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Abstract. The subject of this paper is the improving of local search for the traveling salesman problem (TSP). In 
particular, a so-called fast descent-random ascent (FDRA) strategy is proposed. The FDRA approach is based on the 
fast-modified 2-opt algorithm combined with certain perturbation (random ascent) procedures. The results obtained 
from the experiments demonstrate that the new improved local search strategy is better than the other local search 
algorithms. This approach may also be applied to other combinatorial optimization problems. 
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Introduction 

The traveling salesman problem (TSP) can be 
formulated as follows. Given a matrix D = (dij)n×n and 
a set Π of permutations of the integers from 1 to n, 
find a permutation p = (p(1), p(2), ..., p(n)) ∈ Π that 
minimizes 
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The interpretation of n, D and p is as follows: 
− n denotes the number of cities; 
− D is the matrix that contains distances between 

all the pairs of cities; 
− permutations are typically called tours and the 

pairs (p(1),p(2)), ..., (p(i),p(i + 1)), ..., (p(n),p(1)) are 
referred to as edges; a particular element of the 
permutation j = p(i) denotes city j to visit at step i. 

Thus, solving the TSP means searching for the 
shortest closed tour in which every city is visited 
exactly once. 

The TSP is a well-known representative example 
of combinatorial optimization. It is NP-hard [3] and 
still remains a great challenge for the researchers in 
this field. The TSP also serves as a good experimental 
basis for the investigation of various optimizations 
techniques. Since there are no efficient (polynomial 
time) exact algorithms for this problem, heuristic 
methods (like tour construction heuristics [1,18], (des-
cent) local search algorithms [4,8,9], simulated annea-
ling [15], tabu search [2,12], ant colony optimization 
[19], evolutionary (genetic) algorithms [11], etc.) are 

often applied. More exhaustive surveys of the heuris-
tic algorithms for the TSP can be found in [4, 6, 7, 14, 
17, 20]. 

In this paper, a new improved heuristic approach 
for the TSP based on the modified descent local search 
(2-opt) algorithm is discussed. The remaining part of 
the paper is organized as follows. Firstly, some basic 
definitions and preliminaries are given. Then, the 
improved local search algorithm and its variants are 
considered in more details. The results of the compu-
tational experiments are presented as well. The paper 
is completed with the concluding remarks. 

1. Basic definitions and preliminaries 

We start with some definitions and preliminaries. 
The basic definitions related to the traveling salesman 
problem and its solutions are as follows. 

Definition 1. Hamming distance between two 
permutations (tours) p and p′ is declared as 
ρ(p,p′) = n − | Ω |, where Ω is the set that consists of 
all possible pairs (p(i),p((i mod n) + 1)) 
(i ∈ {1, 2, ..., n}) such that ∃ j:  
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(Briefly speaking, the Hamming distance between two 
tours is the number of edges that are contained in the 
first tour but not in the second tour.) 
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Definition 2. A neighbourhood function Θ: 
Π → 2Π assigns for every p from Π a set Θ(p) ⊆ Π − 
the set of neighbouring solutions of p. The τ-edge-
exchange neighbourhood Θτ (2 ≤ τ ≤ n) is defined in 
the following way:  

}),(  , | {)( τρτ =′Π∈′′= pppppΘ , where p ∈ Π and 
ρ is the Hamming distance. The exploration of the 
neighbourhood Θτ takes O(nτ) time. A special case of 
the neighbourhood Θτ is the neighbourhood Θ2 (2-
edge-exchange neighbourhood). 

Definition 3. The solution (tour) p′ ∈ Θτ(p) can be 
obtained from p by an operation called a move, and p 
is said to move to p′ when such an operation is 
performed. Formally, the move may be described as 
an operator φ: Π → Π. A particular move example is 
the 2-edge-exchange move φ(p,i,j): Π→Ν×Ν×Π , 
which gives p′ ∈ Θ2(p) such that p′(i) = p(i), p′(i + 1) 

= p(j), p′(j) = p(i + 1), p′((j mod n) + 1) = p((j mod 
n) + 1), where 1 ≤ i, j ≤ n ∧ 1 < j − i < n − 1; in addi-
tion, if j − i − 2 ≥ 1, then p′(i + k + 1) = p(j − k) for 
every k ∈ {1, ..., j − i − 2} (i.e. the corresponding 
elements of the permutation are replaced in the 
reversed order) (see Figure 1a). In the other words, 
two edges at the positions i and j are removed and two 
different edges are added (see Figure 1b). For this 
move, we will also use a compact notation φij; then, 

ijpp φ⊕=′  means that p′ is obtained from p by 
applying φ(p,i,j). Similarly, higher order moves may 
be defined: 3-edge-exchange move, 4-edge-exchange 
move, ..., τ-edge-exchange move, ... The computatio-
nal complexity of the τ-edge-exchange move is O(n). 

Definition 4. The solution (tour) p• is 2-opt(imal) 
solution, i.e. it is locally optimal with respect to the 
neighbourhood Θ2 if z(p•) ≤ z(p) for any p ∈ Θ2(p•). 

 
 p(j+1)p(j) 

 

 

 

  

  

Figure 1. An example of the 2-edge-exchange move Figure 1. An example of the 2-edge-exchange move 

The 2-opt solution may be achieved by the corres-
ponding procedure (called 2-opt algorithm), which can 
be viewed as a sequence of the improving 2-edge-
exchange (or simply 2-opt) moves. Usually, one starts 
from a randomly chosen initial solution. The initial so-

lution may be constructed heuristically as well [1, 18]. 
The template of the 2-opt algorithm is presented in 
Figure 2. Similarly, τ-opt algorithm (τ > 2) can be 
derived. 

The 2-opt solution may be achieved by the corres-
ponding procedure (called 2-opt algorithm), which can 
be viewed as a sequence of the improving 2-edge-
exchange (or simply 2-opt) moves. Usually, one starts 
from a randomly chosen initial solution. The initial so-

lution may be constructed heuristically as well [1, 18]. 
The template of the 2-opt algorithm is presented in 
Figure 2. Similarly, τ-opt algorithm (τ > 2) can be 
derived. 

  

function 2-opt(p); function 2-opt(p); 
// input: p − initial (starting) solution; output: p• − resulting (locally optimal) solution 
begin 
  p• := p; 
  repeat 
    p := p•; 
    ∆min := 0; // ∆min denotes the minimum difference in the objective function values 
    for i := 1 to n − 2 do 
      for j := i + 2 to n − 1 + Sign(i − 1) do begin 
        ∆ := z( ijp φ⊕ ) − z(p); 
        if ∆ < ∆min then begin ∆min := ∆; k := i; l := j end 
      end; // for 
    if ∆min < 0 then p• := klp φ⊕  // move from the current solution to a new one 
  until ∆min = 0; 
  return p• 
end. 

 

Figure 2. Template of the 2-opt algorithm for the TSP 

 

p: 3 ... 2  8 7 …  4  5 1 9 … 6 
             

p′: 3 ... 2  5 4 …  7  8 1 9 … 6 
   i i + 1    j j + 1    

(a) 

edge to be 
deleted 
edge to be 
added 

p(i) 
p(i+1)

(b) 
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Before introducing the improved local search algo-
rithm, let us describe the modified 2-opt procedure. In 
fact, there are two modifications. The first one is 
related to the restricted exploration of the neighbor-
hood. So, instead of thorough scanning of the com-
plete neighborhood, only the nearest neighbors of the 
current city are taken into consideration. The size of 
the neighbor list, i.e. the candidate list, CL, is cont-
rolled by the algorithm's user. This technique is not 
new [5,6]. It allows to speed up the neighborhood 
search process and reduce the computation time con-
siderably without significant loss in the quality of the 
results. The neighbour list takes O(mn) memory 
(m = | CL |) and its construction takes O(n2log2n) time 

(the construction takes place only once at the data 
processing phase). 

The second modification aims also at minimizing 
of the run time of the algorithm. In this case, the run 
time reduction is due to limiting the number of the 
descending moves (descents). The limit of descents, λ, 
can be again flexibly tuned by the user. The resulting 
modification of the 2-opt procedure is called a "fast 
descent" (FD) (or "λ-descent"). It can be seen that "1-
descent" is a very special case of "λ-descent". The 
template of the fast descent algorithm is shown in 
Figure 3. The complexity of the FD algorithm is 
O(mn), where m is the fixed size of the candidate list 
CL. 

 

function FastDescent(p,λ); 
// input: p − initial (starting) solution, λ − number of descents (λ ≥ 1) 
// output: p• − resulting (locally optimal) solution 
// auxiliary variables: CL − candidate list (list of the nearest neighbours) 
begin 
  p• := p; 
  number_of_moves := 0; 
  for i := 1 to n do index[p[i]] := i; 
  repeat 
    p := p•; 
    ∆  := 0; // ∆min denotes the minimum difference in the objective function values min
    for u := 1 to n do 
      for v := 1 to | CL | do begin 
        i := Min(u,index[CL[p[u],v]]); j := Max(u,index[CL[p[u],v]]); 
        if (i + 2 ≤ j) and (j ≤ n − 1 + Sign(i − 1) then begin 
           ∆ := z( ijp φ⊕ ) − z(p); 
           if ∆ < ∆min then begin ∆min := ∆; k := i; l := j end 
        end // if 
      end; // for 
    if ∆min < 0 then begin 
       number_of_moves := number_of_moves + 1; 
       p• := klp φ⊕ ; // move from the current solution to a new one 
       update index 
    end // if 
  until (number_of_moves = λ) or (∆min = 0); 
  return p• 
end. 

Figure 3. Template of the fast descent (λ-descent) algorithm for the TSP 

2. An improved local search strategy: fast 
descent-random ascent 

The underlying idea of our improved local search 
algorithm is to exploit good facets of both the deter-
ministic search and stochastic search in an effective 
way. In particular, we combine the fast descent 
algorithm described above and special sort random 
perturbations. They are called as "random ascent". 

Remind that, in the deterministic 2-opt algorithm, 
only the corresponding neighbors of the current so-
lution are considered, and solely improving 2-edge-
exchange moves are performed between these neigh-
bors. We can extend the straightforward 2-opt local 
search if we tolerate some more moves time after 

time. This may be achieved by combination of the im-
proving (descent) and random non-improving (ascent) 
moves in a proper manner. In particular, we can obtain 
the iterative process consisting of one or more tenta-
tive ascending moves (like random 3- or 4-edge-ex-
change moves) followed by the λ-descent procedure 
(i.e. λ improving 2-edge-exchange moves)1. 

                                                           
1 It is important that the structure of the given problem 

allows the effective (fast) implementation and execution of 
the random ascending moves. Fortunately, the TSP is just 
the case. For example, a random τ-edge-exchange move can 
be executed in time O(n) with only a negligible effect to the 
overall complexity of the resulting algorithm. 
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So, let p be the current solution (tour). Then, if the 
random ascent (coupled with the λ-descent) results in 
a solution p′′ that is better than the solution p′ obtained 
by a single 2-opt move, the solution p′′ replaces the 
current solution p and serves as a starting solution for 
the next iteration; otherwise the solution p is replaced 
by the solution p′ ∈ Θ2(p). Obviously, p′′ does not ne-
cessarily belong to Θ2(p). This procedure is continued 
until neither p′ nor p′′ is better than p. The above 
process is not the deterministic local search any more. 
We call it as a "fast descent-random ascent" (FDRA). 
The template of the basic version of the fast descent-
random ascent algorithm is quite simple. It is given in 
Figure 4. 

Our fast descent-random ascent approach is 
slightly different from the well-known iterated local 

search (ILS) method proposed by Lourenco, Martin, 
and Stützle [10]. Very generally, ILS may be thought 
of as a "high-level relay hybridization", where self-
contained heuristics are executed in sequence (inde-
pendently) (see also [21]). FDRA, on the contrary, 
belongs rather to a class of "low-level relay hybrids", 
in which one heuristic is embedded into other heuristic 
[21]. In our case, the random ascending moves are, in 
particular, embedded into the deterministic (2-opt) lo-
cal search. 

On the other hand, our approach appears to be 
quite similar to a so-called "forward-looking" strategy 
and its particular variant − "one-time chance" (for 
more details, see [13]). 

 

function FastDescentRandomAscent(p,λ); 
// input: p − initial (starting) solution, λ − number of descents (λ ≥ 1) 
// output: p• − resulting solution 
begin 
  p• := p; 
  repeat 
    p° := p•; 
    p′ := FastDescent(p•,1); // perform a single descending 2-edge-exchange move (starting from p•) 
    p~ := RandomAscent(p′); // perform random ascending move (starting from p′) 
    p′′ := FastDescent(p~,λ); // perform λ descending 2-edge-exchange moves (starting from p~) 
    if z(p′′) < z(p′) then p• := p′′ else p• := p′ 
  until z(p°) = z(p•); 
  return p• 
end. 

 

Figure 4. Template of the basic fast descent-random ascent algorithm for the TSP 

We experimentally found that it is better to use 
more than one type of random ascending moves. The 
explanation is that applying several different kinds of 
perturbations adds more diversity to the search pro-
cess and allows covering wider regions of the search 
space with potentially good solutions. In particular, we 
operate with two types of the random ascent: 
1) simple pure random ascent based on an arbitrary τ-
edge-exchange move, and 2) alternative random 
ascent based on a so-called nearest neighbour recon-
nection perturbation. 

The first type of ascent basically consists of a spe-
cial sort τ-edge-exchange move with no reversions. 
There is no need in the reversal moves, since they 
already take place during the fast descent (see Sec-
tion 1). The move complexity, i.e. the value of the 
factor τ is relatively small. We used τ = 4 (a double-
bridge move) for smaller problems and τ = 8 (a four-
fold-bridge move) for larger problems. 

The τ-edge-exchange move may also be viewed as 
a multiple block swap (MBS) perturbation. The MBS 
perturbation procedure iteratively selects two blocks, 
i.e. segments in the current tour and exchanges them 

(see Figure 5). The segments are selected in a random 
way. 

Regarding the alternative random ascent, it utilizes 
a specific type of perturbation − the nearest neighbour 
reconnection (NNR), which has been proven to be 
quite effective within the iterated tabu search method 
[12]. In more details, the NNR perturbation consists of 
three main steps (see also Figure 6). Firstly, a sub-tour 
is obtained by choosing η cities starting from a 
random city. Secondly, the given sub-tour undergoes 
the nearest neighbour (NN) heuristic [18]. Finally, the 
resulting sequence of cities is pasted to the original 
tour to obtain a new feasible tour. The NNR pertur-
bation cannot be easily undone by the subsequent 2-
edge-exchange moves. On the other hand, the nearest 
neighbour reconnection does not increase the tour 
length substantially, since it incorporates clever tour 
reconstruction heuristic instead of a blind random 
move. These features make the NNR perturbation an 
almost ideal candidate for the role of the alternative 
random ascent procedure; at the same time, the search 
process becomes highly robust (see Section 3). 
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The sub-tour size is controlled by the correspon-
ding parameter, η (the NNR perturbation strength). In 

our implementation of the NNR procedure, η is 
proportional to n , where n is the problem size. 

 
 

 
Figure 5. An example of the multiple block swap perturbation: the fourfold-bridge move 

 
 
 

 

 

 

p: 5 ... 9 4 8 7 2 1 3 6 … 10
         
    4 8 7 2 1     
    
      
    7 4 1 8 2     
         

p~: 5 ... 9 7 4 1 8 2 3 6 … 10
    i    j     

 

 
 

         
      

apply nearest neighbour procedure to the cities 4,8,7,2,1 
get new sequence of cities: 7,4,1,8,2 

 

p: 9 ...   2 8 … 5 4 …  6 7 … 1 3 … 10 
                

p~: 9 ...   5 4 … 2 8 …  1 3 … 6 7 … 10 

η

    cut η cities starting from the position i 

 

     paste η cities to the resulting tour p~ 

 
Figure 6. An example of the nearest neighbour reconnection perturbation 

We can also maintain multiple random ascent 
trials. These trials (consisting of random ascents and 
λ-descents) are continued until a new better solution 
has been found or possibly some maximum number of 
trials, µ, has been reached. Here, µ is defined by the 
user (we used µ = 5). The resulting algorithm is called 
as an "enhanced fast descent-random ascent" 
(EFDRA). It reminds rather a "more-time chance" 
[13] than the "one-time chance" strategy mentioned 
above. The template of the EFDRA algorithm is 
presented in Figure 7. The execution time of EFDRA 
is proportional to max{m,η2}·n·K, where m represents 
the candidate list size, η denotes the NNR perturbation 
strength, and K is some coefficient, which increases 
with the number of "chances" (i.e. trials of ascents and 
descents). 

It is possible to further extend the EFDRA algo-
rithm in a very gentle way. This new enhancement is 
entitled as EFDRA∗. The template of EFDRA∗ is 
almost identical to the one of EFDRA, except that the 
call to the fast descent procedure ("FastDes-
cent(p~,λ)") is substituted by the call to the fast 
descent-random ascent (FDRA) procedure ("Enhan-
cedFastDescentRandomAscent(p,λ,µ,τ,η)"). Only the 
call that follows the call to the alternative random 
ascent procedure (see Figure 7, Line 19 of the EFDRA 
template) is substituted. This is to avoid significant 
increasing in the run time of EFDRA∗. 

We may not limit ourselves with EFDRA∗. Con-
tinuing in the above manner, it is easy to create a 
cascade of algorithms: EFDRA∗∗, EFDRA∗∗∗, and so 

on. Our most latest version of EFDRA is, in particular, 
EFDRA∗∗∗∗. (The templates of EFDRA∗…EFDRA∗∗∗∗ 
are omitted for the sake of briefness.) 

The following are the main control parameters for 
the algorithm EFDRA and its extensions: the 
candidate list size − m, the number of descents − λ, the 
number of trials − µ, the random move complexity − 
τ, and the NNR perturbation strength (sub-tour length) 
− η. Their values are as follows: m = 10, λ = 30, 
µ = 5, τ = 4 (for the smaller problems (n ≤ 150)) and 
τ = 8 (for the larger problems (n > 150)), η = 3 n ). 

3. Results of computational experiments 

To test the efficiency of the new proposed ap-
proach, a number of computational experiments have 
been carried out. In the experiments, the traveling 
salesman problem instances taken from the well-
known electronic library of the TSP instances TSPLIB 
[16] were used. 

The following are the performance measures of the 
algorithms: a) the average deviation of obtained 
solutions from a provably optimal solution − δ  
( %][ )(100 optopt zzz −=δ , where z  is the average 
objective function value (i.e. the tour length) over W 
runs of the given algorithm, and zopt is the provably 
optimal objective function value (the optimal tour 
lengths can be found in TSPLIB)); b) the number of 
solutions that are within 1% optimality (over W runs) 
− C1%; c) the number of the optimal solutions − Copt. 
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function EnhancedFastDescentRandomAscent(p,λ,µ,τ,η); 
// input: p − initial (starting) solution, λ − number of descents (λ ≥ 1), µ − number of trials of ascents (µ ≥ 1) 
//     τ − random move complexity, η − alternative perturbation strength 
// output: p• − resulting solution 
begin 
  p• := p; 
  repeat // main cycle 
    p° := p•; number_of_trials := 0; 
    p∇ := FastDescent(p•,1); // perform a single descending 2-edge-exchange move (starting from p•) 
    repeat // trials of random ascents 
      p′ := p∇; number_of_trials := number_of_trials + 1; 
      p~ := RandomAscent(p′,τ); // perform random ascending move (starting from p′) 
      p′′ := FastDescent(p~,λ); // perform λ 2-edge-exchange moves (starting from p~) 
      if z(p′′) < z(p′) 
         then p• := p′′ 
         else begin 
           p′ := p∇; 
           p~ := AlternativeRandomAscent(p′,η); // perform alternative perturbation 
           p′′ := FastDescent(p~,λ); // perform λ 2-edge-exchange moves (starting from p~) 
           if z(p′′) < z(p′) then p• := p′′ else p• := p′ 
         end // else 
    until (number_of_trials = µ) or (z(p•) < z(p∇)) 
  until z(p°) = z(p•); 
  
end. 
return p• 

 

Figure 7. Template of the enhanced fast descent-random ascent algorithm for the TSP 

In the experiments conducted, five variants of the 
enhanced fast descent-random ascent algorithm (i.e. 
EFDRA, EFDRA∗, EFDRA∗∗, EFDRA∗∗∗, and 
EFDRA∗∗∗∗) were compared. In addition, four other 
heuristic algorithms were used in the comparison. 
They are as follows: a) the 2-opt algorithm (2-OPT); 
b) the 4-opt algorithm (4-OPT); c) the simulated 
annealing (SA) algorithm (coded by A. Misevicius); 
d) the fast iterated tabu search (FITS) algorithm [12]. 
In the case of 2-OPT, 500 repetitions are performed at 
every run, and only the best solution out of 500 
repetitions is recorded as a result. The number of runs, 
W, is equal to 10 for all the algorithms, except 4-OPT, 
for which W = 1. All algorithms start from the 
improved initial solutions constructed by the nearest 
neighbour heuristic [18]. The algorithms require 
similar computation (CPU) time (except EFDRA, 
EFDRA∗, EFDRA∗∗, and EFDRA∗∗∗, which consume 

less time, and 4-OPT, which needs much more time). 
3 GHz Pentium computer was used in the experi-
ments. 

We can observe from Table 1 that the results are 
gradually improved (with respect to the performance 
measures used) as long as the number of "chances" 
(i.e. trials of ascents and descents) increases. This 
trend is especially evident for the algorithms EFDRA, 
EFDRA∗, EFDRA∗∗. Of course, EFDRA∗∗∗∗ obviously 
outperforms all the remaining variants by consuming 
some more CPU time. So, we used EFDRA∗∗∗∗ in 
further comparisons. The results of these comparisons 
are presented in Tables 2 and 3. The best results ob-
tained are printed in bold face. (CPU times per one 
run are given for the algorithms 2-OPT, SA, FITS, and 
EFDRA∗∗∗∗.) 

Table 1. Comparison of the algorithms (Part I) 

Instance n         zopt 
δ , C1%/Copt 

 EFDRA EFDRA∗    EFDRA∗∗         EFDRA∗∗∗            EFDRA∗∗∗∗ 
a280 280 2579 1.972, 1/ 0 0.145, 10/ 1 0.044, 10/ 7  0  0 
ch150 150 6528 2.551, 0/ 0 0.398, 7/ 1 0.267, 9/ 2 0.091, 10/ 6  0 
d198 198 15780 2.704, 0/ 0 0.112, 9/ 2 0.056, 10/ 3 0.028, 10/ 8  0 
fl417 417 11861 3.470, 0/ 0 0.288, 9/ 0 0.102, 10/ 0 0.059, 10/ 1 0.028, 10/ 3 
gil262 262 2378 3.038, 0/ 0 0.384, 7/ 0 0.159, 9/ 1 0.029, 10/ 4  0 
kroa200 200 29368 3.097, 0/ 0 0.054, 10/ 3 0.004, 10/ 8  0  0 
lin318 318 42029 3.004, 0/ 0 0.773, 6/ 0 0.452, 7/ 0 0.196, 9/ 1 0.094, 10/ 4 
rd400 400 15281 3.562, 0/ 0 0.777, 6/ 0 0.310, 8/ 0 0.213, 9/ 0 0.112, 10/ 1 
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Table 2. Comparison of the algorithms (Part II) 

Instance n zopt 
δ , C1%/Copt 

2-OPT 4-OPT SA FITS EFDRA∗∗∗∗ 
CPU time

(sec.) 
a280 280 2579 2.338, 3/ 0 2.374, 0/ 0 0.314, 9/ 2 0.112, 10/ 8  0 12.0 
att48 48 10628 0.010, 10/ 9 0.235, 1/ 0 0.436, 9/ 3  0  0 0.06 
bayg29 29 1610  0 0.003, 1/ 0 0.031, 10/ 9  0  0 0.02 
bays29 29 2020  0 0.396, 1/ 0 0.059, 10/ 8  0  0 0.02 
berlin52 52 7542 0.059, 10/ 9 0.906, 1/ 0  0  0  0 0.08 
bier127 127 118282 0.649, 0/ 0 1.598, 1/ 0 1.277, 2/ 0 0.023, 10/ 9  0 2.5 
brazil58 58 25395  0  0  0  0  0 0.09 
brg180 180 1950  0  0 9.077, 0/ 0  0  0 2.3 
burma14 14 3323  0  0  0  0  0 0.00 
ch130 130 6110 0.898, 5/ 1 0.953, 1/ 0 0.453, 8/ 1 0.027, 10/ 9  0 3.4 
ch150 150 6528 0.200, 10/ 3 1.595, 0/ 0 0.695, 9/ 0 0.035, 10/ 9  0 4.5 
d198 198 15780 0.637, 10/ 1 0.504, 1/ 0 0.181, 10/ 1 0.062, 10/ 9  0 10.8 
d493 493 35002 2.026, 1/ 0 7.737, 0/ 0 0.737, 9/ 0 0.591, 7/ 1 0.240, 10/ 1 65 
dantzig42 42 699  0  0 0.012, 10/ 9  0  0 0.04 
eil51 51 426 0.069, 10/ 8 2.052, 0/ 0 0.093, 10/ 7  0  0 0.06 
eil76 76 538 0.299, 10/ 2 1.626, 0/ 0 0.376, 9/ 3  0  0 0.2 
eil101 101 629 0.974, 4/ 0 2.657, 0/ 0 0.493, 8/ 2  0  0 1.4 
fl417 417 11861 0.880, 3/ 0 4.770, 0/ 0 1.098, 5/ 0 0.098, 10/ 1 0.028, 10/ 3 45 
fri26 26 937  0  0  0  0  0 0.02 
gil262 262 2378 1.656, 1/ 0 3.338, 0/ 0 0.436, 9/ 0 0.176, 10/ 1  0 23 
gr17 17 2085  0 0.140, 1/ 0  0  0  0 0.01 
gr21 21 2707  0 1.541, 0/ 0  0  0  0 0.01 
gr24 24 1272  0 0.041, 1/ 0  0  0  0 0.01 
gr48 48 5046 0.095, 10/ 7 0.950, 1/ 0 0.002, 10/ 9  0  0 0.02 
gr96 96 55209 0.446, 10/ 3 0.406, 1/ 0 0.294, 10/ 3  0  0 0.4 
gr120 120 6942 1.786, 2/ 0 2.579, 0/ 0 0.764, 5/ 0 0.090, 10/ 9  0 2.7 
gr137 137 69853 0.819, 9/ 1 1.718, 0/ 0 0.879, 6/ 0  0  0 3.0 
gr202 202 40160 2.053, 1/ 0 4.313, 0/ 0 0.513, 10/ 0 0.048, 10/ 8  0 14 
gr229 229 134602 1.490, 3/ 0 2.496, 0/ 0 0.780, 8/ 0 0.148, 9/ 5  0 18 
gr431 431 171414 3.111, 0/ 0 5.001, 0/ 0 1.106, 1/ 0 0.487, 6/ 0 0.236, 10/ 0 60 
hk48 48 11461  0 0.113, 1/ 0 0.031, 10/ 6  0  0 0.07 
kroa100 100 21282 0.043, 10/ 8 0.108, 1/ 0 0.229, 10/ 4  0  0 0.5 
kroa150 150 26524 0.996, 9/ 1 1.727, 0/ 0 0.558, 8/ 0  0  0 1.5 
kroa200 200 29368 0.604, 5/ 0 1.675, 0/ 0 0.625, 9/ 2 0.001, 10/ 9  0 5.2 
krob100 100 22141 0.377, 10/ 2 2.527, 0/ 0 0.364, 6/ 0  0  0 0.5 
krob150 150 26130 1.204, 6/ 1 1.572, 0/ 0 0.640, 4/ 1 0.019, 10/ 9  0 2.5 
krob200 200 29437 1.918, 3/ 0 3.220, 0/ 0 0.616, 3/ 0 0.093, 10/ 7  0 7.5 
kroc100 100 20749 0.536, 9/ 2 0.535, 1/ 0 0.197, 10/ 5  0  0 1.5 
krod100 100 21294 1.483, 3/ 0 1.619, 0/ 0 0.247, 10/ 3  0  0 1.4 
kroe100 100 22068 0.738, 9/ 0 2.035, 0/ 0 0.501, 8/ 1  0  0 1.5 
lin105 105 14379 0.441, 10/ 0 2.324, 0/ 0 0.189, 10/ 4  0  0 1.6 
lin318 318 42029 2.760, 0/ 0 3.212, 0/ 0 1.288, 2/ 0 0.343, 9/ 1 0.094, 10/ 4 36 
pcb442 442 50778 3.597, 0/ 0 3.409, 0/ 0 0.929, 3/ 0 0.435, 9/ 0 0.187, 10/ 0 60 
pr76 76 108159 0.239, 9/ 7 0.997, 1/ 0 0.017, 10/ 9  0  0 0.2 
pr107 107 44303 0.088, 9/ 8 1.429, 0/ 0 0.003, 10/ 9  0  0 0.6 
pr124 124 59030 0.733, 8/ 1 0.025, 1/ 0 0.125, 9/ 4  0  0 1.0 
pr136 136 96772 3.008, 0/ 0 2.321, 0/ 0 0.552, 7/ 2  0  0 1.1 
pr144 144 58537 0.336, 10/ 4 0.089, 1/ 0 0.404, 10/ 2  0  0 1.4 
pr152 152 73682 0.434, 9/ 3 0.485, 1/ 0 0.297, 9/ 3  0  0 1.6 
pr226 226 80369 1.136, 2/ 0 0.209, 1/ 0 0.547, 8/ 0 0.001, 10/ 9 0.001, 10/ 9 5.3 
pr264 264 49135 0.536, 7/ 4 1.360, 0/ 0 0.099, 8/ 3  0  0 8.0 
pr299 299 48191 1.779, 1/ 0 3.553, 0/ 0 0.612, 9/ 2 0.035, 10/ 8  0 28 
pr439 439 107217 2.317, 0/ 0 3.965, 0/ 0 1.779, 0/ 0 0.345, 10/ 1 0.085, 10/ 2 56 
rat99 99 1211 0.424, 10/ 2 1.007, 0/ 0 0.429, 7/ 4  0  0 0.4 
rat195 195 2323 1.075, 5/ 0 2.960, 0/ 0 0.908, 5/ 1 0.004, 10/ 8  0 6.3 
rd100 100 7910 0.921, 8/ 0 0.445, 1/ 0 0.739, 4/ 0  0  0 0.7 
rd400 400 15281 3.204, 0/ 0 5.078, 0/ 0 0.777, 6/ 0 0.472, 9/ 1 0.112, 10/ 1 52 
si175 175 21407 0.198, 10/ 3 0.162, 1/ 0 0.044, 10/ 8  0  0 2.2 
st70 70 675 0.073, 10/ 7 0.489, 1/ 0 0.415, 9/ 2  0  0 0.2 
swiss42 42 1273  0 0.514, 1/ 0  0  0  0 0.05 
ts225 225 126643 0.782, 6/ 1 2.531, 0/ 0 1.360, 1/ 0  0  0 4.8 
tsp225 225 3916 2.041, 0/ 0 4.882, 0/ 0 1.147, 1/ 0 0.230,10/ 5  0 4.9 
u159 159 42080 0.160, 10/ 4 0.669, 1/ 0 0.689, 7/ 0  0  0 1.8 
ulysses16 16 6859  0  0  0  0  0 0.01 
ulysses22 22 7013  0  0  0  0  0 0.01 
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Table 3. Cumulative characteristics of the algorithms 

Algorithms
Characteristics 

 2-OPT 4-OPT   SA    FITS      EFDRA∗∗∗∗ 

Number of times that 0=δ  14 7 10 42  57 

Cumulative average deviation  0.841  1.649  0.576  0.063  0.015 

Maximum average deviation  3.597  7.737  9.077  0.591  0.240 
Median  0.536  1.429  0.415  0  0 
Standard deviation  0.950  1.640  1.148  0.137  0.050 

 

From Tables 2 and 3, it can be seen that 
EFDRA∗∗∗∗ is superior to other heuristic algorithms 
actually used in our experiments, especially the 2-opt 
and 4-opt algorithms. By the way, the 4-opt algorithm 
seems to be absolutely inefficient from both the 
solutions quality and computation time point of view; 
for example, for the 442-city instance pcb442, it took 
about 9 hours to get the solution that was 3.4 % above 
the optimal solution. It should be also noted that 
EFDRA∗∗∗∗ appears to be better than the fast iterated 
tabu search (FITS) algorithm proposed in [12]). The 
difference in performance between EFDRA∗∗∗∗ and 
FITS is even more clear for the larger TSP instances 
(n > 300). 

4. Concluding remarks 

In this paper, a new improved local search strategy 
called the fast descent-random ascent (FDRA) and its 
enhancements for the traveling salesman problem 
(TSP) are proposed. The fast descents are based on the 
modified 2-opt procedure, while random ascents are 
performed by using random moves and special type 
perturbations. 

The basic FDRA algorithm and several variants of 
the enhanced FDRA (EFDRA) algorithm were exami-
ned on the numerous TSP instances taken from the 
TSP instance library − TSPLIB. The results from the 
experiments demonstrate that the EFDRA algorithm 
coupled with the proper random ascent (perturbation) 
procedures produces obviously better results then the 
other heuristic algorithms used in our experimen-
tation. The EFDRA strategy should therefore be con-
sidered as one of the promising heuristic approaches 
capable of seeking optimal and near-optimal solutions 
in very reasonable computation times. 

New modifications and further conceptual exten-
sions of the proposed EFDRA strategy are worth 
examining, for example, using the recursive program-
ming methodology, incorporating additional speeding 
up techniques (e.g. efficient data structures, "don't 
look bit" approach), implementing innovative pertur-
bation operators, trying restart mechanisms, or hybri-
dizing EFDRA with other metaheuristic approaches. It 
may also be worthy to apply the EFDRA strategy to 
other combinatorial optimization problems like 
quadratic assignment or graph partitioning problems. 
 

References 
 [1] J.L. Bentley. Experiments on traveling salesman heu-

ristics. Proceedings of the First Annual ACM-SIAM 
Symposium on Discrete Algorithms, 1990, 91–99. 

 [2] C.-N.Fiechter. A parallel tabu search algorithm for 
large traveling salesman problems. Discrete Applied 
Mathematics, 1994, Vol.51, 243–267. 

 [3] M.R. Garey, D.S. Johnson. Computers and Intract-
ability. A Guide to the Theory of NP-Completeness, 
Freeman, San Francisco, 1979. 

 [4] D.S. Johnson. Local optimization and the traveling 
salesman problem. Proceedings of the 17th Internatio-
nal Colloquium on Automata, Languages and Prog-
ramming (Lecture Notes in Computer Science, 
Vol.443, Springer, Berlin), 1990, 446–461. 

 [5] D.S. Johnson, J.L. Bentley, L.A. McGeoch, E.E. 
Rothberg. Near-optimal solutions to very large trave-
ling salesman problems. Monograph, to appear. 

 [6] D.S. Johnson, L.A. McGeoch. The traveling sales-
man problem: a case study. In E.Aarts, J.K.Lenstra 
(eds.), Local Search in Combinatorial Optimization, 
Wiley, Chichester, 1997, 215−310. 

 [7] M. Jünger, G. Reinelt, G. Rinaldi. The traveling 
salesman problem. In M.Ball, T.Magnanti, C.L.Mon-
ma, G.Nemhauser (eds.), Handbook of Operations Re-
search and Management Science: Networks, North-
Holland, Amsterdam, 1995, 225–330. 

 [8] S. Lin. Computer solutions of the traveling salesman 
problem. Bell System Technical Journal, 1965, Vol.44, 
2245−2269. 

 [9] S. Lin, B.W.Kernighan. An effective heuristic algo-
rithm for the traveling-salesman problem. Operations 
Research, 1973, Vol.21, 498−516. 

[10] H.R. Lourenco, O. Martin, T. Stützle. Iterated local 
search. In F.Glover, G.Kochenberger (eds.), Hand-
book of Metaheuristics, Kluwer, Norwell, 2002, 
321−353. 

[11] P.Merz, B.Freisleben. Genetic local search for the 
TSP: new results. Proceedings of 1997 IEEE Interna-
tional Conference on Evolutionary Computation 
(ICEC'97) (Indianapolis, USA), IEEE, 1997, 159–164. 

[12] A. Misevičius, J. Smolinskas, A. Tomkevičius. Ite-
rated tabu search for the traveling salesman problem: 
new results. Information Technology and Control, 
2005, Vol.34, 327–337. 

[13] M. Mouhoub, Z. Wang. Improving the ant colony 
optimization algorithm for the quadratic assignment 
problem. Working Paper, 2006. 

194 



Improving Local Search for the Traveling Salesman Problem 

[14] C. Nilsson. Heuristics for the traveling salesman 
problem. Tech. Report, Linköping University, Sweden, 
2003. [See also http://www.ida.liu.se/~TDDB19/ 
reports_2003/htsp.pdf]. 

[15] J. Pepper, B. Golden, E. Wasil. Solving the traveling 
salesman problem with annealing-based heuristics: a 
computational study. IEEE Transactions on Systems, 
Man, and Cybernetics, Part A, 2002, Vol.32, 72−77. 

[16] G. Reinelt. TSPLIB − A traveling salesman problem 
library. ORSA Journal on Computing, 1991, Vol.3-4, 
376−385. [See also http://www.iwr.uni-heidelberg.de/ 
groups/comopt/software/TSPLIB95/]. 

[17] G. Reinelt. The traveling salesman: computational 
solutions for TSP applications. Lecture Notes in Com-
puter Science, 1994, Vol.840, Springer, Berlin. 

[18] D.E. Rosenkrantz, R.E. Stearns, P.M. Lewis. An 
analysis of several heuristics for the traveling sales-
man problem. SIAM Journal on Computing, 1977, 
Vol.6, 563−581. 

[19] T. Stützle, M. Dorigo. ACO algorithms for the 
traveling salesman problem. In K.Miettinen et al. 
(eds.), Evolutionary Algorithms in Engineering and 
Computer Science: Recent Advances in Genetic Algo-
rithms, Evolution Strategies, Evolutionary Program-
ming, Genetic Programming and Industrial Applica-
tions, Wiley, Chichester, 2001, 163−183. 

[20] T. Stützle, A. Grün, S. Linke, M. Rüttger. A com-
parison of nature inspired heuristics on the traveling 
salesman problem. In K.Deb et al. (eds.), Proceedings 
of the 6th International Conference on Parallel Prob-
lem Solving from Nature (Lecture Notes in Computer 
Science, Vol.1917, Springer, London), 2000, 661–670. 

[21] E.G. Talbi. A taxonomy of hybrid metaheuristics. 
Journal of Heuristics, 2002, Vol.8, 541–564. 

Received May 2007. 


