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Abstract. The static problem of torsion is analysed for comparison of various expressions of error norms. On the 
basis of this analysis the expression for the relative error norm is chosen. The eigenproblem of plane stress is analysed. 
For validation of eigenmode calculations averaged relative error norms are introduced. The representation of relative 
error norms and of averaged relative error norms by the intensities of finite elements with intensity mapping for better 
utilisation of the intensity scale is proposed. The presented results serve as a means for validation of eigenmode 
calculations. 
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1. Indroduction 2. Analysis of expressions for the finite 
element error norms  The question of reliability of computer generated 

solutions is one of the concerns to specialists in com-
putational engineering. Error estimations provide a 
quantitative measure for determining the quality of 
numerical simulations. They provide a basis for adap-
ting characteristics of discrete models (meshes, appro-
ximation orders, etc) so as to improve the quality of 
results. The validation of computational models [1], 
[2] in finite element calculations is usually performed 
by using the error norms [3], [4] of finite elements. 
The static problem of torsion is analysed for 
comparison of various expressions of error norms. On 
the basis of this analysis the expression for the relative 
error norm is chosen. 

For comparative analysis of various expressions 
of error norms the static problem of torsion is solved 
because of its simplicity. In this problem the displace-
ments are assumed to be [5], [6]: 
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where u, v, w~  are the components of the displacement 
vector in the directions of the x, y, z axes of the ortho-
gonal Cartesian co-ordinate system, θ is the angle of 
twist per unit length. The strains are expressed as: 

When analysing the vibrations of structures a 
number of first eigenmodes is usually required. They 
are all calculated on the same finite element mesh. For 
validation of such calculations averaged relative error 
norms are introduced in this paper. The problem of 
plane stress [3], [5], [6] is analysed using the conven-
tional finite element displacement formulation. The 
presented results are applicable to the problems 
described in [7], [8]. 
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So the strains per unit angle of twist {ε} are expressed 
as: 
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The relative error norm [3] for the i-th finite 
element then can be calculated as: 

where [B] is the matrix of derivatives of the shape 
functions (the first row with respect to x and the se-
cond row with respect to y), {δ} is the vector of nodal 
values of w(x, y). ,
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Thus the stiffness matrix takes the form: 
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where the matrix of elastic constants: 
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Typical sequence of calculations is presented in 

Figure 1. 

where G is the shear modulus. The loading vector 
takes the form: 
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The components of stresses in the domain of the ana-
lysed finite element can be calculated in the usual way 
[3], [5], [6]: 
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 The displacements are continuous at inter-element 
boundaries, but the calculated stresses are disconti-
nuous due to the operation of differentiation. The no-
dal values of the components of stresses are obtained 
by using the conjugate approximation [5]. 

Figure 1. The sequence of calculations 

3. Numerical simulation 

A rectangular cross section is analysed. The ab-
solute error norm (9), the estimates of the quantity 
proportional to the potential energy of the finite 
element (10), (11) and the relative error norms (12), 
(13) are represented by the intensity of the finite 
elements. In order to more fully utilise the intensity 
values the following mapping is proposed: 

The components of the stresses can be interpola-
ted from their nodal values by using the shape func-
tions of the finite element. Then the components of 
strains are obtained using those values of stresses and 
the matrix of elastic constants: 
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ψ  (14) The absolute error norm [3] for the i-th finite 

element then can be calculated as: 

{ } { }( ) [ ]{ } { }( ) .** dxdyD
ie

Tabs
i εεεεψ −−= ∫∫   (9) 

,
minmax

min
)(

**

**
*

m

iii
i

iii
mappedi

















Π−Π

Π−Π
=Π  (15) 

The estimate of the quantity proportional to the 
potential energy of the finite element for the i-th finite 
element can be calculated on the basis of the values 
obtained by conjugate approximation as: 
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The estimate of the quantity proportional to the 
potential energy of the finite element for the i-th finite 
element can also be calculated as: 
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where m is the mapping parameter. The value of m = 
0.125 was used in the further representations for the 
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non-linear transformation of the intensity scale (Figure 
2). 

 

The calculated results are shown in Figure 3, Fi-
gure 4 and Figure 5.  

In Table 1 the minimum and maximum values of 
the represented quantities are given. 

 

Figure 5. Relative error norms  (*
iψ iψ ≈ ) *

iψ

The presented results show that the values of both 
relative error norms are similar and the choice of the 
relative error norm used further is determined by the 
effectiveness of numerical calculations. 

Figure 2. Non-linear transformation of the intensity scale 

 

Table 1. Minimum and maximum values of the error norms 
and estimates of the quantity proportional to the potential 
energy of the finite element 

Quantity 
i

min  
i

max  

abs
iψ  6.78453e-10  0.000363896 

*
iΠ  0.83117  42.097 

iΠ  0.831186  42.0927 

*
iψ  8.16262e-10  5.39726e-05 

iψ  8.16247e-10  5.36212e-05 

4. Averaged relative error norms for 
validation of eigenmode calculations 

Figure 3. Absolute error norms 

 

The problem of plane stress is analysed further. 
The components of stresses in the domain of the 
analysed finite element can be calculated in the usual 
way [3], [5], [6]: 

[ ][ ]{ 0δ
τ
σ
σ

BD

xy

y

x

=
















} , (19) 

where {δ0} is the vector of nodal displacements of the 
eigenmode; [B] is the matrix relating the strains with 
the displacements; [D] is the matrix relating the 
stresses with the strains; σx, σy, τxy are the components 
of the stresses in the problem of plane stress. It can be 
noted that the displacements are continuous at inter-
element boundaries, but the calculated stresses are 
discontinuous due to the operation of differentiation. Figure 4.  Estimate of the potential energy Π  (*

i iΠ ≈Π ) *
i
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The value of m = 0.132 was used in the further 
representations. The relative error norms for the first 
six eigenmodes of the structure simultaneously 
showing the shape of the eigenmodes are shown in 
Figure 6. The averaged relative error norms for the 
first six eigenmodes are shown in Figure 7. 

The nodal values of the components of stresses for 
each eigenmode are obtained by using the conjugate 
approximation [5]. 

The components of the stresses can be interpo-
lated from their nodal values by using the shape func-
tions of the finite element. Then the components of 
strains εx, εy, γxy are obtained using those values of 
stresses and the matrix of elastic constants: 
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The relative error norm [3] for the i-th finite element 
then can be calculated as: 
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a) 
The described calculations are performed for each 

of the required first eigenmodes and further the value 
of ψi for eigenmode j is denoted by ψi

j. The averaged 
relative error norms are defined as: 

n

j
i

n

j
i

ψ
ψ 1=

Σ
= , (22) 

 

where n is the number of the first eigenmodes which 
are taken into account in the analysis. 

5. Numerical results 

A rectangular plate with fixed edge in the state of 
plane stress is analysed. The lower edge of the plate is 
fastened (both components of displacements are assu-
med equal to zero). It is considered that the plate is ex-
periencing resonant vibrations on an eigenmode which 
is not multiple: the loading is assumed to be harmonic 
with the frequency of the eigenmode and not orthogo-
nal to it. The motion according to a single eigenmode 
is analysed first. The relative error norms are repre-
sented by the intensity of the finite elements. In order 
to more fully utilise the intensity values the following 
mapping is proposed: 
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where m is the mapping parameter. Also: 

 

m

iiii

iii
mappedi

















−

−
=

ψψ

ψψ
ψ

minmax

min
)( . (24) 

c) 
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Figure 7. Averaged relative error norms for the first six 

eigenmodes 
d) 

 

Table 2. Minimum and maximum values of the relative 
error norms and averaged relative error norms 

Index of 
eigenmode  j

j
ii

ψmin  j
ii

ψmax  

1  1.29745e-07  0.00079013 
2  1.27686e-07  0.00022923 
3  9.65636e-07  0.00079498 
4  4.31113e-06 0.000825917 
5  3.62946e-06 0.00138171 
6  1.86125e-06  0.000424316 

  
ii

ψmin  ii
ψmax  

  5.50895e-06  0.000539685 e) 

 

The results presented in the figures together with 
the values presented in the table serve for validation of 
the eigenmode calculations. 

6. Conclusions 

The static finite element problem of torsion is 
analysed for comparison of various expressions of 
error norms. On the basis of this analysis the expres-
sion for the relative error norm is chosen on the best 
estimate for numerical effectiveness of calculations. 

The presented computational validation techni-
ques are applied for dynamic finite element problems. 
The problem of plane stress is analysed. Averaged 
relative error norms are introduced for validation of 
eigenmode calculations. Nonlinear mapping of rela-
tive error norms and averaged relative error norms of 
finite elements is proposed for better utilisation of the 
intensity scale. 

f) 

Figure 6. Relative error norms for the a) first, b) second,  
c) third, d) fourth, e) fifth, f) sixth eigenmodes 
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The presented results serve as a means for com-
putational validation of eigenmode calculations. 
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