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Abstract. Today there are many efforts to shift the reuse dimension from component-based to generative reuse in 
the learning object (LO) domain. This requires more precise LO models and commonality-variability analysis. We 
propose a new knowledge-based model for representing LO instances. The model is based on factoring and aggre-
gating knowledge units within a LO and is presented as a structure of interface and functionality. Interface serves for 
explicit describing knowledge communication to and from the LO. Functionality describes knowledge representation 
and managing. The model contributes to better compositionality, reusability and can be further generalized easily to 
support the personalized content delivery and automatic generation. Using the introduced model as a basis for 
generalization, we extended the known concept of generative LOs by linking domain commonality-variability analysis 
with meta-programming techniques for generating LO instances on demand from the generic LO specification. 
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1. Introduction 
1.1. Motivation for LOs 

The term learning object is the most essential 
concept in the learning domain due to many reasons:  
• a learner needs to know why and what to learn;  
• a teacher needs to know and understand why, 

what to teach and how to deliver the content to the 
learner;  

• a course designer needs to know and understand 
what to design and how to represent the content 
for storing and sharing;  

• curricula developers also need to know and 
understand why, what and how to plan and addi-
tionally – where and when – the courses are 
integrated into teaching plans.  

Those and many other actors, such as researchers, use 
the learning content in the sense of what (i.e. in the 
sense of LOs) either as an object of investigation or as 
commodity in their daily activities. This is why we 
need to have a measure for expressing and measuring 
the learning content as precisely as possible. 

1.2. Reuse and LOs 

Despite the numerous and continuous efforts to 
introduce taxonomies and standards by bodies (e.g., 
IMS, IEEE LTSC, ISO/IES) or individuals in this area, 
the term learning object (LO) is neither understood 
well nor is defined uniformly. A variety of LO defi-
nitions and models exist and new proposals appear 
continuously (see e.g., [1]). What is more or less com-

monly agreed by most actors within the community 
are the role of reuse and the potential of reusability, 
because the same or similar content is delivered in 
many different contexts at numerous teaching institu-
tions repeatedly and continuously worldwide. Though 
for long time reusability was in the focus of resear-
chers, so far reusability was understood narrowly, 
mostly in terms of component-based reuse. However, 
in recent years there are noticeable endeavors to 
enhance reusability by introducing novel approaches, 
such as glass-box LOs [2], aspect-oriented LOs [3], 
adaptive LOs [4] or LOs based on object program-
ming concepts [5].  

1.3. Generative reuse and generative LOs 

Today technology advances enable teachers and 
course designers to create the content in a variety of 
versions. Modifications, changes and adaptations of 
the content are common reuse activities. The need for 
adaptation increases with technology advances and 
expansion of the eLearning domain. If adaptations are 
done ad hoc, this may lead to the uncontrolled growth 
of similar versions causing additional difficulties in 
storing, sharing and reusing. If adaptations can be 
done automatically, we have a more powerful kind of 
reuse, called generative reuse. Recently T. Boyle, D. 
Leeder, et al. [6, 7] have proposed the concept of 
generative learning objects (GLOs), which is based on 
separating the learning design from the instantiation of 
the LO content and using templates as a generative 
technology. The approach provides more capabilities 
at a larger extent, focuses on quality issues, and intro-
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duces a solid basis for a marked improvement in 
productivity.  

To extend the reusability dimension further in the 
LO domain, we need a more attentive look at the 
domain itself from the reuse perspective; or more 
precisely, we need to analyze such LOs features as 
commonality and variability (see Section 4) systema-
tically. The first relates more with component-based 
reuse, while the second may be a solid background for 
generative reuse, if obtained and represented adequa-
tely. Though the learning theories [8, 9] actually 
recognize and consider many features that might be 
conceived as commonality and variability, they em-
phasize the pedagogical or psychological viewpoint 
only, without explicit representation of variability and 
any intent in using generative technologies explicitly.  

1.4. Our approach 

Our approach is based on commonality-variability 
analysis of the related LOs and is aiming to extend the 
concept of GLOs already introduced in the domain. As 
LOs represent the content that may vary across dif-
ferent courses and the delivery of the content relates 
also to pedagogical aspects (e.g., motivation, scena-
rios, teaching theories, etc.), social aspects (e.g., 
teachers’ preferences, students’ abilities, collaborative 
eLearning, self-learning, etc.) and technological as-
pects (e.g., representation in eLearning, or in 
mLearning, etc.), the boundaries of variability may be 
extremely large. Thus we need to introduce some 
restrictions on granularity and type of LOs, and on 
scope of variability. We accept the middle-grained or 
fine-grained level of granularity [10] that could form 
the content of a few lectures/lessons at largest, or 
represent one lesson or be a part of that (e.g., sorting 
algorithms in computer science or properties (laws) of 
Boolean algebra, etc.). Some ideas we have incorpo-
rated in our approach are borrowed from software 
engineering or computer science (e.g., SCV-analysis 
[11], explicit representation of interface and functiona-
lity in the LO instance model [12], heterogeneous 
meta-programming techniques [13]), but they are 
extended and adapted here. As the generative ap-
proach mainly focuses on the representation aspects 

(e.g., LO domain as a family of related LO instances 
and an instance per se), we have reviewed and re-
evaluated the known LO models and, as a result of 
that, proposed the knowledge-based model.  

1.5. Novelty and tasks 

We propose a new knowledge-based model for 
representing LO instances. The model is based on 
factoring and aggregating knowledge units within a 
LO and is presented as a structure of interface (for 
knowledge communication in both directions: to the 
LO and from the LO) and its functionality (for know-
ledge representation and managing). The model con-
tributes to better compositionality, understandability, 
extensibility, reusability and can be further generalized 
easily to support the personalized content delivery and 
automatic generation. In particular, we extend the 
known concept of GLOs by connecting commonality-
variability analysis in the domain with heterogeneous 
meta-programming techniques for generating LO 
instances on demand from the generic LO specifica-
tion. 

As a consequence, we formulate and consider the 
following tasks: 
 1. Description of the knowledge-based LO instance 

model (Section 3);b 
 2. Description of the approach for analysis of com-

monality and variability in the LO domain (Sec-
tion 4); 

 3. Description of the generative LO model and a 
framework for its implementation using hetero-
geneous meta-programming techniques (Section 
5). 

Section 6 summaries and evaluates capabilities of the 
approach and also presents indications on some limita-
tions and tasks for the further work. At the end, con-
clusions are formulated.  

2. Definition of the basic terms 

First, we begin with the definition of the basic 
terms. We accept the following scheme for definitions: 

 
1. <Name of term>: mandatory 
2. <Intention>: optional 
3. <Definition>: mandatory 
4. <Consequence(s)>: optional 

Note that all attributes are mandatory for basic terms defined below; however for other terms defined within 
Sections some attributes (e.g., No.2, No.4) may be optional. 

1.1: Learning Object;  
1.2: To split learning content into parts and treat them uniformly; or to compose the content from the parts;  
1.3: LO is “a form of organized knowledge content … involving learning purpose and reusable value” (P.R. Polsani) 
and, additionally, its granularity level is restricted to the fine-grained or middle grained component [10];  
1.4: A middle-grained component is composed of the fine-grained LOs.  
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2.1: LO structure (model);  
2.2: To enhance reusability of LO through factoring of knowledge and indicating the role of explicit separation of LO 
interface from its internal functionality;  
2.3: A structure describing the interface for communicating knowledge with other LOs (or among teacher and 
student) and the functionality for representing internal relationships between knowledge units and managing 
knowledge;  
2.4:  Easiness for composition or aggregation of a larger LO, better understandability and reusability of LOs. 
 
3.1: LO instance;  
3.2: To use in a concrete context;  
3.3: A detailed description of the LO model containing concrete objectives and delivering knowledge for the given 
context;  
3.4: Use in a LO library, use for composition and design of a new course, etc. 
 
4.1: Learning Object interface;  
4.2: Explicit description of communication and compositional aspects of a LO, for example for transferring essential 
knowledge that is needed for learning and creating knowledge to be learned;  
4.3: A structural list of input knowledge and a structural list of output knowledge;  
4.4: Contribution to managing flexibility and better learners’ guiding. 
 
5.1: Learning Object functionality;  
5.2: To provide a detailed description (instantiation) of the internal implementation of a LO and produce output 
knowledge;  
5.3: A detailed description of functional or structural implementation of LO functionality through various kinds of 
relationships applied to knowledge units;  
5.4: A full description of LO (in sense of stated objectives for the LO). 
 
6.1: Basic knowledge unit;  
6.2: To construct aggregated knowledge from atomic knowledge units;  
6.3: Atomic knowledge unit that consists of container and content both of which cannot be decomposed in smaller 
parts; but also decomposable knowledge, if already obtained by learner, it may be treated in the other context as 
atomic.  
6.4: A wide context of the use and knowledge composition/aggregation. 
 
7.1: Aggregated knowledge;  
7.2: To provide composition and sequencing, to extend the level of knowledge representation.  
7.3: Knowledge derived through the aggregation of basic knowledge units or other aggregated knowledge by 
applying a particular kind of relationships.  
7.4: Knowledge composition.  
 
8.1: Input knowledge;  
8.2: To define the input part of the LO interface;  
8.3: Basic or aggregated knowledge unit in the input list of the LO interface coming from the other LO (e.g., previous 
lecture) which is used to explain and understand the formation of new knowledge.  
8.4: Contribution to better managing and aggregated knowledge creating. 
  
9.1: Output knowledge;  
9.2: To define the output part of the LO interface;  
9.3: A basic or aggregated knowledge unit in the output list of the LO interface, which is identified within the 
functionality description of the given LO and which is aiming at being learnt and transferred to the other external LO 
or learning environments (e.g., previous lecture, other course, etc.).  
9.4: Contribution to better managing, composing and reusing. 
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10.1: Generative LO;  
10.2: To introduce a generative technology for automatic generation of LO instances;  
10.3: A family of related LO instances that are packaged into a higher-level specification (meta specification) using 
some generative technology such as meta-programming; depending on the concrete context of use, the user specifies 
the needed values of parameters and a particular LO instance is derived or generated on demand from the 
specification automatically.  
10.4: Extension of the reuse dimension and basis for higher productivity. 

 

3. Description of LO instance model  
3.1. LO and knowledge concept 

The below stated is an introduction to the known 
theories, such as instructional design [8, 9], basic con-
cepts of which are incorporated in our LO model.  The 
intention of the LO model is to describe a scheme for 
representing knowledge explicitly. There is no single 
definition of the term knowledge. Our understanding 
of the term is similar to T.H. Davenport’s [14] and is 
based on the data-information-knowledge relationship. 
Instead information, we use the term data context. 
Thus our understanding of knowledge is the chain of 
transformations and engagement: data → data plus its 
context → knowledge. We present an example to 
explain the difference between data and knowledge. 
The set of symbols {Λ, AND, &} without a context is 
pure data for a novice learner. However, the expla-
natory text “symbols denote the logic operation (con-
junction) in different Boolean algebra notations” con-
tributes to transforming data into knowledge, perhaps, 
by introducing other data via the learning process. 
From the pure representation perspective, knowledge 
has container and content. For example, the statement 
“The Second Newton’s law” is the container, and the 
statement “The force of an object is equal to its mass 
times its acceleration, i.e. F= m*a” is the content.  

The context of data/knowledge can be given expli-
citly (e.g., through explanation, examples, etc.) or im-
plicitly. This is a weak form of knowledge since it 
focuses on the representation view only. Knowledge 
that resides in human minds relates to understanding 
the meaning. This is a strong form of knowledge. 
When a teacher represents a LO, he/she represents 
data about the LO and its context. The understanding, 
i.e., the strong form of knowledge comes through the 
learning process of learners (see, for example, [2] and 
[14, 93 p.]). As we deal here with the representation 
aspects of LOs we manipulate the weak form of 
knowledge. The context of a LO is the most essential 
part because it brings the potential for understanding, 
the data transformation into knowledge.   

3.2. Categories of knowledge 

As knowledge has a direct relationship to data we 
can admit that knowledge is composed of other 
knowledge using some operations, which we call 
associations or aggregations in this paper. Associa-
tions are some relationships defined on “simpler 
knowledge”. We define two basic categories of know-

ledge: atomic knowledge unit and aggregated know-
ledge. The first either cannot be decomposed into 
smaller parts (e.g., knowledge that contains the 
definition of the term “conjunction” operation in Boo-
lean algebra) or learner/teacher treats it as indivisible 
item in the given context, though in the other it might 
be divisible (e.g., a sort algorithm in the Data Base 
course may be the atomic knowledge unit, while in the 
Computer Science course not).  

Aggregated knowledge is composed either of 
atomic knowledge units or of other “lower-level” ag-
gregated knowledge. Any kind of knowledge can be 
grouped and sequenced into clusters. Such a cluster is 
aggregated knowledge too. Aggregated knowledge, if 
it used for many times in different places of the LO, 
can also be seen as an internal component. In different 
subjects, we can speak about clusters of notations, 
clusters of terms, etc. When new aggregated know-
ledge is represented within a LO, the new context to 
this knowledge is to be obtained too.  

3.3. LO model structure 

The model consists of three basic parts: name, 
knowledge-based interface and knowledge-based bo-
dy. The first, such as the topic/theme name, is for 
identification and referencing or the learning objective 
statement (e.g., as the context of the name). Interface 
is for communicating and transferring knowledge to 
the LO and from it. As teacher and learner commu-
nicate knowledge, interface can be seen also as a 
media for the teacher/learner interaction, or as a media 
learner/learner interaction in the case of self-learning. 
Interface, in turn, consists of two kinds of knowledge: 
input and output knowledge. Interface is clearly sepa-
rated from the body. Input knowledge is a structured 
(sequenced) list of atomic knowledge units coming 
from outside. Output knowledge is a structured list of 
aggregated knowledge identified within the body, 
which is to be learned and then transferred to other 
LOs or the learner. From the learner’s perspective, 
output knowledge is shift in time with respect to input 
knowledge within a given learning process when it is 
initiated. Note that conceptually input knowledge is 
called ‘prerequisites’ in pedagogy theories [8]. The 
difference is that in our case this knowledge is embed-
ded in the structure explicitly. By input knowledge, we 
mean the knowledge which a component accepts as its 
input. By output knowledge, we mean the knowledge 
which a component produces as output while asso-
ciations are applied to the input knowledge. By 

205 



V. Štuikys, R. Damaševičius 

internal knowledge, we mean the knowledge which is 
important for building output knowledge but is used 
only within a component and is not transferred 
externally.  

3.4. Properties of knowledge-based interface 

The properties of the interface are: 
• Input/output knowledge are transferred in the 

in/out mode, respectively; 
• Output is shifted in time with respect to input 

while the LO is processed in the learning process 
(learner’s view); 

• Input has the implicit (default) context because it 
is already learnt knowledge and its explicit 
context is “left” in the previously learnt LO; in 
some cases (e.g., in self-learning, repeating ma-
terial) input knowledge may be omitted; 

• Output may have or not the explicitly stated con-
text in the interface. This depends on the desig-
ner’s intention; 

• Typically input knowledge depends on learning 
objectives and has to be consistent with learning 
goals and the current learner’s knowledge. If not, 
internal knowledge should be declared within the 
body in order to resolve inconsistency; 

• Explicit interface supports external composition 
of LOs into higher-level structures; 

• Clearly stated objectives restrict the scope of 
input and output knowledge, and designer reasons 
about the scope, especially about the input know-
ledge; 

• Quality expert reasons about consistency of input 
knowledge with goals and quality of the LO in a 
whole when the model is being instantiated. 

3.5. Knowledge-based body 

The body defines implementation details of a LO, 
i.e. structural and functional aspects. The body con-
tains a few important sections: declarative, procedu-
ral, contextual and managerial (Figure 1). In declara-
tive section, one can state the objectives of the LO (if 
this statement was omitted in the context of the LO 
name), identify scenarios to be applied in learning, 
references to context (e.g., examples, case studies, or 
material for refreshing input knowledge in ones 
memory), auxiliary data (e.g., internal knowledge to 
support consistency of input knowledge with learning 
objectives).  

The procedural section presents all kind of asso-
ciations, which provide a means to produce output 
knowledge. These associations may be formed of 
input knowledge only or be constructed from the input 
and internal knowledge or already constructed know-
ledge.  As input knowledge is structured in two diffe-
rent forms (structured pieces of data and structured 
pieces of context though it is defined by default, i.e. 
implicitly), output knowledge is produced in the 

structural way too. The associations can be described 
textually, graphically or in the abstract or formal way. 

 

Knowledge-based body 

Knowledge-based Interface 

Declarative part 

Procedural part 

Contextual part 

Managerial part 

Visibility 
layers 

 
Figure 1. Structure of LO model 

The contextual part contains explanations, test 
cases, self-learning objects, examples, references for 
further readings, etc. Some learning objects (know-
ledge) in that part may be teacher-oriented (e.g., tasks 
for test, answers, etc.) while the other objects are stu-
dent-oriented. What is common to all the above 
mentioned structural units of the model is that within 
each section the information is strongly clustered into 
blocks, each block is being labeled to enhance ma-
nageability. 

The managerial section serves for providing cont-
rol information to manage various aspects of the mo-
del usage. The aspects, for example, may include: 
• Quality aspects (expert’s view) 
• Teacher’s view to management tasks 
• Student’s view to management tasks (self-lear-

ning) 
• Aspects of the representation component in digital 

(web-based) environment 
• Aspects for implementing navigation within the 

given LO component sections (e.g. in case of self-
learning), among the different components of a 
given course or navigation between different 
courses. 

Implementation of the above stated functionality is 
based on the two basic principles: granularity of infor-
mation within sections and information hiding. For 
example, some information is not available for stu-
dents and is available for teachers only. In other cases, 
one may want to deal with only interface of a 
component, without its body (e.g., in self-learning or 
repeating).  

The LO model describes the structural and functio-
nal aspects (associations and output knowledge forma-
tion principle). In order to solve the representation 
problem, we need to have some notation or language. 
Various kinds of languages can be chosen to imple-
ment the task. We consider several choices: UML, 
XML and the narrative natural language (English). In 
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our view, the latter is the best for the purposes of 
course planning. Below, we present an example of the 
component model in the natural language. For read-
ability, the format is supplemented with extra words 
and separators, which have the following meaning and 
in the other context may be omitted: 

• Italic – name of knowledge fragment (unit) or 
associative knowledge 

• (…) – context 
•  [x] – reference to the external source x  
• Label: begin… end; - block of knowledge 

fragments (units of the LO); but they are optional 
(the label is obligatory). • Bold - important term of the model 

• Bold and italic – important term related to LO 

3.6. LO model example with its instantiation 

Name of LO: T1. Boolean algebra principles for restricted set of operations and arguments.  
(Goal is to explain the Boolean algebra principles and laws for homogeneous functions) 
Interface to T1 is 
Begin 
    Input knowledge is 
          L1: begin Operations ”*” and “+” in algebra and  arguments-operations functional relationship end; 
  L2: begin Definition of the range of values for arguments and algebraic functions end; 
   Output knowledge is  
          L3: begin Definitions of Boolean functions “AND”, “OR” in the narrative and truth table forms end; 
 L4: begin Commutativity law end;  
         L5: begin Associativity law end; 
 end; 
Knowledge body of T1 is 
begin 
     Declarative part is  
           L6: begin Scenarios: learning by examples end; 
           L7: begin By analogy with algebra (see L1 and L2), Boolean functions and their arguments have value 
ranges, but what is different is that these values vary in the restricted interval {true, false} end; 
  L8: begin Spelling and notations for functions: disjunction “OR”; conjunction “AND” end; 
     Procedural part is  
    L9: begin Teacher/learner (T/L) selects a Boolean function and introduces definitions: 
“Logical conjunction is the function that results in the value of true if all its arguments are true, otherwise a value 
of false.” (see L12)  
“Logical disjunction is the function that results in the value of true just whenever some of its arguments are true” 
(see L13) end;  
    L10: begin T/L selects a Boolean function and demonstrates commutativity law (see L14) end;  
     L11: begin T/L selects a Boolean function number of arguments equal to 3 and demonstrates associativity 
law (see L15) end; 

Contextual part is  
 L12: begin Truth table for conjunction end; 
 L13: begin Truth table for disjunction end; 
  L14: begin   Y= a AND b is equivalent to Y= b AND a; X= a OR b is equivalent to X= b OR a, 
where X, Y, a, b = {true, false} end;  
 L15: begin   ((a AND b) AND c) = ((a AND c) AND b); ((a OR b) OR c) = ((a OR c) OR b), 
where a, b, c = {true, false} end; 

Managerial part is  
 L16: Teacher’s view: Teacher formulates problems: 1.”To construct truth table with 3 and 4 arguments for 
two groups of students” (teacher sends templates of truth tables or explains how they should be generated 
automatically [e.g., look at web site http://xxx]) 2. Teacher asks to calculate value of a given function. 
 L17: Student’s view: Students fill in truth tables and sent the result to teacher (via Internet) for evaluation 
End body; 

 
Notes: 1) this is a fine-grained LO to learn homo-

geneous Boolean functions; by using the described 
framework and introducing an additional operation/ 

function (e.g., NOT), a higher-level LO for the general 
case, i.e. to learn heterogeneous Boolean functions, 
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can be constructed easily; 2) truth tables are not 
shown; for a case, see Figure 4; 3) xxx – virtual site. 

4.  Commonality-variability analysis and 
domain model creation for the related LOs  
“There is nothing more basic than categorization 

to our thought, perception, action, and speech” 
(George Lakoff [14, 144 p.]). 

4.1. Definition of commonality and variability 

The LO domain can be analyzed and then catego-
rized using such concepts as scope (S), commonality 
(C), and variability (V). Such a categorization can be 
viewed as a result of SCV-analysis. We accept defini-
tions of commonality and variability proposed by J. 
Coplien and his colleagues in [11]. A commonality is 
an assumption held uniformly across a given set of 
objects (S). Frequently, such assumptions are attri-
butes with the same values for all elements of S. Con-
versely, a variability is an assumption true of only 
some elements of S, or an attribute with different 
values for at least two elements of S.  

We illustrate these concepts with a simple example 
taken from the Boolean algebra domain. Let us 
consider S being the set of all “homogeneous” AND, 
OR and NOT functions (Λ, V and ¬ are other nota-
tions for the functions, respectively). The value of a 
function can be treated as output and its arguments as 
inputs. The attributes “any function has one output”, 
“input/output have names”, and “input-output relation-
ship is expressed by Boolean equations” are commo-
nalities (see also (1) and (2)). The attributes “type of 
function” or “number of inputs for homogeneous 
AND-, OR-functions, which may vary from two to 
any” are variability (e.g., compare (1) and (3)). The 
attribute “NOT-function has only one input” is 
specificity (see also (4)). 

y = x1 AND x2 AND x3;     (1)    
y = x1 OR x2 OR x3;          (2) 
y = x1 OR x2;                      (3) 
y = NOT(x1);                       (4) 

4.2. Factoring LOs domain 
SCV- analysis may result in factoring of the LO 

domain as follows: 
• S is the set of all related LOs driven by a given 

curricula or constrained by a given course or 
themes within the course; 

• C is the characteristics common to all members of 
LOs in S;  

• V is the variation of the content among LO ins-
tances as well the variation of other aspects (e.g., 
pedagogical, social, technological) but these 
should be considered separately; 

• P is the features of specificity (if any); and 
• I is the relationship or interaction among C, V (P 

is excluded due to it should always be isolated) in 
S.  

The set S introduces the boundaries in analysis. 
However, the boundaries can be either broadened or 
narrowed by the analyst (e.g., instructional designer) 
depending on goals and given resources.  For 
example, she or he can connect analysis of the content 
with analysis of known models for representing of 
LOs or learning scenarios. C is most influential to 
reuse in the mode “use-as-is”, while V is most in-
fluential to automation, i.e. generative reuse. We call 
interaction the perception of the role C in respect to 
the role of V in the given context.  For example, the 
interaction can be viewed as understanding the same 
role of different things in the same context; or vice 
versa, understanding the different role of the same 
things in the similar or, perhaps, the same context. Let 
us consider two strings: ‘x1, x2, x3’ and ‘x1 or x2 or 
x3’. The different symbols ‘,’ and ‘or’ (variability) 
have the same role: they both are separators (commo-
nality).  

4.3. Creating model for the domain of related LOs  

What we need for the generic specification of the 
related LOs is the explicit representation of analysis 
results, i.e. synthesis of the explicit model of the 
domain. From this perspective, variability is to be 
expressed through parameters with clearly stated 
values and their ranges (within the given scope). The 
short description of scenarios of relationships is very 
helpful too. Referencing to our example as illustrative, 
we present the extended model for the LO “Homoge-
neous Boolean Equations” explicitly (see Table 1). 
The model is called commonality-variability model 
and describes the whole domain of the LO from which 
concrete instances can be derived on demand depen-
ding on parameters’ values. When instances are crea-
ted, the LO model such as described in previous 
Section 3 is used for representing the concrete content. 
Note that we restrict ourselves by analysis of the 
content only.  

The described analysis and synthesis processes can 
be viewed as self-learning of the analyst per se due to: 
1) the objectives and scope are pre-specified; 2) the 
sequence of actions (though not so much in detail) is 
described; 3) the result is explicit but depends on 
many factors such as skill, previous knowledge and 
experience of the analyst; 4) the processes may require 
revision and improvement, or perhaps, interaction 
with experts; 5) the synthesized model is to be tested 
for quality. 

To achieve our goals in creation of GLOs, the 
proposed models (LO model and C-V model for the 
given class of LOs) are to be connected to the 
appropriate generative technology, such as meta-
programming [13]. 
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Table 1. Commonality-variability model for LO “Homogeneous Boolean functions” 

LO parts after 
factoring  

Possible LO features and their values  Scenarios  

Commonality (C) 1. Output-input functional relationship 
2. Range of Inputs/Output values  
3. Definition of a function 
4. Statement of commutative law for AND-, OR-
functions  
5. Statement of associative law for AND-, OR-
functions 

y = x1 AND x2;   
y={true, false}; x1, x2= {true, false} 
 
y = x2 AND x1↔ y = x1 AND x2 
 
y = (x1 OR x2) OR x3↔ 
y = x1 OR ( x2 OR x3) 

Variability (V) 1. Kinds (k) of definitions to be learnt 
2. Kinds of laws (l) to be learnt 
3. Types of functions (f ) 
4. Number ( n) of inputs for any function 
5. Notations of functions 
We ignore other kinds of variability (e.g., names)
 

Textual (Narrative) / Truth table 
Commutative /Associative 
y = x1 OR x2;   y = x1 AND x2;     
y = x1 OR x2 OR x3;           
 (for AND: Λ, & for OR: V, | ) 

C-V interaction 1. V1-C1-C2; 
2. V2- C4-C5 

Knowledge about interaction are implicit 

Interaction 
within 
variability  

1. V4 interacts with V1 
2. V4 interacts with V2 

Knowledge about interaction are implicit 

Scope (S) of 
parameters 
variation  

1. f = {AND, OR }  
2. n = {2, 3, 4, …, 16} 
3. k = {textual, table} 
4. l = {commutative, associative} 

S = |f|×|n|×|k|×|l| = 2×15×2×2 = 120 
(Scope of the whole LO domain: 
“homogeneous Boolean equations” 
planned for learning ) 

Specificity (Sp) 1. NOT- function has only one input y = (NOT) x1; 

 

5.  Development of GLOs using heterogeneous 
meta-programming techniques 

5.2. Developing generative specification 
The central point in the development of the 

generative specification (aka meta-program or simply 
GLO) using the meta-programming approach are the 
following phases: 1) introduction of a model for repre-
senting the GLO (model 1); 2) use of a LO model for 
representing LO instances (model 2); 3) identification 
of commonality-variability in the explicit form for the 
given family of related LO instances (model 3); 4) 
selection of a meta-language; 5) transformation  of 
models 2 and 3 into meta-constructs of the selected 
language in compliance with model 1; 6) testing and 
validation of GLO specifications; and 7) incorporation 
of a GLO into a eLearning environment. As quality 
aspects are crucial, we admit that tasks in phase 6 and 
7 should be considered separately. 

5.1. Introduction to meta-programming 
In general, meta-programming is defined as a 

manipulation with programs as data [13]. Meta-
programming can be viewed as a generative techno-
logy since it allows representing variability of design 
specifications at a higher abstraction level concisely 
and those specifications can be supported by auto-
matic tools. 

Here we speak about the heterogeneous meta-
programming techniques, which use two different 
languages in the same specification: a meta-language 
for representing higher-level manipulations and do-
main (or target) language for representing domain 
program instances. As typically LO instances are 
represented in XML format they are actually domain 
programs. But meta-programming techniques can be 
used to the plain text and pictures which can be 
viewed as non-executables domain programs (though 
showing them holds execution too since they are 
interpreted, e.g., by the Internet Explorer). 

Model 1 is represented in Figure 2. It contains 
meta-interface and meta-body. The latter consists of 
generic interface and generic body. The meta-body is 
some generalization of model 2 (see Figure 1), whe-
reas the knowledge-based interface and the know-
ledge-based body are generalized by introducing 
meta-operations with parameters obtained as a result 
of construction of variability model 3 (see Table 1). 
The values of the parameters to implement the gene-
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ralization are described in the meta-interface of the 
specification.  

 

Meta-body 

Generic knowledge-based body 

Generic knowledge-based interface 

Declarative part 

Procedural part 

Contextual part 

Managerial part 

Visibility layers 

Meta-interface 

 
Figure 2. Structure of GLO model 

We have selected our own meta-language Open 
PROMOL (see our web site www.soften.ktu.lt/~ 
damarobe/promol) because: (1) it contains a wide 
spectrum of commands for the manipulation with text; 
(2) it is based on the use of functional approach and its 
functions are close to the syntax of the most known 
programming languages; (3) we have a long expe-
rience in using it in teaching and learning; (4) it has 
international recognition and (5) it has clear (human 
readable and computer readable) meta-interface. The 
latter is the most essential requirement for the LO 
domain because the LO user is usually not a prog-
rammer.  

The models’ transformations follow the rule: vari-
ability parameters are represented as meta-parameters 
at a higher abstraction level in the meta-interface, 
while the commonality-variability relationships are 
coded at a lower-level within the meta-body. This is 
explained in Section 5.3 by examples.  

 

 

 @- this is the beginning of meta-interface  
$ 

      "Identify function from the list:"     {AND, OR}      f:= OR; 
      "Identify number of inputs:"      {2..10}     n:= 3; 

[f eq {AND}] "Select symbolic representation of AND function" {and, ∩, &, .} rep:= and; 
[f eq {OR}]  "Select symbolic representation of OR function"  {or, ∪, !, +}  rep:= or; 
$ 
@- this is the beginning of meta-body 
 
OUTPUT KNOWLEDGE IS Definition of “@sub[f]” Boolean function  
in the narrative and truth table forms with an example: 
 
@case[##f+1,{ 
Logical conjunction (usual symbol @sub[f]) is the function that results in a value of 
TRUE if all of its operands are TRUE, otherwise a value of FALSE. 
},{ 
Logical disjunction (usual symbol @sub[f]) is the function that results in true just 
whenever some of its arguments are true. 
}] 
 
The truth table of p @sub[f] q is as follows: 

p q p @sub[f] q 
FALSE FALSE @case[##f+1,{FALSE},{FALSE}] 
FALSE TRUE @case[##f+1,{FALSE},{TRUE}] 
TRUE FALSE @case[##f+1,{FALSE},{TRUE}] 
TRUE TRUE @case[##f+1,{TRUE},{TRUE}] 

 
This is an example of “@sub[f]” Boolean function with @sub[n] inputs: 

Y = @gen[n, { @sub[rep] }, {X}, 1]; 

 
OUTPUT KNOWLEDGE IS Definition of “OR” Boolean function  
in the narrative and truth table forms with an example: 
 
Logical disjunction (usual symbol OR) is the function that results in true just whenever 
some of its arguments are true. 
 
The truth table of p OR q is as follows: 
 p q p OR q 
 FALSE FALSE FALSE 
 FALSE TRUE TRUE 
 TRUE FALSE TRUE 
 TRUE TRUE TRUE 
 
This is an example of "OR" Boolean function with 3 inputs: 
Y = X1 or X2 or X3; 

(a) 

(b)
 

Figure 3. GLO example (a) and instance (b) generated according to values (f:= OR; n:=3; rep:=or;) 
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5.3. Case study: GLO for learning homogeneous 
Boolean functions 

The use of the GLO may have several formats 
(e.g., text, pdf, XML-based, others internet-based). In 
our case study we use the textual format (Figure 3) 
and HTML-based (Figure 4). 

In Figure 3 (a) and (b), the GLO specification and 
its generated instance are given, respectively.  Note 
that the specification represents a simplified version of 
the implementation of the LO and variability models 
discussed in Sections 3 and 4. Furthermore, meta-bo-
dy fragments are shown only (compare the description 
in 3.6 and the description in Figure 3(b)). The spe-
cification of GLO (Figure 3(a)) is presented as a meta-
program in Open PROMOL meta-language (its meta-
functions are in bold). The meta-interface of the GLO 
presents a number of options for a teacher/learner. He 
or she can select a Boolean function, its notation, the 
number of inputs for the demonstration of the Boolean 
function.  

 
Figure 4. An example of specific Boolean function LO 

instance 

Using the specified interface options, the meta-
language processor generates a LO implemented in 
HTML+Javascript, which can be distributed over the 
internet. The HTML part of the LO is used for 
presentation of the description and truth table of the 

selected Boolean equation, while Javascript is used for 
demonstration of the Boolean equation. An example of 
the generated specific Boolean function LO as seen 
via the internet browser is given in Figure 4. 

6. Discussion and evaluation 
6.1. Summary and contribution 

Reusability is a fundamental feature of LOs. 
Though reusability aspects, such as the component 
view to LOs or the role of granularity for reusable 
components and models, were at the focus of 
researches for long time, the efforts to enhance these 
aspects towards generative reuse are expending only 
now. Examples of this shift are the introduction inno-
vative models that support adaptation of LOs (e.g., 
glass-box reuse model, aspect-oriented LOs, adaptive 
LOs or LOs based on object programming concepts) 
and the concept of generative LOs. In this paper, we 
have shown of how the dimension of generative reuse 
of LOs can be extended further. Firstly, we have sug-
gested a novel knowledge-based LO model to repre-
sent component instances. The model is based on 
factoring and aggregating knowledge units within a 
LO and consists of two basic parts: interface and 
functionality. Interface is for the explicit description of 
knowledge communication in both directions: to a LO 
and from the LO. Functionality is for describing 
knowledge representation and managing. The model 
contributes to better compositionality, understandabili-
ty, extensibility, reusability and can be further genera-
lized easily to support the personalized content deli-
very and automatic generation. Secondly, we have 
extended the known concept of generative LOs by 
connecting commonality-variability analysis in the 
domain of related LOs with heterogeneous meta-prog-
ramming techniques for generating LO instances on 
demand from the generic LO specifications.  

6.2. Advantages 

The advantages of knowledge-based generative 
LOs are: 1) better quality due to GLOs could be 
developed and tested by experts; 2) increase in 
productivity due to LO instances are generated from 
the generic LO specification on demand automa-
tically; 3) managing of related LO instances within a 
CMS is simpler due to they are generated from a 
single specification and then distributed to learners in 
a variety of instances automatically; 4) flexibility for 
changes and adaptations due to the generative techno-
logy selected; 5) even the same material within educa-
tional systems can be easily tailored to both students' 
and teachers' individual needs and presented as a 
GLO; 6) as the approach describes spaces for relative 
LOs,  the GLOs may be a part of the meta-design 
environments of eLearning systems (in the sense of 
the G. Fisher’s et al. meta-design concept). 
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6.3. Disadvantages 

The disadvantages of the approach are: 1) higher 
costs due to the need of additional efforts for analysis; 
2) the need of the additional tool support for the 
generative technology; 3) more complicated testing; 4) 
the need for extensive experimentation in order to 
achieve a higher maturity; 5) generative approach re-
quires more precise explicit LO models. 

6.4. Problems for further work 

As the related learning content may have a large 
variability dimension, a GLO can be viewed as a 
concise specification of the whole family of related 
LO instances. But it is not quite clear of how large or 
small GLOs should be and what the scope of GLOs 
variability is optimal. The mechanism of explicit in-
tegration of knowledge units within a knowledge-
based LO instance is to be further extended, as well as 
the external composition of smaller LOs into lager 
ones. To enhance reusability, GLOs and their suppor-
ting environment are to be integrated into eLearning 
systems (e.g., Content Management Systems). These 
problems require further research activities. 

7. Conclusions 

The explicit representation of input-output know-
ledge within the proposed knowledge-based LO model 
gives (for course designers and teachers) a basis for 
the systematic construction of courses from LO ins-
tances since the model describes interaction explicitly. 
Learners are better guided for self-learning due to the 
knowledge is represented at two abstraction levels: 
interface and functionality. Commonality-variability 
analysis brings a solid background to construct a sys-
temic approach to build generative LOs easily tailored 
to both learners' and teachers' individual needs. The 
heterogeneous meta-programming technology suits 
well for representing variability explicitly and imple-
menting generative LOs. What we suggest, in order to 
enhance the generative reuse dimension in the LO 
domain, is 1) to incorporate commonality-variability 
analysis in instructional design theories applied by the 
instructional designer in the development of GLOs; 
and 2) to integrate the LO instances generation pro-
cess into the content delivery process. 
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