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Abstract Throughout the last decade development and implementation of digital data processing technologies was 
an area of increasing interest. Special and constant attention was paid, mainly, to the processing of graphical 
information, i.e. to the analysis, efficient encoding (compression) and rendering of digital images. Scientific inquiry 
into the area was stipulated by the necessity and strong desire to make great quantities of visual information more 
intelligible and more attractive for a widening round of users. 

In the paper, the task-oriented use of image smoothness estimates is analysed. Firstly, the notion of smoothness of 
a generalized digital image is introduced; secondly, two highly valuable properties (invariance and continuity) of 
image smoothness estimates are formulated and proved; finally, a new objective computational procedure for the 
determination of image smoothness estimates is proposed. In parallels, some interesting digital image compression 
ideas (strategies), based on the direct application of image smoothness estimates, are described. 
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1. Indroduction 

Determination of smoothness parameters for the 
digitized real world images as well as development of 
rational computational procedures for finding of their 
numerical values (smoothness estimates) occupies a 
due place in the class of problems associated with 
digital image processing. 

Those, who are closely bound up with digital 
images, have an intuitive sensation of the influence of 
image smoothness level to the results obtained from 
the application of one or another image processing 
technique. The higher smoothness class of an image, 
the better processing (filtering, encoding etc.) out-
comes are derived. 

On the other hand, everybody, who is immersed 
in solving a particular, say, digital image encoding  
(compression) problem, is well awared of difficulties, 
impediments and urgent goals that confront a resear-
cher. Videlicet, enhancement of the quality of a re-
stored image, with the compression ratio being fixed, 
and vice versa, settlement of the asymmetry problem 
consisting in disproportion of time expenditure asso-
ciated with image encoding and image decoding pro-
cesses, adaptation of some specialized image compres-
sion techniques and ideas to digital images of different 
dimensionality, and others. 

To facilitate overcoming of the above difficulties 
and to achieve the planned ahead goals, the 

smoothness notion of an image (one of the main 
digital image characterizing parameters), to our mind, 
should undergo not only a well founded analysis and 
practical applicability ascertainment, but also should 
come into prompt usage to maximal extent. 

The detailed interpretation of the smoothness 
level of a generalized digital image together with a 
new rational procedure for finding image smoothness 
estimates is presented below. At the same time, some 
interesting digital image compression techniques 
(ideas, strategies), based on the direct application of 
image smoothness estimates, are briefly brought to 
light in the paper. 

2. Understanding of smoothness level of an 
image 

Let  stand  for a finite metric space of 
generalized (d-dimensional) digital images, identified 
with d-dimensional data arrays such that: 
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(black and white) digital images; p >1, for gray-scale 
digital images. The distance (metrics) δ between any 
two elements of the set  – the images [  
and   is specified by the formula 
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The latter expression comes into the usage every 
time when it is necessary to estimate the quality of a 
restored image against that of the original one, or to 
establish the (dis)similarity fact between any two 
images. 

In general, the d-dimensional discrete spectrum 
(Fourier, Walsh-Hadamard, cosine etc., [1]) [ , 

, of [  is defined as 
follows: 
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for all k ∈ Id; here {Φ(k, m)} is a finite system of d-
dimensional discretized orthogonal functions (Fourier, 
Walsh, cosine etc.). In most cases, these functions are 
presented in terms of corresponding one-dimensional 

orthogonal functions, i.e. Φ(k, m) =∏ , 

k, m ∈ I
=

d

i 1
d; consequently, the multidimensional discrete 

transform (expression (3)) can be found applying 
consecutively (with respect to each spatial coordinate 
of the image) one-dimensional discrete transforms of 
the same type. 

The initial image [  can be restored unique-
ly using the inverse d-dimensional discrete transform: 

 X(m) = ∑ ⋅
∈ dIk

kY )( , (4) 

m = (m1, … , md) ∈ Id;  is a complex conju-
gate of Φ(k, m). 

The main property of the d-dimensional discrete 
spectrum [  is associated with Parseval’s theorem 
for d-dimensional number series, and can be 
formulated this way – spectral coefficients Y  

( ) decrease in absolute value, as 
their serial numbers k (indices ) increase, 
provided the base vectors of the discrete transform in 
use (expression (3)) are presented in a frequency 
order. 
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The latter circumstance implies (serves as the 
necessary precondition) that there exists a d-
dimensional hyperbolic “surface” 
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here }1 ,max{ ii kk = , i = 1,…, d. 
The quantity α , characterizing the decrease 

(“decay”) tendency of spectral coefficients, i.e. the 
shape of the hyperbolic “surface”  
(expression (5)), is assumed to be the smoothness 
parameter (level, class) of the (generalized) image 

. 
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A few interesting procedures (approaches) for the 
determination of image smoothness parameter values 
(smoothness estimates) as well as some exceptionally 
important their properties (from the standpoint of 
practical applicability) are presented in the sections 
below. 

2.1. Evaluation of image smoothness estimates 

As it was mentioned above, the image 
smoothness parameter α  and the real coefficient C 
(expression (5)) both characterize the shape of the 
hyperbolic “surface” ) ..., ,( 1 dxxzz = , introduced to 
approximate the ordered set of spectral coefficients of 
the image [ . )(n)]( SmX ∈ d

We are interested in the numerical values of  α  
and C. What “mathematics” should be applied to 
estimate them? Not going into details, we signify that 
many approaches are possible. To wit, the least 
squares method, successive coordinate optimization 
procedures, special techniques etc. 

Evidently, the direct application of the least 
squares method is fairly problematic, since both the 
data array  }0...  ,   )( 22

1 ≠++∈ d
d kkIkkY

( 1xzz =

{  and the 

sought-for approximating “surface”  
are nonlinear. The use of “linearization” procedures 
(logarihmization) is far from being effective either, 
because the most part of spectral coefficients, 
especially those corresponding to high frequencies, are 
equal to zero. Beyond doubt, the use can be made only 
of nonzero coefficients, and, sometimes, it serves the 
purpose – the very first approximation (estimate) 

) ..., , dx

0α  
of the image smoothness parameter α  is obtained. 

Let us denote the set of indices of nonzero 
spectral coefficients in the discrete spectrum [  of 
the image [  by H , i.e. 
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mentioned above and the method of least squares lead 
to the following result: 
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; besides,  if and only if  the set H is 

empty, i.e. the digital image [  is abso-
lutely smooth. 
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To make the estimate more precise, various opti-
mizing techniques can be applied. One straightforward 
approach – an iterative procedure for two-dimensional 

images – is described in [2]. Preliminary experimental 
results show that the real world image smoothness 
parameter values (estimates), found using the said ite-
rative approach, fall into the interval [0; 3) (Figure 1). 

Image smoothness parameter values, obtained for 
the same digital image with the use of different 
discrete transforms (DHT and DCT), slightly differ – 
in the case of DCT, the said values are higher (by 
0.05-0.15); besides, the time expenditure, associated 
with the application of DCT, in general, triples the 
time expenditure for WHT. 

Finally, the iterative procedure (approach) itself 
has limitations to real-time applications, [2]. 

 

(a)                                           (b)                                            (c)                                          (d) 

Figure 1. Digital image smoothness analysis (with DCT in use): (a) image “Acura” 256x256, α = 1.44; 
 (b) image “Lena”  256x256, α = 0.69; (c) image “Forest” 256x256, α = 0.37;  

(d) image “Dissolve” 256x256, α = 0.04 

With this end in view, we have developed a new, 
more efficient, computational procedure (algorithm) 
for the determination of image smoothness estimates. 
The procedure employs both the coordinate 
optimization approach and the specially compiled 
constant fields. One version of the algorithm, oriented 
to process two-dimensional gray-scale images, is 
presented below. 

4. If δτ < , then τδ =: ; otherwise, pass to  6. 
5. If maxαα < , then h+=αα :  (h is a step size; 

)1.0 ;0(∈h ), and pass to 3. 

6. The end. The image smoothness estimate α  is 
obtained. 

The proposed algorithm is fast enough, and can 
be used in real time applications.  

A l g o r i t h m. Let [  and [  
be its discrete spectrum; also, let the set of indices of 
nonzero coefficients in [  be given by H. 
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Finally, we observe that if one is interested only 
in the difference between the smoothness classes of 
any two digital images (or, any two fragments of the 
same image), then the very first image smoothness 
level approximations (expression (6)) can be put into 
action. 
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2.2. The main properties of image smoothness 
estimates 

3. Find: 
),,()()( kAkYZ

Hk
Y αα ⋅∑=

∈
 

Consider an image [ , whose 
smoothness level is characterized by the parameter 
(estimate) 
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α . We are going to formulate and prove 
some exceptionally important properties of the 
smoothness estimate α , namely: 
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compiled beforehand. 

1) Invariance of α  with respect to the isometric 
transformations (rotation, reflection, inversion, 
luminance change), acting upon the image 
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2) Continuity of α , grasped in the way 
that small (discrete) changes in [  
correspond to small (discrete) changes in 

R)(: →nS d

)](mX
α . 

First of all, let us characterize the above isometric 
transformations – rotation, reflection, inversion and 
the image luminance change. 

Rotation of the image is considered to be an 
action (transformation) with an outer outcome such 
that the mutual position of spatial coordinate axes of 
the image is left unchanged. There are 3 different 
ways to perform rotation in a two-dimensional image 
space and 23 different ways – in a three-dimensional 
space; besides, there are no rotations in a one-
dimensional image space. 

Reflection transformation is identified with an ac-
tion, when the mutual position of the image spatial 
coordinate axes is changed. There are 3 different 
reflections in a three-dimensional image space and 
only 1 reflection in image spaces of lower dimensio-
nality. 

In both cases (rotation, reflection), the 
relationship between the initial image 

 ( d ) and the transformed 

one  can be established this way: 
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Inversion of  [  is understood to be 

an action, which produces a new image  such 

that , for all m ; here p 
stands for the number of bits attached to encode pixel 
values in the image. Finally, the luminance change is 
realized by multiplying all the elements (pixel values) 
of  by a scalar 
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The earlier mentioned invariance property of the 
image smoothness parameter value (estimate) α  is 
proved referring to the following facts: 
1) The discrete image spectrum [  approxi-

mating hyperbolic “surface” (expression (5); 

Section 2) is symmetric with respect to spatial 
coordinates of the image, i.e. the image 
smoothness value (estimate) 
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) of the discrete transform in use 
satisfy the following condition: 
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We note, for instance, that the discrete cosine 
transform (DCT) as well as the discrete Walsh-
Hadamard transform (WHT) possesses the indicated 
property; by the way, any “wavelet” type discrete 
transform is an exception. 

Based on this understanding, the following results 
are derived (we shall confine ourselves with a two-
dimensional image [ ): 2S∈
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for all ; thus, the image smoothness 
parameter value (estimate) 
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 Thus, small changes in the image correspond to 
small changes in its discrete spectrum. 

The main factor, having influence on the image 
smoothness parameter value α  (Algorithm; Section 
2.1) is an auxiliary variable )(αττ = .  

Let us estimate the increment τ∆ , corresponding 
to the increment [ )](kY∆  (we confine ourselves with 
the case d = 2 ): 
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for all ( ; now, it sufficies to take in that 
the simultaneous multiplication of all spectral coef-
ficients ( in [ ) by the same scalar λ doesn’t 
influence the final result – the image smoothness 
parameter value (estimate) α  (Section 2.1). 
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changes in [  are associated with small changes 
in the value of τ . 

Thus, continuous dependence of τ  on  [ )](kY∆  
as well as finiteness of the number of steps in the 
evaluation procedure (Algorithm; Section 2.1) implies 
that the smoothness parameter value (estimate) α  
continuously depends on [ )](mX∆ , i.e.  

Now, we are going to show that the image 
smoothness estimate α , being a function defined on 
the space of digital images , continuously 

depends on [ , i.e. small changes in 
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( 0ε  is a small positive number). The intuitively perceptible notion of smoothness 
of an image, expressed in terms of image smoothness 
estimates (Section 2), appears to be an interesting and 
perspective means in solving diversified digital image 
processing problems. Some of them are presented 
briefly below. 

If we denote discrete spectra of [ ,  

and 
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3.1. Adaptive encoding of two-dimensional images 

The maiden successful implementation of image 
smoothness estimates came to light with the recently 
developed strategy for the efficient encoding (com-
pression) of two-dimensional gray-scale images, [3]. 
The structural (block) scheme of the developed 
adaptive image encoding strategy is presented in 
Figure 2. Smoothness estimates of the image under 
processing were (for the first time) straightforwardly 
and internally bound up with the image encoding 
process itself. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 A

Figure 2. Block-scheme of the developed 
adaptive image encoding strategy 

As it can be seen (Figure 2), the smoothness 
parameter values (estimates) lα   are 
employed twice. Firstly, they are used to quantize 
DCT coefficients of the image blocks (quadtree 
elements) . Secondly, the discrete spectrum 

 approximating hyperbolic surface  
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Undeniable advantage of the proposed adaptive 
image encoding strategy – restored images distinguish 
themselves by “soft” texture and absence of Gibb’s 
phenomenon, resulting from attempting to approxi-
mate square wave by a trigonometric polynomial (so 
peculiar to JPEG standard). To say more, the strategy 
appeared to be exclusively efficient at higher image 
compression ratios, [3]. 

The detailed description of the developed 
approach and a number of comparative experimental 
analysis results are presented in [4]. 
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PROBLEM-ORIENTED RECORDING 
AND ENTROPY ENCODING OF 

ADAPTIVELY QUANTIZED DATA 

STORING COMPRESSED 

QUANTIZATION OF SPECTRA  
AND DEVIATIONS , :

,   

 

EVALUATION OF THE DCT SPECT 
 FOR THE IMAGE BLOCKS 

 

QUADTREE PARTITION OF THE IMAGE 

(SEGMENTATION) ( )[ ] )(2 nSmX ∈
3.2. Achieving fractal image compression speed 

gains via image smoothness estimates 

The block based fractal image encoding idea (in 
its simplest form – Jacquin’s approach, [5]) can be 
described this way: the image under processing 

 is partitioned at two scales (one 
twice the other), i.e. into the so-called range blocks 

 and domain blocks 

. The former (range) blocks 
are non-overlapping and contain every pixel. The 
latter ones (domain blocks) may overlap and not 
necessarily contain every pixel. The essence of the 
approach is the pairing of each range block [  to 
a domain block [  such that 

)3(2S⊂

)4(2S

)](mV

⊂

)](mU
 ) ,( VUδδ =  is 

minimal. To improve performance, additional transfor-
mations (rotation, reflection, luminance change) are 
applied to the image (block) [ . Evidently, the 
computation required is enormous. An obvious way to 
achieve compression speed gains is to limit the search 
region of domain blocks for the current range block.  

)](mV

We have proposed an idea which explores the 
necessary image (block) similarity condition, [6]. The 
latter condition follows directly from the continuity 
property of image smoothness estimates (Section 2.2), 
namely:  

)      (      ) 00 µααε ≤−⇒ VU ; 

here  and Vα  signify smoothness parameter 
values (estimates) for images (blocks) [  and 

, respectively; 
)](mU

0ε  is a priori fixed small posi-
tive number, ensuring similarity of [  and 

. In other words, two images can not be similar 
if their smoothness classes differ significantly 
(

)](mU

0µ ). 

In addition, the invariance property of image 
smoothness estimates makes the above necessary 
condition adaptable with the earlier introduced 
isometric transformations, acting upon the image 

 (Section 2.2). )]([ mV
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3.3. Problem-oriented change of image 
dimensionality 

Compression time savings are achieved, mainly, 
owing to the following two factors: firstly, for the 
determination of the level of smoothness each domain 
block  as well as each range block [  is 
looked over only once; secondly, candidate domain 
blocks (forming a “pool”) and a related range block, 
roughly speaking, fall into the same class of 
smoothness. Thus, to ensure optimal pairing 
(

)]([ mV

 ) ,( VU

)](mU

min→= δδ ), it is quite sufficient to analyse 
only those pairs “range block U domain block V ”, 
for which 

↔

0    µ≤  αα − VU  (practically, 15.00 <µ ). 

One of the most general leading principles, which 
are at the helm in drawing up digital image encoding 
and analysis strategies, says – the digital image 
processing should always be performed in the task-
oriented image space, which either gives optimum to 
the objective function (final result) or facilitates the 
most rational use of a particular specialized image 
processing algorithm, acting in the chosen image 
space. 

The above principle needs to be explained in 
more detail. Suppose, a two-dimensional digital image 

 allows representations in image 

spaces  and  too, i.e. dimensions of the 
image  are such that 1

)()]([ 2
2

2 nSmX ∈

)( 1
1 nS

)]([ 2 mX
)( 3

3 nS

321 32 nnn ⋅=⋅=⋅

)()]( 1
1

1 nSm ∈

)]

. To 
generate one-dimensional and three-dimensional 
analogues (images [  and 

 of , one or another image 
scanning trajectory should be applied. What is the 
efficiency of the application of a particular scanning 
trajectory (curve)? Special criteria are needed. In 
general, those criteria may be very specific. But, if 
digital image processing is linked with its efficient 
encoding (compression), then the only criterion – 
preservation of maximal smoothness of the image. So, 
in the case of necessity, choose a trajectory (scan line 
ordering, Hilbert curves, Peano trajectories etc.) that 
gives maximum to the image smoothness parameter 
value in a newly chosen space. 

X

m)()]([ 3
3

3 nSmX ∈ ([ 2X

Theoretical investigations and preliminary experi-
mental analysis results confirm vitality and usefulness 
of the proposed image compression time accelerating 
approach, [6, 12]. In particular, for the image “Lena” 
256x256 (Fig. 1, (b)) the following image 
compression speed gains have been obtained (Table 
1; 0      µαα ≤− VU  ). 

Table 1. (Fractal compression time savings) 

0 µ  Compression 
time (sec) The error (δ) 

Jacquin’s 
approach 

88.31 7.48 

0.2 27.76 7.94 

0.15 21.98 8.14 

0.025 6.87 9.51 

0.001 3.87 13.2 
Some interesting developments (in this field) are 

presented in [10, 11]. In the publication [10], special 
criteria, based on the image smoothness analysis 
results, have been introduced to pick up an optimal 
space for hyperbolic image filtering. In particular, it 
has been shown that hyperbolic filtering (image 
compression ratio being fixed) of the image [  

in the space  is more efficient than in 

, provided 

)](mX

)(
1

1
d

d nS
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2
d

d nS
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log dM

)
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,1{ , 21 ∈dd

α

2dα

; 

here:  and  signify smoothness estimates of 

the image analogues in spaces  and 

, respectively;  and  stand for the 

filtering levels in the latter spaces; . 

1dα

)(
2

2
d

d nS

Also, we have found out that application of the 
cosine discrete transform (DCT), for the evaluation of 
image (block) smoothness estimates, was more 
preferable (from the standpoint of image compression 
time savings) than the discrete Walsh-Hadamard 
transform (WHT) (Fig. 3; image “Lena” 256x256 
analysis results).  

400 
450      s 

 

 DCT 
 WHT 

300 
350 

200 
250 

100 
150 

No doubt, the use of image smoothness estimates 
in task-oriented image dimensionality change 
procedures forms a new platform for the development 
and successful further analysis of mathematical digital 
image processing (encoding, filtering etc.) techniques, 
[12]. 

0 
50 

0.005 0.01 0.05 0.15 0.3 0.8 |αu-αv|

Figure 3. Fractal image compression speed gains 
(DCT and WHT)  

22 



Definition, Evaluation and Task-Oriented Application of Image Smoothness Estimates 

23 

4. Conclusion 

The notion of smoothness of a generalized digital 
image is presented in the paper. Smoothness of the 
image is understood to be a real nonnegative number, 
which characterizes the manifestation of high frequen-
cy harmonics in the image. Two highly interesting and 
valuable properties of image smoothness estimates are 
stated and proved, namely: invariance with respect to 
the isometric transformations (rotation, reflection 
etc.), acting upon the image, and continuity of the 
response to small changes in the image. These two 
properties form a theoretical basis for the direct and 
successful application of image smoothness estimates 
to the development of new digital image processing 
(encoding, filtering, synthesizing etc.) technologies. 

In addition to this, a new algorithm (procedure) 
for the determination of image smoothness estimates 
is proposed. The algorithm employs the coordinate 
optimization approach and can be used in real-time 
applications. 

Some areas of practical applicability of image 
smoothness estimates, associated with our recent 
developments, are elucidated in the paper. Among the 
latter – adaptive encoding of two-dimensional gray-
scale images, achievement of fractal image compres-
sion speed gains, problem-oriented change of image 
dimensionality. 

We are going to focus our future research on the 
completion of the following problems: fractal image 
encoding (the new strategy), efficiency analysis of 
hyperbolic image filtering in spaces of different 
dimensionality.   
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