
ISSN 1392 – 124X INFORMACINĖS TECHNOLOGIJOS IR VALDYMAS, 2004, Nr.2(31)

DECISION RULES EXTRACTION FROM NEURAL NETWORK:
A MODIFIED PEDAGOGICAL APPROACH

Darius PLIKYNAS
Vilnius Management College

Basanavičiaus 29a, Vilnius, Lithuania

Abstract. Neural network (NN) methods are sometimes useless in practical applications, because they are not pro-
perly tailored to the particular market’s needs. We focus thereinafter specifically on financial market applications. NNs
have not gained full acceptance here yet. One of the main reasons is the “Black Box” problem (lack of the NN deci-
sions explanatory power). It remains an open issue for the top and middle managerial level. There are though some NN
decisions rule extraction methods like decompositional, pedagogical or eclectic, but they suffer from low portability of
the rule extraction technique across various neural net architectures, high level of granularity, algorithmic sophisti-
cation of the rule extraction technique etc. The author propose to eliminate some known drawbacks using an innovative
extension of the pedagogical approach. The idea is exposed by the use of a widespread MLP neural net (as a common
tool for the decisions’ space fragmentation in the financial problems’ domain) and SOM (for the input data space clus-
terization). The feedback of both nets’ performance is related and targeted through the iteration cycle by achievement
of the best matching between the decision space fragments and input data space clusters. Three sets of rules are
generated algorithmically or by fuzzy membership functions. Empirical validation of the common financial benchmark
problems is conducted with an appropriately prepared software solution.

Keywords: Neural Networks; Decisions Reasonong; Information Extraction.

1. Indroduction

Rule extraction techniques seek to clarify to the
user how the network arrived at its decision. Gene-
rated rule quality refers to five primary classification
criteria [1, 2], viz a) the expressive power or the rule
format of the extracted rules; b) the quality of the
extracted rules; c) the translucency of the view taken
within the rule extraction technique of the underlying
neural network; d) the complexity of the rule extrac-
tion algorithm; e) the portability of the rule extraction
technique across various neural network architectures
(i. e. the extent to which the underlying NN incorpo-
rates specialized training regimes). In this research, we
will mainly focus on three criteria: expressive power,
complexity and portability of the proposed rule extrac-
tion algorithm.

The essential task of using NNs for inductive
inference is to transform the knowledge embodied
within the architecture and weights of the trained net-
work into a set of symbolic (for example, propositio-
nal if-then) rules. A number of different strategies
have been developed for performing this task [3]. Up
to date two distinct approaches – decompositional and
pedagogical – are distinguished in the mainstream.
Andrews et al. [4] also propose the third category,
which they labeled as “eclectic” to accommodate

elements of both mainstream approaches. Decomposi-
tional approach is aimed to search for combinations of
input values which, when satisfied, cause a given (hid-
den or output) unit within the NN to become "active"
irrespective of the state of other inputs to the unit [5].
Rules are extracted at the level of individual hidden
and output layer units. An alternative pedagogical
approach treats the trained NN as a "Black Box" (see
[6]). Here extracted rules describe global relationships
between inputs and outputs; no analysis of the detailed
characteristics of the NN itself is undertaken.

In contrast to the decompositional approaches, the
motive in the pedagogical approaches is to view the
trained NN at the minimum possible level of granu-
larity. The focus is then on finding rules that map the
NN inputs directly into outputs. Validity Interval Ana-
lysis (VIA) algorithm [7] and the Rule-Extraction-As-
Learning technique (REAL) [8] are two examples of
what might be historically considered as the epitome
of pedagogical approaches to extracting rules from a
trained ANN.

Tickle et al. [2], Baesens et al. [1] and other stu-
dies concluded that, at this stage, no compelling evi-
dence has emerged which mandates the use of a
particular type of NN architecture and/or a particular
type of rule extraction technique in a given class of

53

D. Plikynas

problem domains. Publications show that considerable
scope still exists for synthesizing methodologies and
techniques which are applicable across a broad spect-
rum of NN implementations and architectures.

Pedagogical or learning based rule-extraction
techniques are chosen in this research, because they
make no assumptions about the underlying NN archi-
tecture and are offered as an efficient alternative to
decompositional algorithms [5]. Particularly consider-
able potential appears to exist in exploiting the peda-
gogical approach to rule extraction from trained NNs
to develop a set of techniques for financial problem
domain. The author is looking for the extension of the
learning based rule-extraction technique by adopting a
new approach, which would make it more suitable for
financial decisions making. The idea is briefly de-
scribed in further sections.

This paper is organised as follows. In sections 2
and 3, the basic concepts of the proposed method are
briefly explained. Section 4 presents the matching
algorithm between the input space clusters and solu-
tion space fragments. NN’s decision reasoning (extrac-
ted rules sets) is presented in section 5. Section 6 is
dedicated for the experimentation set up and bench-
marking. Conclusions are drawn in section 7.

2. Premises and confines

First of all, we will choose a standard financial
problem domain and formalize it. This may be credit
risk management, portfolio risk-profit operational
management, insurance pay-off management etc. So,
let us assume that the financial problem domain
Ω(Ωin; Ωout) is characterized by (1) sub domain Ωin,
which consists of the set of input data space vectors
{Ii

n} (where n denotes the input space dimensionality
and i=[1, k] indicates the input data vector); (2) sub
domain Ωout, which consists of the set of output data
space vectors {Oi

m} with appropriate output dimensio-
nality m.

NN is used for mapping given input space onto
the desirable output space (NN makes decisions in the
particular financial problem domain). Our goal further
consists from investigating the mapping function Φ

Φ({Ii
n})→{Oi

m} (1)

Multilayer perceptron (MLP) network serves as
an universal approximator, which learns how to relate
the set of the input space vectors {Ii

n} to the set of
output (solutions) space vectors {Oi

m}. We have
chosen MLP because it is widely used in the finance
sector. Transformation function Φ is then characte-
rized by the MLP structural parameters like weights’
matrix W, biases B, number of neurons N, topology
structure T, learning parameters L

Φ = Φ(W, B, N, T, L) (2)

We are not going to investigate structural para-
meters in the decompositional manner, where rules are

generated describing the discretised hidden or output
unit activation values in terms of the original inputs
[9]. Our method contains a different assumption, i.e.
there is no need for the decompositional approach,
because following the analogy of biological NNs, we
have to model input/output interaction between spe-
cialized NNs (see [7, 8]). This means that one NN
may be specialized in recognizing and clustering the
input space while another net may use the former NN
results for mapping the input space clusters onto the
output space clusters. The third net may optimize the
matching of both NNs’ results and so on. The result is
an autonomous intelligence capable not only to
recognize the problem, but also to make decisions,
justify them and improve the performance from the
past experience. The autonomy also means very high
portability over different problem domains.

This approach of the possible interconnection
mechanism between different NNs is further briefly
described by using a model of the two (SOM and
MLP) different neural nets:

1. SOM – self organizing neural network

It searches input data space Ωin for some distinct
features and makes the set of clusters {Cj

n} out of the
set of input data vectors {Ii

n} (where j<i)

U , {Cj
n}⊆{Ii

n} (3)

2. MLP – multilayer perceptron neural network

This is supervised learning. MLP gains expe-
rience by learning how to relate the input space vec-
tors {Ii

n} to known output vectors {Oi
m}. Now we

parameterize expression (1)

Φ W, B, N, T, L ({Ii
n}) →{Oi

m} (4)

Both NNs contribute to the transformation process of
a prior data to the decisions’ data

Φ → ΦSOM + ΦMLP (5)

The whole process of the decision’s rules gene-
rating could be described as it is shown in Figure 1.

Figure 1. Scheme of the decision rules generating process

The main stages and iteration cycles are (see Figure 1)
1) 1→2→3→4: there are no cycles nor rules,
2) 1→2→3→4 + 〈5→4〉 cycle: search for the opti-

mal decision,

54

Decision Rules Extraction from Neural Network: a Modified Pedagogical Approach

55

Meanwhile self-organizing neural net (SOM) is
indicated as Module II: Kohonen type self-organizing
NN [10]. This net is responsible for clusterizing of the
input data space (see Figure 2, steps 3 and 4). There
are specialized NN methods, which are capable of
doing this task (e. g. competitive Kohonen or bias
learning, self-organizing maps, learning vector quanti-
zation networks etc). Kohonen type NN method will
stay as default for the further reference. Given a biolo-
gical brain-like analogy, it assorts objects to different
groups according to grouping criteria (input vari-
ables). However, unlike the human brain, our SOM
net has no predefined priorities for the input space
best grouping criteria. Therefore, this process is ex-
posed to mismatching.

3) 1→2→3→4 + 〈〈5→4〉 and 6→3→4〉 cycles:
search for the optimal decision and clusterizing,

4) 1→2→3→4 + 〈〈〈5→4〉 and 6→3→4〉 and
8→2→3→4〉 cycles: search for the optimal deci-
sion, clusterizing and task (verification),

5) 1→2→3→4 + 〈〈〈〈5→4〉 and 6→3→4〉 and
8→2→3→4〉 9→1→2→3→4〉 cycles: search for
the optimal decision, clusterizing, task (verifica-
tion) and object specification.

Here are some distinct modules, which embrace
different parts of the experience and decision rules
generating process (see (4)). The stages and cycles
form confines for the proposed algorithm. The next
section discusses the issue.

Before making the final projection of the clus-
tered input data space {Cj

n} to the solution space frag-
ments {Fs

m} (m - indicates dimensionality, s = [1, e]) 3. General scheme

Now we are going to construct the general sche-
me. As mentioned earlier, the proposed method explo-
res interaction of two different types of NNs: MLP
and SOM. The MLP plays a central role, because it is
responsible for learning how the input variables are
related to output decisions. In the overall research
scheme (see Figure 2), MLP is indicated as Module I
(backpropagation NN with learning data). The goal of
Module I is the projection of the input data space to
the output solution space (see Figure 2, steps 1-2).
This module is taught to memorize optimal solutions
from the given learning and testing data set. In a
biological brain analogy: MLP gets experienced. Our
objective is to extract decision rules from the MLP.

 , {FU
s
m}⊆{Oi

m} (6)

we have to be sure about best matching of both. Solu-
tion space fragmentation is as precise as an investi-
gator wants, but for the input space clustering this is
not so. We have not to forget the fact that input space
clusterization is done by SOM network, which is not
coherently bounded up to the MLP performance.
Therefore SOM clustering process (through the feed-
back relation) has to be directed for the search of the
best representation of the factual input clusters. If we
define some conformance criteria for the optimal
choice, then we will make clustering process iterate
until those matching criteria are met.

Figure 2. Overall scheme for the input data space clusterizing (SOM) and projection (MLP) to the matching solution space

D. Plikynas

Suppose {Copt
n} a priori stands for the set of opti-

mally clustered input data space. Then through the
iteration cycle

→

∑
 until

 (7)

where ε is optional, we could arrive at the optimal
clustering option. This problem tackled by iteration
cycle (steps 4, 5, 6, 7, 9 and 4, see Figure 2) could
resolve the issue. Module II makes n-dimensional in-
put data space clustered: SOM finds complex relations
between data points and groups them according to the
similar features (steps 3 and 4). All data points in the
same cluster get the same “cluster label”. Initial n-
dimensional input data space becomes then n+1 –
dimensional data space (step 5). Then MLP (Module
I) analyzes enriched data space and produces frag-
mented solution space {Fs

m+1} with m+1 dimensiona-
lity (step 6). Additional dimension arises regarding the
fact that each input data cluster has its own unique
label, which is transmitted to all cluster elements.

If input data clusters match solution space frag-
ments (see step 7), then the rule extraction mechanism
starts (see step 8, Module III in Figure 2). Otherwise,
the iteration cycle turns round until the best matching
between the data clusters and solution space fragments
appears (steps 4, 5, 6, 7, 9, 4). But originally we do
not know {Copt

n} yet. So, some additional criteria for
the best matching should be formulated. This type of
algorithm will be drawn in the further section.

4. Matching algorithm

We have formulated matching problem between
the data clusters and solution space fragments in the
previous section (see (7)). Now follows the search for
the solution, e. g. for {Copt

n}.
Again let us refer to the biological neural nets.

After the input data space clustering and solution
space (decisions) fragmentation biological neural nets
memorize both outcomes [11]. For the purpose of
simplicity, let us assume that in our model the data
matrix represents single memory storage. Following
biological neurons’ behavior our initial data matrix
Dk x n after the input space clusterizing transforms into
Dk x (n+1). The row index k indicates the total number of
the input space vectors and the column index n -
dimensionality of the input space or the total number
of data attributes, see (1). An additional attribute iden-
tifies input space cluster (each input data cluster has
its own unique label).

Biological neurons also memorize solution space
fragments. So, upon termination of the learning pro-
cess each data vector gets a mark of the appropriate
solution space fragment. This again is reflected in the
data matrix Dk x (n+2) by adding another attribute. The
latter data matrix clears the path for employment of

any known rules’ extracting techniques like visual
decision trees [1], symbolic binary or fuzzy rules [9,
12]. But there is a weak chain - additional attribute,
which identifies the input space clusters in our model
(SOM clustering, see (3)). This is because of uncer-
tainty of clustering results and their best matching to
the outcomes (MLP decisions).

Through the iteration cycle (see (7)) we expect to
find the best clusterizing result {Copt

n}. In each itera-
tion cycle SOM network creates a new representation
of the input space clusters. The author proposes (in
every iteration) for every input space vector to check
out whether an appropriate cluster attribute belongs to
the certain solution fragment or not. This is possible,
because we have matrix Dk x (n+2). But checking should
be handled for each cluster separately. A suitable algo-
rithm might be described in steps as follows:
1. Start iteration process by choosing one cluster,

e.g. C1
n from the set of clusters {Cj

n}, which are
uniquely defined by SOM for this particular
iteration cycle (see (3)).

2. For the set of input space vectors {Ii
n} from the

given cluster C1
n check to which solution

fragment {Fs
m} they belong and memorize it {Ii

n}
→ {Ii

n+2} (we store data in the data matrix
Dk x (n+2)).

3. Find solution fragment from the set {Fs
m} (see

(6)), which gets maximum input vectors from the
given cluster C1

n,

(

))1

)from 2)r(Altr.numbe(ifmax
1

1

2
1 1

+=

=+

+

=
∑ ∑

iSthen

sIn

P

C
n

e

s

Ccount

SP
 (8)

where Sp indicates the number of input vectors
targeted to the particular solution fragment (count
notation means counting the total number of input
vectors for the given cluster). Formula (8) indi-
cates the most targeted solution space fragment.
We assume that only this solution fragment is
related to the given input cluster.

4. Calculate relative measure Rj for the estimation of
fitness between the given input cluster and
targeted solution space fragment

∑
=

s
P

P
j S

SR max (9)

5. Continue steps from 1 to 4 for all clusters sequen-
tially. Evaluate the total fitness iterR for the
whole set of clusters relative to the solution frag-
ments

j
j

nj

R
iter

C
R =∑ (10)

6. Continue steps from 1 to 5 until maximum num-
ber of user-defined iterations is reached. Select

 which represents the best match between opt
nC

56

Decision Rules Extraction from Neural Network: a Modified Pedagogical Approach

clustered input data space (SOM range) and
solution space fragments (MLP range)

(max iter
opt opt
n iterC R R⇔ =) (11)

The algorithm described above relates two dis-
tinct input and output spaces in an optimal way. The
author admit a possibility for more accurate definition
of matching between two spaces. Mainly it concerns
steps 3-5, where Euclidean distances might be calcu-
lated for each input vector point in the solution space
[10].

5. NN’s decisions reasoning
In order to make the discussion more obvious, let

us assume that the following such specific sets of rules

(G1 and G2) in the hypothetical financial problem
domain were a priori determined, see Figure 3:

Set G1. If less then 20% of all data points from
the given data cluster influence decisions in the
particular solution fragment, we’ll have feeble
matching; if less then 40%, but more then 20% - good
matching; if more then 40% - excellent matching.

Set G2. If less then 35% of all data points in the
given solution fragment belong to the particular
cluster, we’ll have feeble population density for this
cluster; if more then 35%, but less then 65% - we’ll
have good population density for this cluster; if more
then 65% - we’ll have excellent population density for
this cluster.

Figure 3. Solution space fragments (MLP decisions) collation with input data space clusters (SOM clustering)

After application of G1 and G2 sets of rules to the
case shown in Figure 3, we obtain the following
results displayed in Table 1.

Table 1. Results of matching between the input clusters and
solution fragments (according to G1 and G2 sets of rules)

The fuzzy logic module makes an additional set
of rules, targeted to define more specific relationships
of both matched spaces [13]. MLP neural network
decisions are ready for the reasoning now. We have
generated three sets of rules algorithmically or by use
of fuzzy membership functions:

1. For each data cluster the appropriate solution
space fragment or their combinations are assigned
(search for the MLP decisions settled by a particular
data cluster). For example, the input data from the
cluster labeled as 1 (see Table 1: G1 column from the
first label) with probability 75% will influence

decisions A (25% - good matching) and C (50% -
excellent matching).

2. For each solution fragment the appropriate data
cluster or their combinations are assigned (search for
the data clusters, which influence the particular MLP
decision), see Figure 3. For example, fragment A (see
Table 1: row A and column G2) is 100% filled by the
clusters 1 (20% - feeble population density), 3 (20% -
feeble population density) and 4 (60% - good popu-
lation density).

Cluster’s label
1 [%] 2[%] 3[%] 4[%]

Fragment’s
label

G1 G2 G1 G2 G1 G2 G1 G2
A 25 20 0 0 50 20 75 60
B 0 0 80 100 0 0 0 0
C 50 33 20 33 0 0 0 0

3. The combination of the first and the second
MLP rule sets.

For instance, fragment C is excellently matched
(50%) by the data cluster 1 (according to the first
rule), but fragment C is poor populated by this cluster
(33%, according to the second rule). Therefore, the
fuzzy logic module generates an additional set of
rules, targeted to define more specific relationships for
both matched spaces.

6. Experimental validation

Experimentation has some constraints concerning
input and output data sets, i.e. some prewhitening is
needed. MLP input data set should be continuous,
represented by normalized input variables. Otherwise,

57

D. Plikynas

Some benchmarking financial problems were ex-
plored for practical validation. It concerned credit ap-
proval, insurance fees, and bankruptcy cases (all the
data is taken from the UCI Repository of machine
learning databases [17]). For the current stage of the
research, promising results were obtained. Due to the
limited space available and the scope of this work
there is a clear need to present them for wider discus-
sion in the next paper.

it will not fit into the MLP and SOM learning terms
[14]. Highly mutually correlated or unrelated
attributes are also pruned down.

Solution space specification depends on the na-
ture of the task. It may concern recognition, classifica-
tion, prognosis, approximation and other goals set for
various financial domain problems [15]. Solution
space is characterized by output variables such as 1)
qualitative (to buy or not to buy; good or bad invest-
ment, ratings etc), 2) quantitative (various relative or
absolute measures). 7. Conclusions

This method strives for self-learning flexibility,
independence from the data structures and real time
execution. Consequently, data gathering, processing
and logical rules extraction works softly and quickly
on the integrated software solution. Therefore,
MATLAB v6.0 software package was chosen, see
Figure 4. It has ready to use toolboxes: SIMULINK,
Neural network toolbox, Fuzzy logic toolbox.

An overview of various NN applications in the
financial market sector indicates a lack of universally
applicable NN decision rules extraction techniques,
which puts NN methods in a comparative disadvan-
tage against other methods. Top and middle manage-
ment requires logically reasoned decision support
systems. The method presented here distinguishes to a
minimum level of granularity, high portability of the
rule extraction technique across various NN architec-
tures and algorithmic simplicity of the rule refinement
technique. This method is intended for various finan-
cial market domain problems, where user friendly and
well-reasoned decision support systems are expected.

Because of the integrated nature of MATLAB’s
environment, specialized tools have been created to
customize the method by composing (description with
user-written M-files) earlier mentioned toolboxes or
by adding others, such as the Control System or
Optimization Toolbox, to mention only a few of the
possibilities. The author propose an innovative extension of the

well known pedagogical approach. The idea is ex-
posed by the use of a widespread MLP neural net (as a
common tool for the decisions’ space fragmentation in
the financial problems’ domain) and SOM (for the
input data space clusterization). The feedback of both
nets’ performance is related and targeted through the
iteration cycle by achievement of the best matching
between the decision space fragments and input data
space clusters. Three sets of rules are generated algo-
rithmically or by fuzzy membership functions.

The main part – SIMULINK, where the model in
a block diagram simulation environment could be
easily tested. At each step, SIMULINK computes new
values for the system's inputs, states, and outputs and
updates the model to reflect the computed values (see
Figure 4). At the end of the simulation, the model
reflects the final values of the system's inputs, states,
and outputs. SIMULINK provides data display and
logging blocks. Here intermediate results can be
displayed and/or logged by including these blocks in
to the model. The result is an autonomous intelligence capable

not only to recognize the problem, but also to make
decisions, justify them and improve the performance
from the past experience. The autonomy also means
very high portability over different problem domains.
The other result is an integrated software solution,
which makes rules extraction technique easily trans-
ferable to the different neural nets designed for va-
rious tasks like recognition, prognoses, and optimisa-
tion. This is especially suitable for the financial capital
market needs, where logically reasoned decisions have
to be made.

Figure 4. Integrated software development aimed to meet

project implementation

The Fuzzy Logic Toolbox allows to do several
things, but the most important thing - it enables to
create and edit fuzzy inference systems (see Geva
[13]). We can create these systems using graphical
tools or command-line functions, or we can generate
them automatically using either clustering or adaptive
neuro-fuzzy techniques. The toolbox also allows to
run our own stand-alone C programs directly, without
the need for Simulink [16].

References
 [1] B. Baesens, R. Setiono, C. Mues, J. Vanthienen.

Using Neural Network Rule Extraction and Decision
Tables for Credit-Risk Evaluation. Management
Science, Vol.49, No.3, March, 2003, 312-329.

 [2] A. Tickle, R. Andrews, M. Golea, J. Diederich.
Directions and Challenges in Extracting the Know-
ledge Embedded Within Trained Artificial Neural
Networks. IEEE Trans Neural Networks No.9(6),
1998, 1057-1068.

58

Decision Rules Extraction from Neural Network: a Modified Pedagogical Approach

59

 [3] L.C. Giles, S. Lawrence, A.C. Tsoi. Rule Inference
for Financial Prediction using Recurrent Neural Net-
works. Proceedings of IEEE/IAFE Conference on
Computational Intelligence for Financial engineering
(CIFEr), IEEE, Piscataway, NJ, 1997, 253-259.

 [4] R. Andrews, J. Diederich, A.B. Tickle. A survey and
critique of techniques for extracting rules from trained
neural networks. Knowledge Based Systems, 8(6),
1995, 373-389.

 [5] R. Andrews, S. Geva. Rule Extraction From Local
Cluster Neural Nets. Neurocomputing, Vol.3, 2000,
217-233.

 [6] M.W. Craven, J.W. Shavlik. Using sampling and
queries to extract rules from trained neural networks,
Machine Learning. Proceedings of the Eleventh Inter-
national Conference, W.W. Cohen & H. Hirsh (Eds.),
San Francisco, CA: Morgan Kaufmann, 1995.

 [7] A.B. Tickle, F. Maire, G. Bologna, J. Diederich.
Lessons from Past. Current Issues and Future Re-
search Directions in Extracting the Knowledge
Embedded in Artificial Neural Networks , in Neural
Hybrid Systems, S. Wermter and R. Sun (eds.),
Springer Verlag, 1999.

 [8] W. Duch, R. Adamczak, K. Grabczewski. A new
methodology of extraction, optimization and applica-
tion of crisp and fuzzy logical rules. IEEE Trans
Neural Networks, 11(2), 2000, 1-31.

 [9] R. Setiono, W.K. Leow. On mapping decision trees
and neural networks. Knowledge Based Systems, 13,
1999, 95-99.

[10] T. Kohonen. Self-Organizing Maps. Second Edition,
Berlin: Springer-Verlag, 1997.

[11] M.T. Hagan, H.B. Demuth, M.H. Beale. Neural
Network Design. Boston, MA: PWS Publishing, 1996.

[12] R. Setiono, W.K. Leow. Opening the neural network
black box: an algorithm for extracting rules from
function approximating artificial neural networks.
ICIS proceedings of the XXI international conference
on IS, Queensland, Australia, 2000.

[13] A.B. Geva. Hierarchical unsupervised fuzzy clus-
tering. IEEE Transactions on Fuzzy Systems. Vol.7,
No.6, Dec 1999, 723-733.

[14] D. Plikynas, L, Simanauskas, S. Būda. Research of
Neural Network Methods for Compound Stock Ex-
change Indices Analysis. Informatica, Vilnius, Insti-
tute of Mathematics and Informatics Lithuanian Aca-
demy of Sciences, 2002, 13 (4), 465-484.

[15] Y. Hiemstra. Linear Regression Versus Backpropaga-
tion Networks to Predict Quartely Excess Returns. The
Second international Workshop on Neural Networks in
the Capital Markets, CalTech, Pasadena. 1999.

[16] Home Page of the Mathworks Web Site. Last updated
in 2004.02.12 http://www.mathworks.com/.

[17] C.L. Blake, C.J. Merz. UCI Repository of machine
learning databases. Irvine, CA: University of Califor-
nia, Department of Information and Computer
Science, 1998.
[http://www.ics.uci.edu/~mlearn/MLRepository.html].

http://www.mathworks.com/

