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Abstract. Distributed genetic programming (GP) is a step forward in optimization of the GP algorithm, but it 
suffers from the difficulties of setting the proper distribution parameters. One of the most important parameter – 
classes, responsible for the migration among subpopulations, can be put under the control of flocking. The challenge in 
applying flocking to distributed GP lies in measuring the positions and distances between the program parse trees. This 
paper discusses the details of possible methods for measuring the tree position, paying the most attention to resulting 
distance values that are of the primary goal for a successful combination of distributed GP and flocking. 

 
 

1. Indroduction 

Genetic programming (GP) is an evolutionary 
search strategy. It is derived from the genetic algo-
rithms (GA), adopting them to search for computer 
programs. GP is a versatile and powerful technique to 
solve tasks with known domain and expected results, 
but when the way to achieve these results is unknown. 
It's an algorithm for creating algorithms and is one of 
the methods used for automated programming. 

Being an evolutionary strategy (all they are based 
on the Darwinian natural selection), GP suffers from 
the massive amount of the required computations, and, 
consequently, long run time. Since we prefer to get the 
solution to a problem as fast as possible (this is espe-
cially important to real life problems), GP algorithm 
can be accelerated by employing the technique, widely 
used in nature to speed up brain activities – the distri-
bution of computations. Genetic programming, as well 
as all genetic algorithms, is well suited for paralleli-
zation: each individual (computer program in GP case) 
can be processed separately most of the time. 

An observation of natural processes gives one 
more improvement of the GP algorithm. It was noticed 
that the algorithm performs even better when the 
individuals are distributed not globally, but to partially 
isolated chunks. Each part runs the GP algorithm 
almost independently, just with some information 
migration at fixed time intervals. Due to similarity to 
wild life evolution in isolated islands, this genetic 
algorithm parallelization method is called island 
model or distributed GP. 

The problem with distributed genetic program-
ming lies in the complicated selection of distribution 
parameters. These parameters denote how individuals 

must be divided into subpopulations and what level of 
information migration is needed among subpopula-
tions. The parameters of the distributed GP add ano-
ther level of required optimizations on parameters of 
the sequential genetic algorithm (e.g. genetic operator 
probabilities, population size, selection strategy) and 
the best values may vary from task to task. They 
usually are left for human operator competence, but 
since the whole run of the GP algorithm is needed to 
justify if parameters are well chosen (which is a 
lengthy process), some automated technique would be 
desirable. 

Here comes another nature inspired algorithm, 
which can be applied to facilitate the selection of 
distribution parameters. It’s called flocking and is used 
to simulate life-like behavior, observed in movement 
of animal parties (e.g. flocks of birds or schools of 
fish). The flock motion is controlled by the 3 main 
rules [3] 
  1. Separation - avoiding collisions with flock-mates. 
  2. Alignment - steering to the average direction of 

flock neighbors. 
  3. Cohesion - moving to the average position of 

flock neighbors. 
Some researchers report a successful application 

of flocking rules as the search algorithm (particle 
swarm optimization) [4]. This search is similar to the 
exploration of the unknown feeding territory done by 
the party of animals. Each animal covers only a small 
area, but when it spots some food, it moves in that 
direction and eventually the whole flock gets affected 
by that behavior and tends to search the areas around 
the place where the food was found. As a result the 
flock moves in a hardly predictable manner, even 
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though the ultimate goal is to find food, and explores 
vast areas, giving the priority to the more promising 
regions. 

All earlier researchers of the distributed GP and 
flocking analyzed these algorithms as separate entities, 
without attempts to combine them together. This paper 
suggests to join both search strategies, making the 
flocking a supplement for the distributed GP. As we 
will see further in the article, the fundamental task for 
this combination of the two algorithms is the 
assessment of the position of the program parse tree in 
the search space. 

If we assume the whole population of individuals 
in the distributed GP as the flock of subpopulations, 
flocking rules can by adapted to control subpopula-
tions. The distribution parameters can be separated 
into two main sections: 
  1. Division parameters direct how many and what 

size subpopulations are created. 
  2. Migration parameters govern the information 

exchange among subpopulations: exchange 
frequency, rate, selection of migrating 
individuals, etc. 
As for the first parameter type, in the static distri-

bution where subpopulations count and their sizes are 
set at the beginning of the genetic algorithm run, the 
flocking won't be much of use. To control these para-
meters, at least subpopulations of a volatile size are 
required. But since variable dynamic subpopulations 
aren't proved to be useful [2], such experiments are 
better left to be carried out in case flocking performs 
successfully in controlling other distribution para-
meters. 

The second type of parameters is obviously fit to 
be adjusted by flocking rules, because they reflect the 
mutability of subpopulations. Internally, this mutabi-
lity is controlled by GP rules that can be thought as the 
animal motivation to find food. But this controls only 
how the subpopulation moves through the search 
space by itself, without external impact from other 
subpopulations. When subpopulations communicate 
with each other by the means of migration, their cove-
rage of the search space (or the location in the search 
space) is changed from external sources. Migration 
parameters control how this external effect is applied 
among neighboring subpopulations. By changing 
these parameters we can drive the subpopulation in the 
desired direction through the search space. That's 
where the flocking theory is used – to manipulate the 
influence subpopulations of the distributed GP make 
to each other. 

Flocking usage grants one more merit for distri-
bution control – migration topology must not be 
specified beforehand. Subpopulations, as well as their 
positions, change under the influence of genetic 
operations and migration input. Neighboring sub-
populations are the ones with the smallest distance 
between them, so before the migration takes place, 

each subpopulation must find a required number of 
neighbors according to the current situation. 

In the second part of this article we explore 
elements of five different ways (two indirect and three 
direct) to measure the position of the parse tree, ana-
lyzing the speculative merits and drawbacks of each of 
them. The last part contains the results of the experi-
ment, which compares the distance measures derived 
from the application of the earlier discussed methods. 
The results show that indirect methods of position 
evaluation render more diverse distance measures, so, 
they should be used when smaller migration rates are 
required. The direct evaluation strategies give similar 
results and should be considered as interchangeable. 

2. Position measuring strategies 

As it is discussed in [1], the individual location in 
a hypothetical problem search space corresponds to 
positions required to be able to apply flocking rules. 
Here we talk about an individual, though what we 
really need is the subpopulation position. But since the 
subpopulation is nothing more than a collection of 
individuals, it seems natural first to measure positions 
of each individual and then calculate the average of 
the whole subpopulation. Still, the measurable posi-
tions must be calculated for individuals of the 
subpopulation, and that's what composes the difficulty 
of using flocking for the distributed GP. The real 
position of an individual, represented by the program 
parse tree, is the tree itself, which is rather compli-
cated as the measure to be used in calculations. So we 
have two options: either to try using the raw (parse 
tree) individual position, or convert this position to 
some more manageable form. Conversion here basi-
cally means getting rid of the parse tree hierarchy. 
Actually, the hierarchical structure of the position isn't 
much of an obstacle for calculations (if not speaking 
about the amount for needed computations), but it's 
not clear how the hierarchy of the tree reflects the 
importance of nodes in designating place in the search 
space. So the linear position measure is desirable. 

Here we'll discuss details of different possibilities 
for assessing GP individual position, starting from the 
simplest and finishing with more complicated and 
computation intensive. 

The first two are indirect strategies; they are 
based on individual phenotype evaluation. 

1. Fitness. That's the most straightforward stra-
tegy to measure the individual position; it doesn't 
require any additional computations besides the fitness 
evaluation, which is one of the most important aspects 
of the GP algorithm. Fitness maps each individual to a 
value (usually the floating point number) in a single 
dimension, so the position can be easily processed by 
flocking rules. The important drawback of using fit-
ness as an individual position measure in the fact that 
the fitness value doesn't carry information about the 
individual itself, but rather about how successful that 
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program solves the given task. So two individuals 
with equal fitness values (and consequently equal 
positions) can have nothing in common when we look 
at their parse trees. Though, even if fitness isn't the 
right measure in strict sense, it's the value that governs 
the propagation of individuals to higher generations 
and that can be enough to organize the movement of 
the individual among subpopulations. There are 
several common fitness evaluations (raw, 
standardized, adjusted, normalized) and any of these 
can be used to evaluate the position of the individual. 
The one used for the parent selection in genetic 
operators probably should be preferred, since it 
emphasizes the differences among individuals that are 
best for the problem being solved.  

2. Fitness cases. That’s another indirect position 
measuring strategy, based on the performance of the 
individual when solving the given problem. It is 
applicable only when there is more than one fitness 
case, since in case of a single data set we immediately 
get the fitness value after the evaluation of the parse 
tree (see the "fitness" strategy above). When several 
fitness cases are present, we get the potential to record 
the results of the individual with each fitness case. 
This strategy can be viewed as special, more precise 
case of the "fitness" strategy, because it as well doesn't 
measure the genotype of the individual. So some 
information about the individual is lost when the 
transition from the parse tree to the performance 
assessment is carried out and different individuals can 
get similar results only because they solved the same 
fitness cases with comparable results. But, again, if 
the individuals performed similarly for each fitness 
case, then there are big chances that their parse trees 
carry lots of analogous genetic information. 

All the following evaluation strategies are direct, 
based on the genotype of the individual. 

3. Node items. This is the simplest attempt to 
break the entire hierarchical structure of the tree to 
simpler elements for easier calculations. Since the tree 
is a collection of nodes with links among them, we 
can try to neglect the links and count only how many 
different nodes the tree has. That way we abandon one 
important aspect of the location of the individual in 
the search space, since node functions depend on the 
place in the parse tree (we can't say that the functions 
of the node in the tree root or the leaf are the same), 
but achieve a simple multidimensional representation 
of the position of the individual. Even if it is clear that 
such a strategy captures only a small quantity of the 
full complexity of the position of the tree, further 
experiments may show that it's exactly the part that is 
required to efficiently migrate individuals among 
subpopulations. 

4. Tree structure. The bare hierarchical structure 
of the tree captures even less genotype information 
than the "node items" strategy. Imagine an initial 
population where trees are generated using the full 
method and with the maximal tree depth, and all 

functional node items have the same arity (e.g. 2, 
which is common for arithmetic operations). Then we 
get a number of equal binary trees, so at the beginning 
all individuals have the same position evaluation. And 
that's not going to change further in the run of the 
algorithm, or will change only to some small extent, 
because the trees were generated with the maximal 
depth. Only mutation can change the structure of the 
tree (crossover just swaps some randomly selected 
branches), but the mutation probability is normally 
very small. So we end up with the population of 
individuals with constant equal positions. Even though 
this is a bit extreme example (often the "half" tree 
generation method is used and the initial depth of trees 
is less than maximal), it shows that this position 
evaluation strategy must be used with care. 

Hierarchical links must be translated to some 
linear structure that could be interpreted as an array of 
position coordinates. The most straightforward way to 
do this is to traverse the parse tree from top to bottom 
and at each tree level write down the arities of each 
node. The bottom-up approach is possible, too, but it's 
more complicated and computation intensive, so we’ll 
stick to the top-down way. The algorithm for the "tree 
structure" position evaluation would look like this: 

level := root 
position := [] 
i := 0 
repeat 
    for each node in level 
        position[i] := node arity 
        i := i + 1 
until tree has deeper levels 

This measuring strategy tends to generate large 
position coordinates, because the count of tree nodes 
grows exponentially with every new level and the 
linear position value is just a plain representation of 
the whole parse tree. This rises computation require-
ments for the position evaluation. The consideration of 
only the bare structure also looses a lot of genetic 
information of the individual. Thus, theoretically this 
strategy seems to be weaker than earlier mentioned 
competitors. 

5. Exact strategy. The last choice is to use the 
individual parse tree without any mappings or trans-
formations. This way we get the precise individual 
position and no further calculations for transformation 
are required. The difficult part is in obtaining the ave-
rage position of the subpopulation and in calculating 
the distance between two individuals. Average posi-
tion calculations weren't an obstacle in earlier strate-
gies, there the position was always transformed to a 
linear representation. Here, to figure the average sub-
population position, we need to form a single parse 
tree with the structural and node item information of 
all individuals. As functional tree node items can have 
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different arities, the suggested technique is to form a 
tree of the maximal allowed depth with each node 
having the maximal arity of all functional items, used 
in this problem. The node of this newly created tree 
records what items subpopulation individuals have in 
corresponding nodes (each node has a hash map with 
item counts). When individual parse trees are applied 
to this template, their branches are aligned by the left 
side. 

The second problem of “exact strategy” is the 
distance assessment. But, even if the position mea-
sures are hierarchical (tree templates filled with the 
information from each individual of the subpopu-
lation), they all have the same structure and that fact is 
beneficial for further calculations. We don't need to 
flatten the acquired measure in order to get the dis-
tance, the hash maps can be compared node by node. 

Distance calculations, applied to complex struc-
tured position measures, on the contrary to the linear 
ones, have some aspects that should be considered. 
The distance between two measures of linear coor-
dinate arrays with members of an equal significance 
can be calculated as Euclidean distance: 
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tions with n coordinates. 
But when the nodes have parent-child relations, 

these bonds can (or even must) be taken into account. 
This applies to "tree structure" and "exact" position 
evaluation strategies. Parent-child relations can be 

rated by introducing the weight to tree levels. A sug-
gested scheme would be to divide the input of each 
level by some coefficient, e.g. 2. So, the root level will 
supply the full distance value to the Euclidean 
distance value, the first level – only half of the value, 
second  one fourth and so on. If the tree is flattened as 
in "tree structure" case, this level weight correction 
should be applied during the flattening phase. 

3. Distance measures 

In order to obtain a better understanding of dis-
tance measures, generated by different position assess-
ment strategies, there was developed the traditional 
GP system with all earlier mentioned position evalua-
tion strategies [5]. During the experiment, each 
program parse tree was processed by all strategies. 
Nine trees were generated randomly for the symbolic 
regression of the mathematical expression a . 
The parse trees were constructed of 3 variable nodes 
(a, b and c) and 4 functions with arity of two (+, -, *, 
/), the maximal allowed depth of the parse tree was set 
to 5 levels. The fitness of the individual was evaluated 
by 10 fitness cases, filling variables with values ran-
domly drawn from the range [0, 1). Then the distance 
from the first tree to the other eight trees was calcu-
lated, thus getting the matrix with seven strategies for 
the position evaluation and eight distances for each 
strategy. The parse trees and resulting Euclidean 
distances are given in Table 1 and Figure 1. 

cb −+2

 
Table 1. Randomly generated trees 

No. Pre-order tree representation 
1 (* (+ (* c a) a) (* b c)) 
2 B 
3 (/ (- (- (- b b) (* b a)) (+ b a)) (+ c a)) 
4 (/ (+ c (+ (* c a) (- c a))) c) 
5 (/ b a) 
6 (+ a (- c (* b (/ c c)))) 
7 A 
8 (/ b c) 
9 (- a (* a a)) 

 
4. Conclusions 

Figure 1 indicates differences between indirect 
and direct measuring strategies: indirect methods tend 
to represent individuals as more disseminated in the 
search space, while direct methods report less distance 
diversity. Most direct strategies (except the weighted 
tree structure) have similar patterns of the distance 
distribution. Both weighted direct measures give 
distinguished results, probably due to an inadequate 
selection of weights for tree levels. So, what position 
evaluation strategy is selected may depend on the 

demands of the task: indirect measures should be 
chosen when more distance diversity is required. For 
flocking more diversity means less neighbors and, 
consequently, smaller migration rates. Until further 
experiments regarding the position measuring impact 
on the results of the distributed GP will clarify the 
advantages and disadvantages of each strategy, the 
choice is up to the human algorithm operator, who 
must take into account the distribution requirements of 
the problem being solved. 
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Figure 1. Distance from tree no. 1 
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