
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2007, Vol.36, No.2

IMPROVING LOCAL SEARCH FOR THE TRAVELING SALESMAN
PROBLEM

Alfonsas Misevičius, Armantas Ostreika, Antanas Šimaitis, Vilius Žilevičius
Department of Multimedia Engineering, Kaunas University of Technology

Studentų St. 50, LT−51368 Kaunas, Lithuania

Abstract. The subject of this paper is the improving of local search for the traveling salesman problem (TSP). In
particular, a so-called fast descent-random ascent (FDRA) strategy is proposed. The FDRA approach is based on the
fast-modified 2-opt algorithm combined with certain perturbation (random ascent) procedures. The results obtained
from the experiments demonstrate that the new improved local search strategy is better than the other local search
algorithms. This approach may also be applied to other combinatorial optimization problems.

Keywords: traveling salesman problem, heuristics, local search, fast descent-random ascent strategy.

Introduction

The traveling salesman problem (TSP) can be
formulated as follows. Given a matrix D = (dij)n×n and
a set Π of permutations of the integers from 1 to n,
find a permutation p = (p(1), p(2), ..., p(n)) ∈ Π that
minimizes

)1(),(

1

1
)1(),()(pnp

n

i
ipip ddpz += ∑

−

=
+ . (1)

The interpretation of n, D and p is as follows:
− n denotes the number of cities;
− D is the matrix that contains distances between

all the pairs of cities;
− permutations are typically called tours and the

pairs (p(1),p(2)), ..., (p(i),p(i + 1)), ..., (p(n),p(1)) are
referred to as edges; a particular element of the
permutation j = p(i) denotes city j to visit at step i.

Thus, solving the TSP means searching for the
shortest closed tour in which every city is visited
exactly once.

The TSP is a well-known representative example
of combinatorial optimization. It is NP-hard [3] and
still remains a great challenge for the researchers in
this field. The TSP also serves as a good experimental
basis for the investigation of various optimizations
techniques. Since there are no efficient (polynomial
time) exact algorithms for this problem, heuristic
methods (like tour construction heuristics [1,18], (des-
cent) local search algorithms [4,8,9], simulated annea-
ling [15], tabu search [2,12], ant colony optimization
[19], evolutionary (genetic) algorithms [11], etc.) are

often applied. More exhaustive surveys of the heuris-
tic algorithms for the TSP can be found in [4, 6, 7, 14,
17, 20].

In this paper, a new improved heuristic approach
for the TSP based on the modified descent local search
(2-opt) algorithm is discussed. The remaining part of
the paper is organized as follows. Firstly, some basic
definitions and preliminaries are given. Then, the
improved local search algorithm and its variants are
considered in more details. The results of the compu-
tational experiments are presented as well. The paper
is completed with the concluding remarks.

1. Basic definitions and preliminaries

We start with some definitions and preliminaries.
The basic definitions related to the traveling salesman
problem and its solutions are as follows.

Definition 1. Hamming distance between two
permutations (tours) p and p′ is declared as
ρ(p,p′) = n − | Ω |, where Ω is the set that consists of
all possible pairs (p(i),p((i mod n) + 1))
(i ∈ {1, 2, ..., n}) such that ∃ j:

or

.

=′′
<≤+′′

=+
njpnp

njjpjp
nipip

 ,))1(),((
1 ,))1(),((

))1) mod ((),((

=′′
≤<−′′

=+
1 ,))(),1((
1 ,))1(),((

))1) mod ((),((
jnpp

njjpjp
nipip

(Briefly speaking, the Hamming distance between two
tours is the number of edges that are contained in the
first tour but not in the second tour.)

187

A. Misevičius, A. Ostreika, A. Šimaitis, V. Žilevičius

Definition 2. A neighbourhood function Θ:
Π → 2Π assigns for every p from Π a set Θ(p) ⊆ Π −
the set of neighbouring solutions of p. The τ-edge-
exchange neighbourhood Θτ (2 ≤ τ ≤ n) is defined in
the following way:

}),(, | {)(τρτ =′Π∈′′= pppppΘ , where p ∈ Π and
ρ is the Hamming distance. The exploration of the
neighbourhood Θτ takes O(nτ) time. A special case of
the neighbourhood Θτ is the neighbourhood Θ2 (2-
edge-exchange neighbourhood).

Definition 3. The solution (tour) p′ ∈ Θτ(p) can be
obtained from p by an operation called a move, and p
is said to move to p′ when such an operation is
performed. Formally, the move may be described as
an operator φ: Π → Π. A particular move example is
the 2-edge-exchange move φ(p,i,j): Π→Ν×Ν×Π ,
which gives p′ ∈ Θ2(p) such that p′(i) = p(i), p′(i + 1)

= p(j), p′(j) = p(i + 1), p′((j mod n) + 1) = p((j mod
n) + 1), where 1 ≤ i, j ≤ n ∧ 1 < j − i < n − 1; in addi-
tion, if j − i − 2 ≥ 1, then p′(i + k + 1) = p(j − k) for
every k ∈ {1, ..., j − i − 2} (i.e. the corresponding
elements of the permutation are replaced in the
reversed order) (see Figure 1a). In the other words,
two edges at the positions i and j are removed and two
different edges are added (see Figure 1b). For this
move, we will also use a compact notation φij; then,

ijpp φ⊕=′ means that p′ is obtained from p by
applying φ(p,i,j). Similarly, higher order moves may
be defined: 3-edge-exchange move, 4-edge-exchange
move, ..., τ-edge-exchange move, ... The computatio-
nal complexity of the τ-edge-exchange move is O(n).

Definition 4. The solution (tour) p• is 2-opt(imal)
solution, i.e. it is locally optimal with respect to the
neighbourhood Θ2 if z(p•) ≤ z(p) for any p ∈ Θ2(p•).

 p(j+1)p(j)

Figure 1. An example of the 2-edge-exchange move Figure 1. An example of the 2-edge-exchange move

The 2-opt solution may be achieved by the corres-
ponding procedure (called 2-opt algorithm), which can
be viewed as a sequence of the improving 2-edge-
exchange (or simply 2-opt) moves. Usually, one starts
from a randomly chosen initial solution. The initial so-

lution may be constructed heuristically as well [1, 18].
The template of the 2-opt algorithm is presented in
Figure 2. Similarly, τ-opt algorithm (τ > 2) can be
derived.

The 2-opt solution may be achieved by the corres-
ponding procedure (called 2-opt algorithm), which can
be viewed as a sequence of the improving 2-edge-
exchange (or simply 2-opt) moves. Usually, one starts
from a randomly chosen initial solution. The initial so-

lution may be constructed heuristically as well [1, 18].
The template of the 2-opt algorithm is presented in
Figure 2. Similarly, τ-opt algorithm (τ > 2) can be
derived.

function 2-opt(p); function 2-opt(p);
// input: p − initial (starting) solution; output: p• − resulting (locally optimal) solution
begin
 p• := p;
 repeat
 p := p•;
 ∆min := 0; // ∆min denotes the minimum difference in the objective function values
 for i := 1 to n − 2 do
 for j := i + 2 to n − 1 + Sign(i − 1) do begin
 ∆ := z(ijp φ⊕) − z(p);
 if ∆ < ∆min then begin ∆min := ∆; k := i; l := j end
 end; // for
 if ∆min < 0 then p• := klp φ⊕ // move from the current solution to a new one
 until ∆min = 0;
 return p•
end.

Figure 2. Template of the 2-opt algorithm for the TSP

p: 3 ... 2 8 7 … 4 5 1 9 … 6

p′: 3 ... 2 5 4 … 7 8 1 9 … 6
 i i + 1 j j + 1

(a)

edge to be
deleted
edge to be
added

p(i)
p(i+1)

(b)

188

Improving Local Search for the Traveling Salesman Problem

Before introducing the improved local search algo-
rithm, let us describe the modified 2-opt procedure. In
fact, there are two modifications. The first one is
related to the restricted exploration of the neighbor-
hood. So, instead of thorough scanning of the com-
plete neighborhood, only the nearest neighbors of the
current city are taken into consideration. The size of
the neighbor list, i.e. the candidate list, CL, is cont-
rolled by the algorithm's user. This technique is not
new [5,6]. It allows to speed up the neighborhood
search process and reduce the computation time con-
siderably without significant loss in the quality of the
results. The neighbour list takes O(mn) memory
(m = | CL |) and its construction takes O(n2log2n) time

(the construction takes place only once at the data
processing phase).

The second modification aims also at minimizing
of the run time of the algorithm. In this case, the run
time reduction is due to limiting the number of the
descending moves (descents). The limit of descents, λ,
can be again flexibly tuned by the user. The resulting
modification of the 2-opt procedure is called a "fast
descent" (FD) (or "λ-descent"). It can be seen that "1-
descent" is a very special case of "λ-descent". The
template of the fast descent algorithm is shown in
Figure 3. The complexity of the FD algorithm is
O(mn), where m is the fixed size of the candidate list
CL.

function FastDescent(p,λ);
// input: p − initial (starting) solution, λ − number of descents (λ ≥ 1)
// output: p• − resulting (locally optimal) solution
// auxiliary variables: CL − candidate list (list of the nearest neighbours)
begin
 p• := p;
 number_of_moves := 0;
 for i := 1 to n do index[p[i]] := i;
 repeat
 p := p•;
 ∆ := 0; // ∆min denotes the minimum difference in the objective function values min
 for u := 1 to n do
 for v := 1 to | CL | do begin
 i := Min(u,index[CL[p[u],v]]); j := Max(u,index[CL[p[u],v]]);
 if (i + 2 ≤ j) and (j ≤ n − 1 + Sign(i − 1) then begin
 ∆ := z(ijp φ⊕) − z(p);
 if ∆ < ∆min then begin ∆min := ∆; k := i; l := j end
 end // if
 end; // for
 if ∆min < 0 then begin
 number_of_moves := number_of_moves + 1;
 p• := klp φ⊕ ; // move from the current solution to a new one
 update index
 end // if
 until (number_of_moves = λ) or (∆min = 0);
 return p•
end.

Figure 3. Template of the fast descent (λ-descent) algorithm for the TSP

2. An improved local search strategy: fast
descent-random ascent

The underlying idea of our improved local search
algorithm is to exploit good facets of both the deter-
ministic search and stochastic search in an effective
way. In particular, we combine the fast descent
algorithm described above and special sort random
perturbations. They are called as "random ascent".

Remind that, in the deterministic 2-opt algorithm,
only the corresponding neighbors of the current so-
lution are considered, and solely improving 2-edge-
exchange moves are performed between these neigh-
bors. We can extend the straightforward 2-opt local
search if we tolerate some more moves time after

time. This may be achieved by combination of the im-
proving (descent) and random non-improving (ascent)
moves in a proper manner. In particular, we can obtain
the iterative process consisting of one or more tenta-
tive ascending moves (like random 3- or 4-edge-ex-
change moves) followed by the λ-descent procedure
(i.e. λ improving 2-edge-exchange moves)1.

1 It is important that the structure of the given problem

allows the effective (fast) implementation and execution of
the random ascending moves. Fortunately, the TSP is just
the case. For example, a random τ-edge-exchange move can
be executed in time O(n) with only a negligible effect to the
overall complexity of the resulting algorithm.

189

A. Misevičius, A. Ostreika, A. Šimaitis, V. Žilevičius

So, let p be the current solution (tour). Then, if the
random ascent (coupled with the λ-descent) results in
a solution p′′ that is better than the solution p′ obtained
by a single 2-opt move, the solution p′′ replaces the
current solution p and serves as a starting solution for
the next iteration; otherwise the solution p is replaced
by the solution p′ ∈ Θ2(p). Obviously, p′′ does not ne-
cessarily belong to Θ2(p). This procedure is continued
until neither p′ nor p′′ is better than p. The above
process is not the deterministic local search any more.
We call it as a "fast descent-random ascent" (FDRA).
The template of the basic version of the fast descent-
random ascent algorithm is quite simple. It is given in
Figure 4.

Our fast descent-random ascent approach is
slightly different from the well-known iterated local

search (ILS) method proposed by Lourenco, Martin,
and Stützle [10]. Very generally, ILS may be thought
of as a "high-level relay hybridization", where self-
contained heuristics are executed in sequence (inde-
pendently) (see also [21]). FDRA, on the contrary,
belongs rather to a class of "low-level relay hybrids",
in which one heuristic is embedded into other heuristic
[21]. In our case, the random ascending moves are, in
particular, embedded into the deterministic (2-opt) lo-
cal search.

On the other hand, our approach appears to be
quite similar to a so-called "forward-looking" strategy
and its particular variant − "one-time chance" (for
more details, see [13]).

function FastDescentRandomAscent(p,λ);
// input: p − initial (starting) solution, λ − number of descents (λ ≥ 1)
// output: p• − resulting solution
begin
 p• := p;
 repeat
 p° := p•;
 p′ := FastDescent(p•,1); // perform a single descending 2-edge-exchange move (starting from p•)
 p~ := RandomAscent(p′); // perform random ascending move (starting from p′)
 p′′ := FastDescent(p~,λ); // perform λ descending 2-edge-exchange moves (starting from p~)
 if z(p′′) < z(p′) then p• := p′′ else p• := p′
 until z(p°) = z(p•);
 return p•
end.

Figure 4. Template of the basic fast descent-random ascent algorithm for the TSP

We experimentally found that it is better to use
more than one type of random ascending moves. The
explanation is that applying several different kinds of
perturbations adds more diversity to the search pro-
cess and allows covering wider regions of the search
space with potentially good solutions. In particular, we
operate with two types of the random ascent:
1) simple pure random ascent based on an arbitrary τ-
edge-exchange move, and 2) alternative random
ascent based on a so-called nearest neighbour recon-
nection perturbation.

The first type of ascent basically consists of a spe-
cial sort τ-edge-exchange move with no reversions.
There is no need in the reversal moves, since they
already take place during the fast descent (see Sec-
tion 1). The move complexity, i.e. the value of the
factor τ is relatively small. We used τ = 4 (a double-
bridge move) for smaller problems and τ = 8 (a four-
fold-bridge move) for larger problems.

The τ-edge-exchange move may also be viewed as
a multiple block swap (MBS) perturbation. The MBS
perturbation procedure iteratively selects two blocks,
i.e. segments in the current tour and exchanges them

(see Figure 5). The segments are selected in a random
way.

Regarding the alternative random ascent, it utilizes
a specific type of perturbation − the nearest neighbour
reconnection (NNR), which has been proven to be
quite effective within the iterated tabu search method
[12]. In more details, the NNR perturbation consists of
three main steps (see also Figure 6). Firstly, a sub-tour
is obtained by choosing η cities starting from a
random city. Secondly, the given sub-tour undergoes
the nearest neighbour (NN) heuristic [18]. Finally, the
resulting sequence of cities is pasted to the original
tour to obtain a new feasible tour. The NNR pertur-
bation cannot be easily undone by the subsequent 2-
edge-exchange moves. On the other hand, the nearest
neighbour reconnection does not increase the tour
length substantially, since it incorporates clever tour
reconstruction heuristic instead of a blind random
move. These features make the NNR perturbation an
almost ideal candidate for the role of the alternative
random ascent procedure; at the same time, the search
process becomes highly robust (see Section 3).

190

Improving Local Search for the Traveling Salesman Problem

191

The sub-tour size is controlled by the correspon-
ding parameter, η (the NNR perturbation strength). In

our implementation of the NNR procedure, η is
proportional to n , where n is the problem size.

Figure 5. An example of the multiple block swap perturbation: the fourfold-bridge move

p: 5 ... 9 4 8 7 2 1 3 6 … 10

 4 8 7 2 1

 7 4 1 8 2

p~: 5 ... 9 7 4 1 8 2 3 6 … 10
 i j

apply nearest neighbour procedure to the cities 4,8,7,2,1
get new sequence of cities: 7,4,1,8,2

p: 9 ... 2 8 … 5 4 … 6 7 … 1 3 … 10

p~: 9 ... 5 4 … 2 8 … 1 3 … 6 7 … 10

η

 cut η cities starting from the position i

 paste η cities to the resulting tour p~

Figure 6. An example of the nearest neighbour reconnection perturbation

We can also maintain multiple random ascent
trials. These trials (consisting of random ascents and
λ-descents) are continued until a new better solution
has been found or possibly some maximum number of
trials, µ, has been reached. Here, µ is defined by the
user (we used µ = 5). The resulting algorithm is called
as an "enhanced fast descent-random ascent"
(EFDRA). It reminds rather a "more-time chance"
[13] than the "one-time chance" strategy mentioned
above. The template of the EFDRA algorithm is
presented in Figure 7. The execution time of EFDRA
is proportional to max{m,η2}·n·K, where m represents
the candidate list size, η denotes the NNR perturbation
strength, and K is some coefficient, which increases
with the number of "chances" (i.e. trials of ascents and
descents).

It is possible to further extend the EFDRA algo-
rithm in a very gentle way. This new enhancement is
entitled as EFDRA∗. The template of EFDRA∗ is
almost identical to the one of EFDRA, except that the
call to the fast descent procedure ("FastDes-
cent(p~,λ)") is substituted by the call to the fast
descent-random ascent (FDRA) procedure ("Enhan-
cedFastDescentRandomAscent(p,λ,µ,τ,η)"). Only the
call that follows the call to the alternative random
ascent procedure (see Figure 7, Line 19 of the EFDRA
template) is substituted. This is to avoid significant
increasing in the run time of EFDRA∗.

We may not limit ourselves with EFDRA∗. Con-
tinuing in the above manner, it is easy to create a
cascade of algorithms: EFDRA∗∗, EFDRA∗∗∗, and so

on. Our most latest version of EFDRA is, in particular,
EFDRA∗∗∗∗. (The templates of EFDRA∗…EFDRA∗∗∗∗
are omitted for the sake of briefness.)

The following are the main control parameters for
the algorithm EFDRA and its extensions: the
candidate list size − m, the number of descents − λ, the
number of trials − µ, the random move complexity −
τ, and the NNR perturbation strength (sub-tour length)
− η. Their values are as follows: m = 10, λ = 30,
µ = 5, τ = 4 (for the smaller problems (n ≤ 150)) and
τ = 8 (for the larger problems (n > 150)), η = 3 n).

3. Results of computational experiments

To test the efficiency of the new proposed ap-
proach, a number of computational experiments have
been carried out. In the experiments, the traveling
salesman problem instances taken from the well-
known electronic library of the TSP instances TSPLIB
[16] were used.

The following are the performance measures of the
algorithms: a) the average deviation of obtained
solutions from a provably optimal solution − δ
(%][)(100 optopt zzz −=δ , where z is the average
objective function value (i.e. the tour length) over W
runs of the given algorithm, and zopt is the provably
optimal objective function value (the optimal tour
lengths can be found in TSPLIB)); b) the number of
solutions that are within 1% optimality (over W runs)
− C1%; c) the number of the optimal solutions − Copt.

A. Misevičius, A. Ostreika, A. Šimaitis, V. Žilevičius

function EnhancedFastDescentRandomAscent(p,λ,µ,τ,η);
// input: p − initial (starting) solution, λ − number of descents (λ ≥ 1), µ − number of trials of ascents (µ ≥ 1)
// τ − random move complexity, η − alternative perturbation strength
// output: p• − resulting solution
begin
 p• := p;
 repeat // main cycle
 p° := p•; number_of_trials := 0;
 p∇ := FastDescent(p•,1); // perform a single descending 2-edge-exchange move (starting from p•)
 repeat // trials of random ascents
 p′ := p∇; number_of_trials := number_of_trials + 1;
 p~ := RandomAscent(p′,τ); // perform random ascending move (starting from p′)
 p′′ := FastDescent(p~,λ); // perform λ 2-edge-exchange moves (starting from p~)
 if z(p′′) < z(p′)
 then p• := p′′
 else begin
 p′ := p∇;
 p~ := AlternativeRandomAscent(p′,η); // perform alternative perturbation
 p′′ := FastDescent(p~,λ); // perform λ 2-edge-exchange moves (starting from p~)
 if z(p′′) < z(p′) then p• := p′′ else p• := p′
 end // else
 until (number_of_trials = µ) or (z(p•) < z(p∇))
 until z(p°) = z(p•);

end.
return p•

Figure 7. Template of the enhanced fast descent-random ascent algorithm for the TSP

In the experiments conducted, five variants of the
enhanced fast descent-random ascent algorithm (i.e.
EFDRA, EFDRA∗, EFDRA∗∗, EFDRA∗∗∗, and
EFDRA∗∗∗∗) were compared. In addition, four other
heuristic algorithms were used in the comparison.
They are as follows: a) the 2-opt algorithm (2-OPT);
b) the 4-opt algorithm (4-OPT); c) the simulated
annealing (SA) algorithm (coded by A. Misevicius);
d) the fast iterated tabu search (FITS) algorithm [12].
In the case of 2-OPT, 500 repetitions are performed at
every run, and only the best solution out of 500
repetitions is recorded as a result. The number of runs,
W, is equal to 10 for all the algorithms, except 4-OPT,
for which W = 1. All algorithms start from the
improved initial solutions constructed by the nearest
neighbour heuristic [18]. The algorithms require
similar computation (CPU) time (except EFDRA,
EFDRA∗, EFDRA∗∗, and EFDRA∗∗∗, which consume

less time, and 4-OPT, which needs much more time).
3 GHz Pentium computer was used in the experi-
ments.

We can observe from Table 1 that the results are
gradually improved (with respect to the performance
measures used) as long as the number of "chances"
(i.e. trials of ascents and descents) increases. This
trend is especially evident for the algorithms EFDRA,
EFDRA∗, EFDRA∗∗. Of course, EFDRA∗∗∗∗ obviously
outperforms all the remaining variants by consuming
some more CPU time. So, we used EFDRA∗∗∗∗ in
further comparisons. The results of these comparisons
are presented in Tables 2 and 3. The best results ob-
tained are printed in bold face. (CPU times per one
run are given for the algorithms 2-OPT, SA, FITS, and
EFDRA∗∗∗∗.)

Table 1. Comparison of the algorithms (Part I)

Instance n zopt
δ , C1%/Copt

 EFDRA EFDRA∗ EFDRA∗∗ EFDRA∗∗∗ EFDRA∗∗∗∗
a280 280 2579 1.972, 1/ 0 0.145, 10/ 1 0.044, 10/ 7 0 0
ch150 150 6528 2.551, 0/ 0 0.398, 7/ 1 0.267, 9/ 2 0.091, 10/ 6 0
d198 198 15780 2.704, 0/ 0 0.112, 9/ 2 0.056, 10/ 3 0.028, 10/ 8 0
fl417 417 11861 3.470, 0/ 0 0.288, 9/ 0 0.102, 10/ 0 0.059, 10/ 1 0.028, 10/ 3
gil262 262 2378 3.038, 0/ 0 0.384, 7/ 0 0.159, 9/ 1 0.029, 10/ 4 0
kroa200 200 29368 3.097, 0/ 0 0.054, 10/ 3 0.004, 10/ 8 0 0
lin318 318 42029 3.004, 0/ 0 0.773, 6/ 0 0.452, 7/ 0 0.196, 9/ 1 0.094, 10/ 4
rd400 400 15281 3.562, 0/ 0 0.777, 6/ 0 0.310, 8/ 0 0.213, 9/ 0 0.112, 10/ 1

192

Improving Local Search for the Traveling Salesman Problem

Table 2. Comparison of the algorithms (Part II)

Instance n zopt
δ , C1%/Copt

2-OPT 4-OPT SA FITS EFDRA∗∗∗∗
CPU time

(sec.)
a280 280 2579 2.338, 3/ 0 2.374, 0/ 0 0.314, 9/ 2 0.112, 10/ 8 0 12.0
att48 48 10628 0.010, 10/ 9 0.235, 1/ 0 0.436, 9/ 3 0 0 0.06
bayg29 29 1610 0 0.003, 1/ 0 0.031, 10/ 9 0 0 0.02
bays29 29 2020 0 0.396, 1/ 0 0.059, 10/ 8 0 0 0.02
berlin52 52 7542 0.059, 10/ 9 0.906, 1/ 0 0 0 0 0.08
bier127 127 118282 0.649, 0/ 0 1.598, 1/ 0 1.277, 2/ 0 0.023, 10/ 9 0 2.5
brazil58 58 25395 0 0 0 0 0 0.09
brg180 180 1950 0 0 9.077, 0/ 0 0 0 2.3
burma14 14 3323 0 0 0 0 0 0.00
ch130 130 6110 0.898, 5/ 1 0.953, 1/ 0 0.453, 8/ 1 0.027, 10/ 9 0 3.4
ch150 150 6528 0.200, 10/ 3 1.595, 0/ 0 0.695, 9/ 0 0.035, 10/ 9 0 4.5
d198 198 15780 0.637, 10/ 1 0.504, 1/ 0 0.181, 10/ 1 0.062, 10/ 9 0 10.8
d493 493 35002 2.026, 1/ 0 7.737, 0/ 0 0.737, 9/ 0 0.591, 7/ 1 0.240, 10/ 1 65
dantzig42 42 699 0 0 0.012, 10/ 9 0 0 0.04
eil51 51 426 0.069, 10/ 8 2.052, 0/ 0 0.093, 10/ 7 0 0 0.06
eil76 76 538 0.299, 10/ 2 1.626, 0/ 0 0.376, 9/ 3 0 0 0.2
eil101 101 629 0.974, 4/ 0 2.657, 0/ 0 0.493, 8/ 2 0 0 1.4
fl417 417 11861 0.880, 3/ 0 4.770, 0/ 0 1.098, 5/ 0 0.098, 10/ 1 0.028, 10/ 3 45
fri26 26 937 0 0 0 0 0 0.02
gil262 262 2378 1.656, 1/ 0 3.338, 0/ 0 0.436, 9/ 0 0.176, 10/ 1 0 23
gr17 17 2085 0 0.140, 1/ 0 0 0 0 0.01
gr21 21 2707 0 1.541, 0/ 0 0 0 0 0.01
gr24 24 1272 0 0.041, 1/ 0 0 0 0 0.01
gr48 48 5046 0.095, 10/ 7 0.950, 1/ 0 0.002, 10/ 9 0 0 0.02
gr96 96 55209 0.446, 10/ 3 0.406, 1/ 0 0.294, 10/ 3 0 0 0.4
gr120 120 6942 1.786, 2/ 0 2.579, 0/ 0 0.764, 5/ 0 0.090, 10/ 9 0 2.7
gr137 137 69853 0.819, 9/ 1 1.718, 0/ 0 0.879, 6/ 0 0 0 3.0
gr202 202 40160 2.053, 1/ 0 4.313, 0/ 0 0.513, 10/ 0 0.048, 10/ 8 0 14
gr229 229 134602 1.490, 3/ 0 2.496, 0/ 0 0.780, 8/ 0 0.148, 9/ 5 0 18
gr431 431 171414 3.111, 0/ 0 5.001, 0/ 0 1.106, 1/ 0 0.487, 6/ 0 0.236, 10/ 0 60
hk48 48 11461 0 0.113, 1/ 0 0.031, 10/ 6 0 0 0.07
kroa100 100 21282 0.043, 10/ 8 0.108, 1/ 0 0.229, 10/ 4 0 0 0.5
kroa150 150 26524 0.996, 9/ 1 1.727, 0/ 0 0.558, 8/ 0 0 0 1.5
kroa200 200 29368 0.604, 5/ 0 1.675, 0/ 0 0.625, 9/ 2 0.001, 10/ 9 0 5.2
krob100 100 22141 0.377, 10/ 2 2.527, 0/ 0 0.364, 6/ 0 0 0 0.5
krob150 150 26130 1.204, 6/ 1 1.572, 0/ 0 0.640, 4/ 1 0.019, 10/ 9 0 2.5
krob200 200 29437 1.918, 3/ 0 3.220, 0/ 0 0.616, 3/ 0 0.093, 10/ 7 0 7.5
kroc100 100 20749 0.536, 9/ 2 0.535, 1/ 0 0.197, 10/ 5 0 0 1.5
krod100 100 21294 1.483, 3/ 0 1.619, 0/ 0 0.247, 10/ 3 0 0 1.4
kroe100 100 22068 0.738, 9/ 0 2.035, 0/ 0 0.501, 8/ 1 0 0 1.5
lin105 105 14379 0.441, 10/ 0 2.324, 0/ 0 0.189, 10/ 4 0 0 1.6
lin318 318 42029 2.760, 0/ 0 3.212, 0/ 0 1.288, 2/ 0 0.343, 9/ 1 0.094, 10/ 4 36
pcb442 442 50778 3.597, 0/ 0 3.409, 0/ 0 0.929, 3/ 0 0.435, 9/ 0 0.187, 10/ 0 60
pr76 76 108159 0.239, 9/ 7 0.997, 1/ 0 0.017, 10/ 9 0 0 0.2
pr107 107 44303 0.088, 9/ 8 1.429, 0/ 0 0.003, 10/ 9 0 0 0.6
pr124 124 59030 0.733, 8/ 1 0.025, 1/ 0 0.125, 9/ 4 0 0 1.0
pr136 136 96772 3.008, 0/ 0 2.321, 0/ 0 0.552, 7/ 2 0 0 1.1
pr144 144 58537 0.336, 10/ 4 0.089, 1/ 0 0.404, 10/ 2 0 0 1.4
pr152 152 73682 0.434, 9/ 3 0.485, 1/ 0 0.297, 9/ 3 0 0 1.6
pr226 226 80369 1.136, 2/ 0 0.209, 1/ 0 0.547, 8/ 0 0.001, 10/ 9 0.001, 10/ 9 5.3
pr264 264 49135 0.536, 7/ 4 1.360, 0/ 0 0.099, 8/ 3 0 0 8.0
pr299 299 48191 1.779, 1/ 0 3.553, 0/ 0 0.612, 9/ 2 0.035, 10/ 8 0 28
pr439 439 107217 2.317, 0/ 0 3.965, 0/ 0 1.779, 0/ 0 0.345, 10/ 1 0.085, 10/ 2 56
rat99 99 1211 0.424, 10/ 2 1.007, 0/ 0 0.429, 7/ 4 0 0 0.4
rat195 195 2323 1.075, 5/ 0 2.960, 0/ 0 0.908, 5/ 1 0.004, 10/ 8 0 6.3
rd100 100 7910 0.921, 8/ 0 0.445, 1/ 0 0.739, 4/ 0 0 0 0.7
rd400 400 15281 3.204, 0/ 0 5.078, 0/ 0 0.777, 6/ 0 0.472, 9/ 1 0.112, 10/ 1 52
si175 175 21407 0.198, 10/ 3 0.162, 1/ 0 0.044, 10/ 8 0 0 2.2
st70 70 675 0.073, 10/ 7 0.489, 1/ 0 0.415, 9/ 2 0 0 0.2
swiss42 42 1273 0 0.514, 1/ 0 0 0 0 0.05
ts225 225 126643 0.782, 6/ 1 2.531, 0/ 0 1.360, 1/ 0 0 0 4.8
tsp225 225 3916 2.041, 0/ 0 4.882, 0/ 0 1.147, 1/ 0 0.230,10/ 5 0 4.9
u159 159 42080 0.160, 10/ 4 0.669, 1/ 0 0.689, 7/ 0 0 0 1.8
ulysses16 16 6859 0 0 0 0 0 0.01
ulysses22 22 7013 0 0 0 0 0 0.01

193

A. Misevičius, A. Ostreika, A. Šimaitis, V. Žilevičius

Table 3. Cumulative characteristics of the algorithms

Algorithms
Characteristics

 2-OPT 4-OPT SA FITS EFDRA∗∗∗∗

Number of times that 0=δ 14 7 10 42 57

Cumulative average deviation 0.841 1.649 0.576 0.063 0.015

Maximum average deviation 3.597 7.737 9.077 0.591 0.240
Median 0.536 1.429 0.415 0 0
Standard deviation 0.950 1.640 1.148 0.137 0.050

From Tables 2 and 3, it can be seen that
EFDRA∗∗∗∗ is superior to other heuristic algorithms
actually used in our experiments, especially the 2-opt
and 4-opt algorithms. By the way, the 4-opt algorithm
seems to be absolutely inefficient from both the
solutions quality and computation time point of view;
for example, for the 442-city instance pcb442, it took
about 9 hours to get the solution that was 3.4 % above
the optimal solution. It should be also noted that
EFDRA∗∗∗∗ appears to be better than the fast iterated
tabu search (FITS) algorithm proposed in [12]). The
difference in performance between EFDRA∗∗∗∗ and
FITS is even more clear for the larger TSP instances
(n > 300).

4. Concluding remarks

In this paper, a new improved local search strategy
called the fast descent-random ascent (FDRA) and its
enhancements for the traveling salesman problem
(TSP) are proposed. The fast descents are based on the
modified 2-opt procedure, while random ascents are
performed by using random moves and special type
perturbations.

The basic FDRA algorithm and several variants of
the enhanced FDRA (EFDRA) algorithm were exami-
ned on the numerous TSP instances taken from the
TSP instance library − TSPLIB. The results from the
experiments demonstrate that the EFDRA algorithm
coupled with the proper random ascent (perturbation)
procedures produces obviously better results then the
other heuristic algorithms used in our experimen-
tation. The EFDRA strategy should therefore be con-
sidered as one of the promising heuristic approaches
capable of seeking optimal and near-optimal solutions
in very reasonable computation times.

New modifications and further conceptual exten-
sions of the proposed EFDRA strategy are worth
examining, for example, using the recursive program-
ming methodology, incorporating additional speeding
up techniques (e.g. efficient data structures, "don't
look bit" approach), implementing innovative pertur-
bation operators, trying restart mechanisms, or hybri-
dizing EFDRA with other metaheuristic approaches. It
may also be worthy to apply the EFDRA strategy to
other combinatorial optimization problems like
quadratic assignment or graph partitioning problems.

References
 [1] J.L. Bentley. Experiments on traveling salesman heu-

ristics. Proceedings of the First Annual ACM-SIAM
Symposium on Discrete Algorithms, 1990, 91–99.

 [2] C.-N.Fiechter. A parallel tabu search algorithm for
large traveling salesman problems. Discrete Applied
Mathematics, 1994, Vol.51, 243–267.

 [3] M.R. Garey, D.S. Johnson. Computers and Intract-
ability. A Guide to the Theory of NP-Completeness,
Freeman, San Francisco, 1979.

 [4] D.S. Johnson. Local optimization and the traveling
salesman problem. Proceedings of the 17th Internatio-
nal Colloquium on Automata, Languages and Prog-
ramming (Lecture Notes in Computer Science,
Vol.443, Springer, Berlin), 1990, 446–461.

 [5] D.S. Johnson, J.L. Bentley, L.A. McGeoch, E.E.
Rothberg. Near-optimal solutions to very large trave-
ling salesman problems. Monograph, to appear.

 [6] D.S. Johnson, L.A. McGeoch. The traveling sales-
man problem: a case study. In E.Aarts, J.K.Lenstra
(eds.), Local Search in Combinatorial Optimization,
Wiley, Chichester, 1997, 215−310.

 [7] M. Jünger, G. Reinelt, G. Rinaldi. The traveling
salesman problem. In M.Ball, T.Magnanti, C.L.Mon-
ma, G.Nemhauser (eds.), Handbook of Operations Re-
search and Management Science: Networks, North-
Holland, Amsterdam, 1995, 225–330.

 [8] S. Lin. Computer solutions of the traveling salesman
problem. Bell System Technical Journal, 1965, Vol.44,
2245−2269.

 [9] S. Lin, B.W.Kernighan. An effective heuristic algo-
rithm for the traveling-salesman problem. Operations
Research, 1973, Vol.21, 498−516.

[10] H.R. Lourenco, O. Martin, T. Stützle. Iterated local
search. In F.Glover, G.Kochenberger (eds.), Hand-
book of Metaheuristics, Kluwer, Norwell, 2002,
321−353.

[11] P.Merz, B.Freisleben. Genetic local search for the
TSP: new results. Proceedings of 1997 IEEE Interna-
tional Conference on Evolutionary Computation
(ICEC'97) (Indianapolis, USA), IEEE, 1997, 159–164.

[12] A. Misevičius, J. Smolinskas, A. Tomkevičius. Ite-
rated tabu search for the traveling salesman problem:
new results. Information Technology and Control,
2005, Vol.34, 327–337.

[13] M. Mouhoub, Z. Wang. Improving the ant colony
optimization algorithm for the quadratic assignment
problem. Working Paper, 2006.

194

Improving Local Search for the Traveling Salesman Problem

[14] C. Nilsson. Heuristics for the traveling salesman
problem. Tech. Report, Linköping University, Sweden,
2003. [See also http://www.ida.liu.se/~TDDB19/
reports_2003/htsp.pdf].

[15] J. Pepper, B. Golden, E. Wasil. Solving the traveling
salesman problem with annealing-based heuristics: a
computational study. IEEE Transactions on Systems,
Man, and Cybernetics, Part A, 2002, Vol.32, 72−77.

[16] G. Reinelt. TSPLIB − A traveling salesman problem
library. ORSA Journal on Computing, 1991, Vol.3-4,
376−385. [See also http://www.iwr.uni-heidelberg.de/
groups/comopt/software/TSPLIB95/].

[17] G. Reinelt. The traveling salesman: computational
solutions for TSP applications. Lecture Notes in Com-
puter Science, 1994, Vol.840, Springer, Berlin.

[18] D.E. Rosenkrantz, R.E. Stearns, P.M. Lewis. An
analysis of several heuristics for the traveling sales-
man problem. SIAM Journal on Computing, 1977,
Vol.6, 563−581.

[19] T. Stützle, M. Dorigo. ACO algorithms for the
traveling salesman problem. In K.Miettinen et al.
(eds.), Evolutionary Algorithms in Engineering and
Computer Science: Recent Advances in Genetic Algo-
rithms, Evolution Strategies, Evolutionary Program-
ming, Genetic Programming and Industrial Applica-
tions, Wiley, Chichester, 2001, 163−183.

[20] T. Stützle, A. Grün, S. Linke, M. Rüttger. A com-
parison of nature inspired heuristics on the traveling
salesman problem. In K.Deb et al. (eds.), Proceedings
of the 6th International Conference on Parallel Prob-
lem Solving from Nature (Lecture Notes in Computer
Science, Vol.1917, Springer, London), 2000, 661–670.

[21] E.G. Talbi. A taxonomy of hybrid metaheuristics.
Journal of Heuristics, 2002, Vol.8, 541–564.

Received May 2007.

