(,1
0)(0)(

(1
mimi

mimi
mi trlbandtrsvif

trlbandtrsvif
top

Flag is set to continue sending requests to the server.

)(mirlb

Flag is set to generate or not new count of operations.

=
=

1)(
0)(

(
mi

mi
i trlb

trlb
rsv

Figure 1
The time moments, when any internal event will occur
are unknown.

78

Analysis of CORBA Load Balancing Strategies

79

7. Conclusion

The most effective strategy is the on-demand
based load balancing strategy. But this strategy could
be used only with the objects, which do not have
states. If server objects need to have their state, then
the session-based load balancing strategy is more
appropriate.

References
Figure 2 [1] O. Othman, C. O’Ryan, D. C. Schmidt. The Design

and Performance of an Adaptive CORBA Load
Balancing Service. 2001, http://www.cs.wustl.edu/
~schmidt/PDF/load_balancing.pdf

 [2] Inprise. VisiBroker documentation. http://info.
borland.com/techpubs/books/vbj/vbj45/framesetindex.
html

 [3] K. Wang, H.Pranevicius. Applications of AI to Pro-
duction Engineering. Kaunas University of Technolo-
gy Press, 2000, 274-320.

 [4] H. Pranevičius. Модели и методы исследования
вычислителных систем. 1982, Mokslas.

 [5] M. Lookwave. The Three Tier architecture. Expert-
Soft Corporation, 1996.

Figure 3

The servers and load balancer load is represented
as length of queue of waiting requests; duration of
client operation is relative and has no physical mean-
ing, but it is used to compare effectiveness of different
strategies.
• Session-based load balancing strategy is quite ef-

fective. Every server has about 10 client requests
on the average at any time moment.

• Per-method based load balancing strategy is very
ineffective. Architecture of this strategy overloads
load balancer a lot. Operation of load balancer is
time expensive and prolongs every client opera-
tion. The load balancer is overloaded, but servers
are not.

• On-demand based load balancing strategy is the
most effective. The client average operation is
shortest. Architecture of this strategy allows to
distribute server load effectively.

http://info.borland.com/techpubs/books/vbj/vbj45/framesetindex.html
http://info.borland.com/techpubs/books/vbj/vbj45/framesetindex.html
http://info.borland.com/techpubs/books/vbj/vbj45/framesetindex.html

