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Abstract. Neural network (NN) methods are sometimes useless in practical applications, because they are not pro-
perly tailored to the particular market’s needs. We focus thereinafter specifically on financial market applications. NNs 
have not gained full acceptance here yet. One of the main reasons is the “Black Box” problem (lack of the NN deci-
sions explanatory power). It remains an open issue for the top and middle managerial level. There are though some NN 
decisions rule extraction methods like decompositional, pedagogical or eclectic, but they suffer from low portability of 
the rule extraction technique across various neural net architectures, high level of granularity, algorithmic sophisti-
cation of the rule extraction technique etc. The author propose to eliminate some known drawbacks using an innovative 
extension of the pedagogical approach. The idea is exposed by the use of a widespread MLP neural net (as a common 
tool for the decisions’ space fragmentation in the financial problems’ domain) and SOM (for the input data space clus-
terization). The feedback of both nets’ performance is related and targeted through the iteration cycle by achievement 
of the best matching between the decision space fragments and input data space clusters. Three sets of rules are 
generated algorithmically or by fuzzy membership functions. Empirical validation of the common financial benchmark 
problems is conducted with an appropriately prepared software solution. 
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1. Indroduction 

Rule extraction techniques seek to clarify to the 
user how the network arrived at its decision. Gene-
rated rule quality refers to five primary classification 
criteria [1, 2], viz a) the expressive power or the rule 
format of the extracted rules; b) the quality of the 
extracted rules; c) the translucency of the view taken 
within the rule extraction technique of the underlying 
neural network; d) the complexity of the rule extrac-
tion algorithm; e) the portability of the rule extraction 
technique across various neural network architectures 
(i. e. the extent to which the underlying NN incorpo-
rates specialized training regimes). In this research, we 
will mainly focus on three criteria: expressive power, 
complexity and portability of the proposed rule extrac-
tion algorithm.  

The essential task of using NNs for inductive 
inference is to transform the knowledge embodied 
within the architecture and weights of the trained net-
work into a set of symbolic (for example, propositio-
nal if-then) rules. A number of different strategies 
have been developed for performing this task [3]. Up 
to date two distinct approaches – decompositional and 
pedagogical – are distinguished in the mainstream. 
Andrews et al. [4] also propose the third category, 
which they labeled as “eclectic” to accommodate 

elements of both mainstream approaches. Decomposi-
tional approach is aimed to search for combinations of 
input values which, when satisfied, cause a given (hid-
den or output) unit within the NN to become "active" 
irrespective of the state of other inputs to the unit [5]. 
Rules are extracted at the level of individual hidden 
and output layer units. An alternative pedagogical 
approach treats the trained NN as a "Black Box" (see 
[6]). Here extracted rules describe global relationships 
between inputs and outputs; no analysis of the detailed 
characteristics of the NN itself is undertaken.  

In contrast to the decompositional approaches, the 
motive in the pedagogical approaches is to view the 
trained NN at the minimum possible level of granu-
larity. The focus is then on finding rules that map the 
NN inputs directly into outputs. Validity Interval Ana-
lysis (VIA) algorithm [7] and the Rule-Extraction-As-
Learning technique (REAL) [8] are two examples of 
what might be historically considered as the epitome 
of pedagogical approaches to extracting rules from a 
trained ANN. 

Tickle et al. [2], Baesens et al. [1] and other stu-
dies concluded that, at this stage, no compelling evi-
dence has emerged which mandates the use of a 
particular type of NN architecture and/or a particular 
type of rule extraction technique in a given class of 

53 



D. Plikynas 

problem domains. Publications show that considerable 
scope still exists for synthesizing methodologies and 
techniques which are applicable across a broad spect-
rum of NN implementations and architectures. 

Pedagogical or learning based rule-extraction 
techniques are chosen in this research, because they 
make no assumptions about the underlying NN archi-
tecture and are offered as an efficient alternative to 
decompositional algorithms [5]. Particularly consider-
able potential appears to exist in exploiting the peda-
gogical approach to rule extraction from trained NNs 
to develop a set of techniques for financial problem 
domain. The author is looking for the extension of the 
learning based rule-extraction technique by adopting a 
new approach, which would make it more suitable for 
financial decisions making. The idea is briefly de-
scribed in further sections.  

This paper is organised as follows. In sections 2 
and 3, the basic concepts of the proposed method are 
briefly explained. Section 4 presents the matching 
algorithm between the input space clusters and solu-
tion space fragments. NN’s decision reasoning (extrac-
ted rules sets) is presented in section 5. Section 6 is 
dedicated for the experimentation set up and bench-
marking. Conclusions are drawn in section 7. 

2. Premises and confines  

First of all, we will choose a standard financial 
problem domain and formalize it. This may be credit 
risk management, portfolio risk-profit operational 
management, insurance pay-off management etc. So, 
let us assume that the financial problem domain 
Ω(Ωin; Ωout) is characterized by (1) sub domain Ωin, 
which consists of the set of input data space vectors 
{Ii

n} (where n denotes the input space dimensionality 
and i=[1, k] indicates the input data vector); (2) sub 
domain Ωout, which consists of the set of output data 
space vectors {Oi

m} with appropriate output dimensio-
nality m.   

NN is used for mapping given input space onto 
the desirable output space (NN makes decisions in the 
particular financial problem domain). Our goal further 
consists from investigating the mapping function Φ  

Φ({Ii
n})→{Oi

m} (1) 

Multilayer perceptron (MLP) network serves as 
an universal approximator, which learns how to relate 
the set of the input space vectors {Ii

n}  to the set of 
output (solutions) space vectors {Oi

m}.  We have 
chosen MLP because it is widely used in the finance 
sector. Transformation function Φ is then characte-
rized by the MLP structural parameters like weights’ 
matrix W, biases B, number of neurons N, topology 
structure T, learning parameters L 

Φ = Φ(W, B, N, T, L) (2) 

We are not going to investigate structural para-
meters in the decompositional manner, where rules are 

generated describing the discretised hidden or output 
unit activation values in terms of the original inputs 
[9]. Our method contains a different assumption, i.e. 
there is no need for the decompositional approach, 
because following the analogy of biological NNs, we 
have to model input/output interaction between spe-
cialized NNs (see [7, 8]). This means that one NN 
may be specialized in recognizing and clustering the 
input space while another net may use the former NN 
results for mapping the input space clusters onto the 
output space clusters. The third net may optimize the 
matching of both NNs’ results and so on. The result is 
an autonomous intelligence capable not only to 
recognize the problem, but also to make decisions, 
justify them and improve the performance from the 
past experience. The autonomy also means very high 
portability over different problem domains. 

This approach of the possible interconnection 
mechanism between different NNs is further briefly 
described by using a model of the two (SOM and 
MLP) different neural nets:   

1. SOM – self organizing neural network  

It searches input data space Ωin for some distinct 
features and makes the set of clusters {Cj

n} out of the 
set of input data vectors {Ii

n} (where j<i) 

U , {Cj
n}⊆{Ii

n} (3) 

2. MLP – multilayer perceptron neural network 

This is supervised learning. MLP gains expe-
rience by learning how to relate the input space vec-
tors {Ii

n} to known output vectors {Oi
m}. Now we 

parameterize expression (1) 

Φ W, B, N, T, L ({Ii
n}) →{Oi

m} (4) 

Both NNs contribute to the transformation process of 
a prior data to the decisions’ data  

Φ → ΦSOM + ΦMLP                                                                     (5) 

The whole process of the decision’s rules gene-
rating could be described as it is shown in Figure 1.  

 
 

Figure 1. Scheme of the decision rules generating process 

The main stages and iteration cycles are (see Figure 1) 
1) 1→2→3→4: there are no cycles nor rules,  
2) 1→2→3→4 + 〈5→4〉 cycle: search for the opti-

mal decision,  
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Meanwhile self-organizing neural net (SOM) is 
indicated as Module II: Kohonen type self-organizing 
NN [10]. This net is responsible for clusterizing of the 
input data space (see Figure 2, steps 3 and 4). There 
are specialized NN methods, which are capable of 
doing this task (e. g. competitive Kohonen or bias 
learning, self-organizing maps, learning vector quanti-
zation networks etc).  Kohonen type NN method will 
stay as default for the further reference. Given a biolo-
gical brain-like analogy, it assorts objects to different 
groups according to grouping criteria (input vari-
ables). However, unlike the human brain, our SOM 
net has no predefined priorities for the input space 
best grouping criteria. Therefore, this process is ex-
posed to mismatching.  

3) 1→2→3→4 + 〈〈5→4〉 and 6→3→4〉 cycles: 
search for the optimal decision and clusterizing, 

4) 1→2→3→4 + 〈〈〈5→4〉 and 6→3→4〉 and 
8→2→3→4〉 cycles: search for the optimal deci-
sion, clusterizing and task (verification), 

5) 1→2→3→4 + 〈〈〈〈5→4〉 and 6→3→4〉 and 
8→2→3→4〉 9→1→2→3→4〉 cycles: search for 
the optimal decision, clusterizing, task (verifica-
tion) and object specification. 

Here are some distinct modules, which embrace 
different parts of the experience and decision rules 
generating process (see (4)). The stages and cycles 
form confines for the proposed algorithm. The next 
section discusses the issue. 

Before making the final projection of the clus-
tered input data space {Cj

n} to the solution space frag-
ments {Fs

m} (m - indicates dimensionality, s = [1, e]) 3. General scheme  

Now we are going to construct the general sche-
me.  As mentioned earlier, the proposed method explo-
res interaction of two different types of NNs: MLP 
and SOM. The MLP plays a central role, because it is 
responsible for learning how the input variables are 
related to output decisions. In the overall research 
scheme (see Figure 2), MLP is indicated as Module I 
(backpropagation NN with learning data). The goal of 
Module I is the projection of the input data space to 
the output solution space (see Figure 2, steps 1-2). 
This module is taught to memorize optimal solutions 
from the given learning and testing data set. In a 
biological brain analogy: MLP gets experienced. Our 
objective is to extract decision rules from the MLP.   

  , {FU
s
m}⊆{Oi

m} (6) 

we have to be sure about best matching of both. Solu-
tion space fragmentation is as precise as an investi-
gator wants, but for the input space clustering this is 
not so. We have not to forget the fact that input space 
clusterization is done by SOM network, which is not 
coherently bounded up to the MLP performance. 
Therefore SOM clustering process (through the feed-
back relation) has to be directed for the search of the 
best representation of the factual input clusters. If we 
define some conformance criteria for the optimal 
choice, then we will make clustering process iterate 
until those matching criteria are met.  

 
Figure 2. Overall scheme for the input data space clusterizing (SOM) and projection (MLP) to the matching solution space



D. Plikynas 

Suppose {Copt
n} a priori stands for the set of opti-

mally clustered input data space. Then through the 
iteration cycle 

→

∑
  until 

   (7) 

where ε is optional, we could arrive at the optimal 
clustering option. This problem tackled by iteration 
cycle (steps 4, 5, 6, 7, 9 and 4, see Figure 2) could 
resolve the issue. Module II makes n-dimensional in-
put data space clustered: SOM finds complex relations 
between data points and groups them according to the 
similar features (steps 3 and 4). All data points in the 
same cluster get the same “cluster label”. Initial n-
dimensional input data space becomes then n+1 – 
dimensional data space (step 5). Then MLP (Module 
I) analyzes enriched data space and produces frag-
mented solution space {Fs

m+1} with m+1 dimensiona-
lity (step 6). Additional dimension arises regarding the 
fact that each input data cluster has its own unique 
label, which is transmitted to all cluster elements.  

If input data clusters match solution space frag-
ments (see step 7), then the rule extraction mechanism 
starts (see step 8, Module III in Figure 2). Otherwise, 
the iteration cycle turns round until the best matching 
between the data clusters and solution space fragments 
appears (steps 4, 5, 6, 7, 9, 4). But originally we do 
not know {Copt

n} yet. So, some additional criteria for 
the best matching should be formulated. This type of 
algorithm will be drawn in the further section. 

4. Matching algorithm  

We have formulated matching problem between 
the data clusters and solution space fragments in the 
previous section (see (7)). Now follows the search for 
the solution, e. g. for {Copt

n}. 
Again let us refer to the biological neural nets. 

After the input data space clustering and solution 
space (decisions) fragmentation biological neural nets 
memorize both outcomes [11]. For the purpose of 
simplicity, let us assume that in our model the data 
matrix represents single memory storage. Following 
biological neurons’ behavior our initial data matrix  
Dk x n after the input space clusterizing transforms into 
Dk x (n+1). The row index k indicates the total number of 
the input space vectors and the column index n - 
dimensionality of the input space or the total number 
of data attributes, see (1). An additional attribute iden-
tifies input space cluster (each input data cluster has 
its own unique label). 

Biological neurons also memorize solution space 
fragments. So, upon termination of the learning pro-
cess each data vector gets a mark of the appropriate 
solution space fragment. This again is reflected in the 
data matrix Dk x (n+2) by adding another attribute. The 
latter data matrix clears the path for employment of 

any known rules’ extracting techniques like visual 
decision trees [1], symbolic binary or fuzzy rules [9, 
12]. But there is a weak chain - additional attribute, 
which identifies the input space clusters in our model 
(SOM clustering, see (3)). This is because of uncer-
tainty of clustering results and their best matching to 
the outcomes (MLP decisions).  

Through the iteration cycle (see (7)) we expect to 
find the best clusterizing result {Copt

n}. In each itera-
tion cycle SOM network creates a new representation 
of the input space clusters. The author proposes (in 
every iteration) for every input space vector to check 
out whether an appropriate cluster attribute belongs to 
the certain solution fragment or not. This is possible, 
because we have matrix Dk x (n+2). But checking should 
be handled for each cluster separately. A suitable algo-
rithm might be described in steps as follows:  
1. Start iteration process by choosing one cluster, 

e.g. C1
n from the set of clusters {Cj

n}, which are 
uniquely defined by SOM for this particular 
iteration cycle (see (3)).  

2. For the set of input space vectors {Ii
n} from the 

given cluster C1
n check to which solution 

fragment {Fs
m} they belong and memorize it {Ii

n} 
→ {Ii

n+2} (we store data in the data matrix  
Dk x (n+2)).  

3. Find solution fragment from the set {Fs
m} (see 

(6)), which gets maximum input vectors from the 
given cluster C1

n, 

(
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where Sp indicates the number of input vectors 
targeted to the particular solution fragment (count 
notation means counting the total number of input 
vectors for the given  cluster). Formula (8) indi-
cates the most targeted solution space fragment. 
We assume that only this solution fragment is 
related to the given input cluster. 

4. Calculate relative measure Rj for the estimation of 
fitness between the given input cluster and 
targeted solution space fragment 

∑
=

s
P

P
j S

SR max  (9) 

5. Continue steps from 1 to 4 for all clusters sequen-
tially. Evaluate the total fitness iterR  for the 
whole set of clusters relative to the solution frag-
ments  

j
j

nj

R
iter

C
R =∑  (10) 

6. Continue steps from 1 to 5 until maximum num-
ber of user-defined iterations is reached. Select 

 which represents the best match between opt
nC
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clustered input data space (SOM range) and 
solution space fragments (MLP range) 

(max iter
opt opt
n iterC R R⇔ = )  (11) 

The algorithm described above relates two dis-
tinct input and output spaces in an optimal way. The 
author admit a possibility for more accurate definition 
of matching between two spaces. Mainly it concerns 
steps 3-5, where Euclidean distances might be calcu-
lated for each input vector point in the solution space 
[10].   

5. NN’s decisions reasoning  
In order to make the discussion more obvious, let 

us assume that the following such specific sets of rules 

(G1 and G2) in the hypothetical financial problem 
domain were a priori determined, see Figure 3: 

Set G1. If less then 20% of all data points from 
the given data cluster influence decisions in the 
particular solution fragment, we’ll have feeble 
matching; if less then 40%, but more then 20% - good 
matching; if more then 40% - excellent matching.  

Set G2. If less then 35% of all data points in the 
given solution fragment belong to the particular 
cluster, we’ll have feeble population density for this 
cluster; if more then 35%, but less then 65% - we’ll 
have good population density for this cluster; if more 
then 65% - we’ll have excellent population density for 
this cluster. 

 
Figure 3. Solution space fragments (MLP decisions) collation with input data space clusters (SOM clustering)

After application of G1 and G2 sets of rules to the 
case shown in Figure 3, we obtain the following 
results displayed in Table 1. 

Table 1. Results of matching between the input clusters and 
solution fragments (according to G1 and G2 sets of rules) 

The fuzzy logic module makes an additional set 
of rules, targeted to define more specific relationships 
of both matched spaces [13]. MLP neural network 
decisions are ready for the reasoning now.  We have 
generated three sets of rules algorithmically or by use 
of fuzzy membership functions: 

1. For each data cluster the appropriate solution 
space fragment or their combinations are assigned 
(search for the MLP decisions settled by a particular 
data cluster). For example, the input data from the 
cluster labeled as 1 (see Table 1: G1 column from the 
first label) with probability 75% will influence 

decisions A (25% - good matching) and C (50% - 
excellent matching).  

2. For each solution fragment the appropriate data 
cluster or their combinations are assigned (search for 
the data clusters, which influence the particular MLP 
decision), see Figure 3. For example, fragment A (see 
Table 1: row A and column G2) is 100% filled by the 
clusters 1 (20% - feeble population density), 3 (20% - 
feeble population density) and 4 (60% - good popu-
lation density).  

Cluster’s label 
1 [%] 2[%] 3[%] 4[%] 

Fragment’s 
label 

G1 G2 G1 G2 G1 G2 G1 G2 
A 25 20 0 0 50 20 75 60 
B 0 0 80 100 0 0 0 0 
C 50 33 20 33 0 0 0 0 

3. The combination of the first and the second 
MLP rule sets. 

For instance, fragment C is excellently matched 
(50%) by the data cluster 1 (according to the first 
rule), but fragment C is poor populated by this cluster 
(33%, according to the second rule). Therefore, the 
fuzzy logic module generates an additional set of 
rules, targeted to define more specific relationships for 
both matched spaces. 

6. Experimental  validation  

Experimentation has some constraints concerning 
input and output data sets, i.e. some prewhitening is 
needed. MLP input data set should be continuous, 
represented by normalized input variables. Otherwise, 

57 



D. Plikynas 

Some benchmarking financial problems were ex-
plored for practical validation. It concerned credit ap-
proval, insurance fees, and bankruptcy cases (all the 
data is taken from the UCI Repository of machine 
learning databases [17]). For the current stage of the 
research, promising results were obtained. Due to the 
limited space available and the scope of this work 
there is a clear need to present them for wider discus-
sion in the next paper. 

it will not fit into the MLP and SOM learning terms 
[14]. Highly mutually correlated or unrelated 
attributes are also pruned down.   

Solution space specification depends on the na-
ture of the task. It may concern recognition, classifica-
tion, prognosis, approximation and other goals set for 
various financial domain problems [15]. Solution 
space is characterized by output variables such as 1) 
qualitative (to buy or not to buy; good or bad invest-
ment, ratings etc), 2) quantitative (various relative or 
absolute measures).  7. Conclusions 

This method strives for self-learning flexibility, 
independence from the data structures and real time 
execution. Consequently, data gathering, processing 
and logical rules extraction works softly and quickly 
on the integrated software solution. Therefore, 
MATLAB v6.0 software package was chosen, see 
Figure 4. It has ready to use toolboxes: SIMULINK, 
Neural network toolbox, Fuzzy logic toolbox. 

An overview of various NN applications in the 
financial market sector indicates a lack of universally 
applicable NN decision rules extraction techniques, 
which puts NN methods in a comparative disadvan-
tage against other methods. Top and middle manage-
ment requires logically reasoned decision support 
systems. The method presented here distinguishes to a 
minimum level of granularity, high portability of the 
rule extraction technique across various NN architec-
tures and algorithmic simplicity of the rule refinement 
technique. This method is intended for various finan-
cial market domain problems, where user friendly and 
well-reasoned decision support systems are expected. 

Because of the integrated nature of MATLAB’s 
environment,  specialized tools have been created to 
customize the method by composing (description with 
user-written M-files) earlier mentioned toolboxes or 
by adding others, such as the Control System or 
Optimization Toolbox, to mention only a few of the 
possibilities. The author propose an innovative extension of the 

well known pedagogical approach. The idea is ex-
posed by the use of a widespread MLP neural net (as a 
common tool for the decisions’ space fragmentation in 
the financial problems’ domain) and SOM (for the 
input data space clusterization). The feedback of both 
nets’ performance is related and targeted through the 
iteration cycle by achievement of the best matching 
between the decision space fragments and input data 
space clusters. Three sets of rules are generated algo-
rithmically or by fuzzy membership functions.  

The main part – SIMULINK, where the model in 
a block diagram simulation environment could be 
easily tested. At each step, SIMULINK computes new 
values for the system's inputs, states, and outputs and 
updates the model to reflect the computed values (see 
Figure 4). At the end of the simulation, the model 
reflects the final values of the system's inputs, states, 
and outputs. SIMULINK provides data display and 
logging blocks. Here intermediate results can be 
displayed and/or logged by including these blocks in 
to the model. The result is an autonomous intelligence capable 

not only to recognize the problem, but also to make 
decisions, justify them and improve the performance 
from the past experience. The autonomy also means 
very high portability over different problem domains. 
The other result is an integrated software solution, 
which makes rules extraction technique easily trans-
ferable to the different neural nets designed for va-
rious tasks like recognition, prognoses, and optimisa-
tion. This is especially suitable for the financial capital 
market needs, where logically reasoned decisions have 
to be made.  

 

 
Figure 4. Integrated software development aimed to meet 

project implementation 

The Fuzzy Logic Toolbox allows to do several 
things, but the most important thing - it enables to 
create and edit fuzzy inference systems (see Geva 
[13]). We can create these systems using graphical 
tools or command-line functions, or we can generate 
them automatically using either clustering or adaptive 
neuro-fuzzy techniques. The toolbox also allows to 
run our own stand-alone C programs directly, without 
the need for Simulink [16].  
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