
ISSN 1392 – 124X INFORMACINĖS TECHNOLOGIJOS IR VALDYMAS, 2004, Nr.2(31)

APPLICATION OF MULTISTART TABU SEARCH TO THE
MAX-CUT PROBLEM

Gintaras Palubeckis
Department of Practical Informatics, Kaunas University of Technology

Studentu 50, LT-3031, Kaunas, Lithuania

Vita Krivickiene
Technical College of Kaunas

Tvirtoves al. 35, LT-3040, Kaunas, Lithuania

Abstract. In this paper, we investigate two multistart tabu search implementations for the MAX-CUT problem: an
algorithm based on application of a steepest ascent heuristic to specially constructed subproblems and the classical
random restart method. Computational results on three sets of standard test problems indicate that the first of these
techniques outperforms the second one and is very competitive when compared to other heuristic algorithms.

1. Indroduction

Given an undirected graph G with
vertex set V , edge set

(EV ,=
VVE
)

}{ n,,1K= ×⊆
Eji

 and
weights associated with the edges ()ijw ∈,

()12 \ VVV =

, the
MAX-CUT problem asks for a subset of vertices V
such that the weight of the cut given

by is maximized. Introducing

binary variables , the problem can be stated
as follows

1

1 ,V

() ∑
∈∈

=
21 ,

2
VjVi

ijw

Vixi ∈,

1 ,VVw

maximize (1) ()
()

(2

,
ji

Eji
ij xxwxF −= ∑

∈

)

subject to . (2) { } Vixi ∈∈ ,1,0

In (1), (2) a partition ()21 ,VV is represented by
 which is the incidence vector of the

subset V , that is, if and only if .
(nxxx ,,1 K=

1

)
1=ix 1Vi∈

The MAX-CUT problem is of considerable prac-
tical significance. It has a large number of applica-
tions, the most known of which are found in design
automation [1, 4, 5] and statistical physics [1, 6].

The MAX-CUT problem is NP-hard even in the
case when for each edge . Therefore,
exact algorithms require exponential time in the worst
case and in practice can solve only small or at most
moderately sized MAX-CUT instances. For larger

graphs only heuristic techniques are applicable. Such
algorithms for the MAX-CUT problem include a
projected gradient algorithm [2], a rank-2 relaxation
heuristic [3], a pure and hybrid GRASP [7], a pure and
hybrid variable neighborhood search algorithm [7],
and a combination of the rank-2 heuristic with path-
relinking [8]. Goemans and Williamson [10] proposed
a randomized algorithm based on solving a
semidefinite programming relaxation of the MAX-
CUT problem. If all edge weights are positive,
then their algorithm produces a solution whose expec-
ted value is within a factor of 0.87856 of the optimum
value. Many important research results on the MAX-
CUT problem can be found in a survey [16].

1=ijw () Eji ∈,

ijw

∈ =

+
n

i

iij ,,

The model (1), (2) can be viewed as a partial case
of the unconstrained binary quadratic optimization
problem:

 maximize (3) ()
()
∑ ∑=

Eji
iijiij xcxxcxf

, 1

subject to (2); here () Ejwcij ∈−= 2 , and
Vici ∈,

jic

, is the sum of the weights of the edges inci-
dent to i (we assume in the rest of the paper that
and denote the same object – coefficient in (3) cor-
responding to the edge

ijc

()ji,).

In [14] several multistart tabu search strategies
for (3), (2) were experimentally compared. The best
performance was shown by a multistart strategy based

29

G. Palubeckis, V. Krivickiene

on application of a deterministic heuristic to specially
constructed subproblems (projections) of (3), (2). In
this paper we adopt this algorithm for solving the
MAX-CUT problem. For comparison purposes, we
also investigate the classical random restart procedure
with tabu search in the local improvement phase. The
basic concepts of tabu search can be found, for
example, in [9].

3.3. Set ii xx −= 1:
1

 for each such that *Vi∈
=′ix . Map x to the zero vector getting

updated c Ejiij ∈′),(, , and . Vici ∈′,

3.4. Apply TS ()2
** ,,, bfxx .

4. Stop with the solution of value . *x *f

In Step 3.1 of this algorithm the variables are

included into X (and their indices into V) sequen-
tially. This process is randomized by assigning to x

ix

mind

*

1 di−

i
the probabilities proportional to the attractiveness
measure ei calculated as follows: if /ei =

0≤id and 0min <d , 0=ie if , and 0min == ddi

maxd/di1ei λ+= if , where 0>id λ is some tuning
factor, , , and

 is the increase (or decrease if) in the value
of

id* d
VVi \

min
∈

=d min iVVi *\∈
dmax=

0<i

max

id
f

d
′ that can be gained as a result of fixing xi at 1.

Initially, Vicidi ∈′= ,

,*

. After a vertex has

been moved to V is updated for each vertex

 adjacent to k by setting

*V

ik

\k

i cd

V∈

id
id

*V\Vi∈ ′+=

i

:
d

. It is
clear that the vertices with large are more
attractive. The experiments showed that the value of
λ should be sufficiently large, too. For example,

500=λ is apt. However, we observed that for the
MAX-CUT problem slightly better results are
obtained when λ is drawn randomly from some inter-
val []2,h1h . Such a strategy increases the level of
diversification while constructing new starting points
for TS. In particular, we have taken .
Another parameter used in Step 3.1 is coefficient

5000,5 2h1 ==h
α

controlling the size of X. In the experiments, we set α
to 0.4.

The paper is organized as follows. In Section 2,
we present the algorithms for (1), (2). In Section 3, we
report the results of experiments. In Section 4, we
conclude with a few final remarks.

2. Algorithms

In this section we briefly describe two multistart
tabu search algorithms adopted for solving the MAX-
CUT problem. The algorithms deal with the trans-
formed instances of (3), (2). The new instance is
constructed by mapping the current solution

 to (3), (2) to the zero vector. This ope-
ration amounts to replacing in (3) with 1 for
each such that . Let

(nxxx ,,1 K=

i

)
ix

ijc
ix−

1=ix ic′′ , stand for the coef-
ficients of the objective function obtained after this
mapping. It is easy to see that ()()221ijc − ji xx −ij =′c








,

. ()





−=′ 21 ii cxc

()
+ ∑

∈,, Ejij =1, jx
iji c

The constant term of the new objective function
 is equal to . When dealing with the

transformed instance this term always can be released.
f ′ ()xf

The first algorithm generates new starting points
by fixing values of some variables at 0 and then
applying a steepest ascent procedure to the projection
of the problem constructed by removing the fixed
variables. The algorithm, named MST, can be
described as follows.

MST

1. Randomly generate an 0–1 vector
. Map ()nxxx ,,1 K= x to the zero vector getting

, and c . Set

.

() Ejicij ∈′ ,,

ffxx == :,: **

Vi′,

)
i∈

(x
2. Apply tabu search procedure TS ()1

** ,,, bfxx .

In Step 3.2 of MST we apply a constructive
algorithm for (3), (2) described in [13]. The idea of
this algorithm is to make a steepest ascent from the
center of an n′ – dimensional unit cube (0.5, 0.5, …,
0.5) to some its vertex (0–1 vector) by fixing one
variable at 0 or 1 at each step of this climb. The
algorithm is applied to the transformed subproblem,
that is, to the one of type (3), (2) with and ijc′ ic′
instead of and c . ijc i

The loop 3.1–3.4 is executed until a selected
stopping criterion is met. In our implementation we
used a stopping rule based on the CPU clock. The
number of repetitions of this loop, of course, depends
on the time taken by a run of tabu search procedure
TS. This time interval is controlled by the last para-
meter submitted to TS – coefficient b used to bound
the number of tabu search iterations. The overall
algorithm has a warm-up phase (Step 2) in which TS
is allowed to run longer ()21 bb > than in Step 3.4. The

3. While stopping criterion is not satisfied repeat the
following steps.

3.1. Select a subset of variables { }*VixX i ∈= of

size n  nα=′ .

3.2. Apply the steepest ascent procedure to the
subproblem defined by X (it is obtained by
fixing each at 0). Let be a solution
returned by it.

Xxi ∉ x′

30

Application of Multistart Tabu Search to the Max-cut Problem

tabu search procedure for (3), (2) can be formally
stated as follows.

TS () bfxx ,,, **

1. Set)(:,0 xff ==:b , tabu value T Vii ∈= ,0: .

2. Set 0:,: =−∞= γL .

3. For k = do n,,1K
3.1. Increment b by 1.

3.2. If *fcf k >′+ , then set 1:,: == γkq and go
to 4.

3.3. If , then perform 3.1 for next k. 0>kT

3.4. If , then set Lck >′ 1:,:,: ==′= akqcL k

Lck =′
.

Otherwise check whether . If so, then
increment by 1, randomly select a number a

]1,0[∈ς and, if a/1≤ς , set . kq =:

4. Set qqq cffx ′+=−= :,1:
() Ej ∈ Vici ∈′,

x . Update c ,
, and , to keep

ij′

i, x to be corres-
ponding in the transformed problem instance to
the zero vector. If 0=γ , then go to 6. Otherwise
proceed to 5.

5. Apply a local search procedure to x . It returns
possibly improved solution x and value im-
provement (if then clocalf ,0local >f icij ′′ , are also

updated). Set fxf= , f *xf+ ,localf : =:=:* .

6. Decrement iT by 1 for each positive T Vii ∈, . Set
, where TTq =: T is the tabu tenure value. If

nbb < , then go to 2. Otherwise return.

The local search procedure invoked in Step 5 of
the above algorithm returns a solution that is locally
optimal in the neighborhood













≤−′′′= ∑
=

1),,()(
1

11

n

i
iin xxxxxN K .

This procedure like TS itself works with the trans-
formed problem, too. So, if no variable is flipped in its
value, then is returned. 0local =f

Besides and ** ,, fxx b listed explicitly TS also
has an additional parameter, namely, the tabu tenure
value T . We run TS on the MAX-CUT problem
instances with T . The same value was used in
[14] when dealing with the unconstrained binary
quadratic optimization problem.

20=

In the experiments we also tried the classical ran-
dom restart algorithm formulated for the MAX-CUT
problem given in the form (3), (2). This method
consists of two steps executed repeatedly: generation
of random starting solution and invocation of TS for

this solution. In the next section we will refer to it as
RRT (“Random Restart Tabu”). We believe that it is a
good practice to compare any more elaborated multi-
start method against this traditional multistart ap-
proach.

3. Experimental results

The main purpose of experimentation was to
investigate the capabilities of tabu search in solving
instances of the MAX-CUT problem and to compare
the obtained results with those reported in the
literature.

The algorithms we have presented in the previous
section were coded in the C programming language
and the tests were carried out on a Pentium III 800 PC.
We run MST with 250001 =b , 000102 =b and RRT

with 00010=b .

In the first experiment, we tried MST and RRT on
problem instances G1, G2, G3, G11,…, G16, G22,
G23, G24, G32,…, G37, G43, G44, and G45 created
by Helmberg and Rendl [12] and used by several
authors including [3, 7, 8] for testing their algorithms.
The solution values and average computation times
for MST and RRT on these instances are listed in
Tables 1 and 2. For comparison purposes, Table 1 also
includes the results obtained with most successful
algorithms described in the literature: variable neigh-
borhood search with forward path-relinking vnspr
presented by Festa, Pardalos, Resende and Ribeiro [7],
rank-2 relaxation heuristic circut developed by Burer,
Monteiro and Zhang [3], and a hybrid of circut and
path-relinking circut+pr proposed by Festa and
Resende [8]. The data (cut value in one run) for vnspr
(third column) are taken from [7] and the data (best
cut value in 10 runs) for circut and circut+pr (fourth
and fifth columns) from [8]. The first two columns of
each of Tables 1 and 2 give the problem (graph) iden-
tifier and the number of the vertices of the graph. The
last two columns of Table 1 display the value of the
best solution obtained from 10 runs of RRT and MST,
respectively. The columns under heading “RRT” and
“MST” in Table 2 list for each graph the average cut
value and the average time taken to first find a solu-
tion that is best in the run. Each run was limited to
1800 seconds for a graph of order 800 and to 3600
seconds for a graph of order 1000 or 2000.

By analyzing the results in Tables 1 and 2, we
find that MST for this class of instances, in general,
performs better than RRT, especially when
comparison is based on the best solutions produced by
these techniques. Each of them was able to find for
some graphs a cut of weight larger than that known in
the literature. Specifically, MST has improved the best
known values for G14, G15, G16, G22 and G44 and
RRT for G44 and G45 (all these values in Table 1 are
indicated in bold face). We can also see from Table 1
that the best results are obtained by circut+pr.

31

G. Palubeckis, V. Krivickiene

Table 1. Best solutions found by different techniques for Helmberg and Rendl instances

Problem n vnspr circut circut+pr RRT MST

G1 800 11621 11624 11624 11624 11624
G2 800 11615 11620 11620 11620 11620
G3 800 11622 11622 11622 11622 11622

G11 800 564 558 564 564 562
G12 800 556 554 556 556 552
G13 800 580 582 582 580 576

G14 800 3055 3061 3061 3042 3063
G15 800 3043 3049 3049 3024 3050
G16 800 3043 – – 3026 3052

G22 2000 13295 13354 13355 13235 13358
G23 2000 13290 13354 13338 13246 13329
G24 2000 13276 13329 13331 13241 13327

G32 2000 1396 1396 1402 1384 1392
G33 2000 1376 1368 1372 1358 1368
G34 2000 1372 1372 1376 1362 1368

G35 2000 7635 7672 7672 7590 7672
G36 2000 7632 7669 7670 7577 7669
G37 2000 7643 7680 7681 7589 7675

G43 1000 6659 6660 6660 6660 6660
G44 1000 6642 6649 6649 6650 6650
G45 1000 6646 6653 6653 6654 6650

 Table 2. Average solutions found by MST and RRT and average time (in seconds)

 to the best solution in the run for Helmberg and Rendl instances

Problem n RRT MST
value time value time

G1 800 11624 15 11610 147
G2 800 11620 180 11607 195
G3 800 11622 54 11611 278

G11 800 564 819 558 213
G12 800 554 736 547 181
G13 800 579 640 571 414

G14 800 3037 785 3059 787
G15 800 3018 581 3047 1109
G16 800 3022 683 3048 916

G22 2000 13221 2039 13306 1519
G23 2000 13224 2162 13302 1634
G24 2000 13223 1381 13308 1824

G32 2000 1380 1498 1385 1290
G33 2000 1355 1054 1357 812
G34 2000 1359 1803 1359 1324

G35 2000 7582 1200 7668 2863
G36 2000 7571 2557 7661 2578
G37 2000 7582 1974 7669 2384

G43 1000 6660 845 6648 733
G44 1000 6650 1484 6639 478
G45 1000 6653 800 6640 596

32

Application of Multistart Tabu Search to the Max-cut Problem

However, computation times for circut+pr (as re-

ported in [8]) were very large: for G1 – G3, for
example, about 36000 seconds on an SGI Challenge
with a 196 MHz R10000 processor. Slightly inferior
solutions are produced by circut which, on the other
hand, is incomparably faster than circut+pr.
Comparing MST and vnspr, we can see that our
algorithm in most cases found cuts of larger weight
than vnspr. In general, we can conclude that there is
no clear winner among the compared algorithms. Even
the random restart method RRT sometimes performs
superbly. It simply beats other competitors on the
graph clusters G1–G3 and G43–G44 by finding a
solution of the best known value in almost each run
(10 times for G1, G2 and G3, 9 times for G43 and
G44, and 7 times for G45; average values are given in
the third column of Table 2).

In the second experiment, we considered ten
MAX-CUT problem instances sg3dl101000,…,
sg3dl1010000 of size 1000 and ten instances
sg3dl141000,…, sg3dl1410000 of size 2744 used by
Burer, Monteiro and Zhang [3]. These instances
(graphs) are constructed from cubic lattices modeling
Ising spin glasses (see [3] for details). In Table 3 (the
last two columns) we give for each graph the value of
the best solution found by each of the algorithms RRT
and MST in 5 runs. Each run was limited to 3600
seconds for the first ten (smaller) graphs and to 7200
seconds for the ten larger graphs. We also include in

this table the results from the literature: from [7] for
circut and vnspr and from [3] for the algorithm pro-
posed by Hartmann [11] (the column under heading
“H2”). The latter algorithm focuses on finding the
groundstates of Ising spin glasses that can be embed-
ded as square or cubic lattices in two or three dimen-
sions, respectively. Since the used instances are of
such type it is not a surprise that the approach of
Hartmann produces significantly better solutions than
any of the other competitors. However, such a good
performance is achieved at the expense of very large
computation times: for sg3dl14 series about 33000
seconds per instance on SGI Origin 2000 machine (see
[3] for the exact timing of H2 and for a more detailed
characterization of the computer used).

As it can be seen from Table 3 MST again pro-
duced better cuts than RRT. The difference between
cut values especially large is for sg3dl14 series of
graphs. Our algorithm MST compares favourably also
with circut and vnspr. Compared with circut for
sg3dl14 series, for example, MST found better cuts in
48 runs (out of 50) and tied in 2 runs. In comparison
with vnspr, MST improved in 47 runs, tied in 1 run,
and produced inferior solutions in only two cases.

The structure of Table 4 is very similar to that of
Table 2. We can see from it that the average time taken
to first find a solution that is best in the run for RRT is
noticeably smaller than for MST. This was not a case
for Helmberg and Rendl graphs.

Table 3. Solutions found by different techniques for Burer, Monteiro and
Zhang instances

Problem circut vnspr H2 RRT MST

sg3dl101000 880 892 896 892 896
sg3dl102000 892 900 900 898 900
sg3dl103000 882 884 892 886 888
sg3dl104000 894 896 898 896 896
sg3dl105000 882 882 886 884 884
sg3dl106000 886 880 888 884 888
sg3dl107000 894 896 900 898 898
sg3dl108000 874 880 882 880 880
sg3dl109000 890 898 902 900 902
sg3dl1010000 886 890 894 890 892

sg3dl141000 2410 2416 2446 2378 2438
sg3dl142000 2416 2416 2458 2394 2448
sg3dl143000 2408 2406 2442 2394 2434
sg3dl144000 2414 2418 2450 2390 2436
sg3dl145000 2406 2416 2446 2380 2432
sg3dl146000 2412 2420 2450 2394 2440
sg3dl147000 2410 2404 2444 2384 2434
sg3dl148000 2418 2418 2446 2386 2434
sg3dl149000 2388 2384 2424 2362 2416
sg3dl1410000 2420 2422 2458 2402 2450

33

G. Palubeckis, V. Krivickiene

 Table 4. Average solutions found by MST and RRT and average time (in seconds)
 to the best solution in the run for Burer, Monteiro and Zhang instances

Problem RRT MST
value time value time

sg3dl101000 888.4 961 889.6 1755
sg3dl102000 896.8 1438 896.8 2208
sg3dl103000 884.4 578 883.2 1616
sg3dl104000 894.4 1677 892.4 913
sg3dl105000 881.6 2163 881.2 1722
sg3dl106000 882.4 1735 883.6 1808
sg3dl107000 896.0 1619 894.8 2203
sg3dl108000 877.2 511 878.4 712
sg3dl109000 896.4 1472 890.8 1391
sg3dl1010000 888.4 1311 888.0 297

sg3dl141000 2377.6 4833 2425.2 5265
sg3dl142000 2392.0 3035 2436.4 4645
sg3dl143000 2382.0 4286 2422.4 3878
sg3dl144000 2384.8 3279 2430.4 3665
sg3dl145000 2376.4 3701 2424.4 5871
sg3dl146000 2388.4 3614 2429.6 2760
sg3dl147000 2377.2 2146 2420.4 5405
sg3dl148000 2382.0 2864 2424.8 5726
sg3dl149000 2360.8 4258 2406.4 4784
sg3dl1410000 2392.8 3869 2433.2 5099

 Table 5. Solutions found by different techniques for the torus problems

Problem n circut SA RRT MST
pm3-8-50 512 454 458 458 458
pm3-15-50 3375 2964 3016 2930 3000
g3-8 512 41684814 39111654 40043061 41684814
g3-15 3375 281029888 260202525 251918092 283206561

 Table 6. Average solutions found by MST and RRT and average time (in seconds)

 to the best solution in the run for the torus problems

Problem RRT MST
value time value time

pm3-8-50 458.0 745 456.0 785
pm3-15-50 2924.4 3611 2992.4 4172
g3-8 39914366.0 639 41647774.4 841
g3-15 250725220.6 4458 282541878.0 2764

The last experiment was conducted on a set of

test problems taken from the DIMACS library of
semidefinite-quadratic-linear programs [15]. This set
contains four instances of MAX-CUT, called the torus
problems, which originated from the Ising model of
spin glasses in physics (see [15] for details). We run
MST and RRT on each instance 5 times for 1800
seconds in the case of pm3-8-50 and g3-8 and for
7200 seconds in the case of pm3-15-50 and g3-15.
The results are reported in Tables 5 and 6. Table 5 also
includes the results from the literature: from [3] for
circut and from [15] for an implementation of the

simulated annealing algorithm SA. Tables 5 and 6
clearly show that MST is quite effective in obtaining
high-quality solutions for the torus set. In particular,
for g3-8 MST was able two times (out of 5) to find a
cut of value 41684814 that is known to be optimal [3].
For pm3-8-50 the best performance is demonstrated
by RRT. This algorithm can find cuts of weight 458
(which is the best known value), perhaps, constantly
within the allotted half hour. For pm3-15-50 the best
cut is produced by SA. For g3-15 a rather good
solution is found by MST. We believe that signifi-

34

Application of Multistart Tabu Search to the Max-cut Problem

cantly better solutions for this instance can be
obtained in longer runs of MST.

4. Conclusions

In this paper we presented two multistart tabu
search implementations for the MAX-CUT problem.
The results of experiments show that the algorithm
based on construction of starting points using a one-
pass heuristic for (3), (2), in general, outperforms the
random restart method. The algorithm can quickly
find solutions that are competitive with those found by
most successful algorithms described in the literature.
For 6 benchmark graphs the solutions of weight larger
than the best known value were produced.

References
 [1] F. Barahona, M. Grötschel, M. Jünger, G. Reinelt.

An application of combinatorial optimization to statis-
tical physics and circuit layout design. Operations
Research, 1988, 36, 493–513.

 [2] S. Burer, R.D.C. Monteiro. A projected gradient
algorithm for solving the maxcut SDP relaxation.
Optimization Methods and Software, 2001, 15, 175–
200.

 [3] S. Burer, R.D.C. Monteiro, Y. Zhang. Rank-two
relaxation heuristics for MAX-CUT and other binary
quadratic programs. SIAM J. on Optimization, 2002,
12, 503–521.

 [4] K.C. Chang, D.H.-C. Du. Efficient algorithms for
layer assignment problem. IEEE Trans. on Computer
– Aided Design of Integrated Circuits and Systems,
1987, 6, 67–78.

 [5] R. Chen, Y. Kajitani, S. Chan. A graph-theoretic via
minimization algorithm for two-layer printed circuit
boards. IEEE Trans. on Circuits and Systems, 1983,
30, 284–299.

 [6] C. De Simone, M. Diehl, M. Jünger, P. Mutzel, G.
Reinelt, G. Rinaldi. Exact ground states of Ising spin
glasses: new experimental results with a branch and
cut algorithm. Journal of Statistical Physics, 1995, 80,
487–496.

 [7] P. Festa, P.M. Pardalos, M.G.C. Resende, C.C. Ri-
beiro. Randomized heuristics for the max-cut prob-
lem. Optimization Methods and Software, 2002, 17,
1033–1058.

 [8] P. Festa, M.G.C. Resende. CIRCUT+PR: a rank-2
heuristic with path-relinking for MAX-CUT. Extended
abstracts of the Fifth Metaheuristics International
Conference MIC2003, Kyoto, Japan, 2003.

 [9] F. Glover, M. Laguna. Tabu search. Kluwer Acade-
mic Publishers, Hingham, MA, USA, 1997.

[10] M.X. Goemans, D.P. Williamson. Improved approxi-
mation algorithms for maximum cut and satisfiability
problems using semidefinite programming. Journal of
ACM, 1995, 42, 1115–1145.

[11] A.K. Hartmann. Cluster-exact approximation of spin
glass groundstates. Working paper, Institut für
Theoretische Physik, Universität Heidelberg, Heidel-
berg, July 1998.

[12] C. Helmberg, F. Rendl. A spectral bundle method for
semidefinite programming. SIAM J. on Optimization,
2000, 10, 673–696.

[13] G. Palubeckis. Heuristics with a worst-case bound for
unconstrained quadratic 0–1 programming. Informa-
tica, 1992, 3, 225–240.

[14] G. Palubeckis. Multistart tabu search strategies for the
unconstrained binary quadratic optimization problem.
Annals of Operations Research, in press.

[15] G. Pataki, S. Schmieta. The DIMACS library of
semidefinite-quadratic-linear programs. Technical
report, Computational Optimization Research Center,
Columbia University, 2002.

[16] S. Poljak, Z. Tuza. Maximum cuts and large bipartite
subgraphs. DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, 1995, 20, 181–
244.

35

