
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2007, Vol.36, No.1

VARIABILITY–ORIENTED EMBEDDED COMPONENT DESIGN
FOR AMBIENT INTELLIGENCE

Vytautas Štuikys, Robertas Damaševičius
Software Engineering Department, Kaunas University of Technology

Studentų St. 50, LT−51368 Kaunas, Lithuania

Abstract. Ambient Intelligence is a new vision of future digital environments characterized by ubiquity, transpa-
rency and intelligence. The user is surrounded by embedded systems that are invisible, context-aware, personalized and
adaptable to the user requirements. Design of Ambient Intelligence systems is, essentially, design of sophisticated and
interconnected embedded systems that operate within a common human-oriented environment. Such embedded sys-
tems contain a variety of embedded components with different functionality, characteristics and requirements. Embed-
ded components are common hardware/software components that are basic blocks for building embedded systems and
have a great deal of variability. This paper focuses on embedded component design for Ambient Intelligence systems
and proposes a design framework based on the systematic domain analysis methods, well-proven domain models, well-
documented design processes, UML-based object-oriented specification, meta-programming-based representation of
variability within generic embedded components, and automatic domain code generation. We demonstrate validity of
our approach for two domains of application: communication control and fault-tolerance.

Keywords: Ambient Intelligence, code generation, domain analysis, embedded system, generalization, metaprog-
ramming, object-oriented specification, variability.

1. Introduction

Ambient Intelligence (AmI) is a vision for future
communication and human-machine interaction sys-
tems [Riva, 03]. Common features of such systems are
ambient computing, omnipresent communication to
support context-awareness and intelligent interfacing
[Ducatel, 01]. The domain is not well understood yet,
regardless of a wide stream of research on the topic
[Boekhorst, 02] [Basten, 03a] [Basten, 03b] [Lindwer,
03] [Weber, 03] [Remagnino, 03] [Cai, 05].

From the pure structural perspective, an AmI-
oriented environment can be treated as a specifically
organized collection of integrated embedded systems
(ES) satisfying requirements and constrains of AmI-
oriented design. They are as follows: higher diversity
and complexity of systems and components, increased
quality, productivity and reuse content, standardiza-
tion, stricter requirements for time-to-market and
fault-tolerance, design for variation and low power
[Basten, 03b]. These factors should be considered in
the context of underlying domain technology, which is
further scaling down and causes exponential comp-
lexity growth of the designed systems [ITRS, 03]. The
outcome is that systems of yesterday become compo-
nents of today. Furthermore, the blurring boundaries
between hardware (HW) and software (SW) design
[Eggermont, 02] [Vahid, 03] for a long perspective

requires introduction of the higher-level abstractions
in the design process [ITRS, 03].

The researchers can respond to this challenge by
either improving the currently used design methodo-
logies or creating the new ones. New AmI-oriented
systems must be based on the fundamental principle
stating that any system consists of components. This
principle is common for any technical system as well
as for a mature engineering discipline, and it is some-
times called “a law of nature” [Szyperski, 99]. The
design methodologies for AmI systems must exploit
adequately this principle, too.

ES are used as subsystems in a variety of smart
products such as mobile phones, DVD players, and
kitchen appliances. These systems implement a large
diversity of functions; however, they are composed of
a limited number of common SW/HW components
such as DSP, MPEG, codecs, etc. We call these basic
design blocks embedded components, the nodes for
the future AmI systems. We use this term as a generic
name for IP (Intellectual Property) components (IPs),
(embedded) SW components, HW components (soft
IPs), and SW/HW subsystems. However, this term
should be also treated as an abstraction covering va-
rious forms of representation such as a generic specifi-
cation and metamodel of reusable components.

Since there is a great variety of embedded com-
ponents, which are required for the design of AmI

16

Variability–Oriented Embedded Component Design for Ambient Intelligence

systems, reuse and variability management of compo-
nent assets has become increasingly important in
embedded system design. The designers are shifting
their focus from designing separate application-spe-
cific domain systems to developing generic compo-
nents [Becker, 01], platforms [Mihal, 02], or entire
product lines [Diaz-Herrera, 00], which implement
common functionality of component (system) family
that satisfies the specific needs of a particular market
segment, and provide variability management mecha-
nisms for instantiating the specific component (ins-
tance) customized for particular performance and
application requirements. Such product lines could be
successfully used for developing embedded compo-
nents on an industrial scale to match huge customer
demand and varying requirements, as well as maintain
quality-of-service and shorten time-to-market.

The key to successful design for variability is sys-
tematic management of domain variations, while
exploiting the commonalities. These commonalities
permit reuse of shared assets, such as architectures,
reusable components, test cases and documentation.
When a new AmI system is developed, the emphasis
should be placed on automatic integration of existing
embedded components or generation of customized
components rather than programming. Domain ana-
lysis and knowledge mining for extraction of antici-
pated variability, development of methods and abstrac-
tions for facilitating and improving variability mana-
gement mechanisms, and creation of tools for imple-
mentation of variability and generation of customized
ready-to-use components are essential to design
success.

Our contribution is (1) a general variability-orien-
ted design framework for developing generic
embedded components, (2) adoption of high-level ab-
stractions such as UML class diagrams and metapro-
grams for specification of embedded components,
management of design variability and implementation
of domain code generation for well-understood do-
mains.

The outline of this paper is as follows. Section 2
describes the concept of Embedded Component, its
representation forms and design processes. Section 3
describes the Embedded Component design metho-
dology in detail. Section 4 presents our experiments.
Section 5 presents evaluation of results and con-
clusions.

2. Embedded Component Design Framework
2.1. Embedded Component Concept, its

Representation Forms, and Model

The designers use a broad variety of models in the
ES domain [Selic, 03b]. For instance, models of com-
putation (MoC) are formal and abstract definitions of
a component [Edwards, 97] [Lee, 98]. Examples of
MoC are finite state machine (FSM), Boolean circuit,
Petri nets, etc. MoC allow analyzing the intrinsic

properties of a component such as execution time or
memory space of an algorithm while ignoring many
implementations issues. The design process is iterative
– a design is transformed from an informal description
into a detailed specification usable for manufacturing.
Multiple MoC are needed to express the heteroge-
neous nature of most ES.

Component models [Agaësse, 97] [Haase, 99]
[Meguerdichian, 01] [Nitsch, 03] [Siegmund, 00]
[Štuikys, 02] [Vermeulen, 00] [Zhu, 01] usually deal
with the problems of representation, retrieval and
reuse of HW/SW components for IP libraries, IP pro-
viders and IP users. These models either allow custo-
mization of components with respect to user require-
ments for successful IP reuse, or enable convenient IP
retrieval and sharing. The design process focuses on
design space exploration, parameterization, and gene-
ration of specific components (IPs). The proposed
solutions are usually language-centric (pre-processing,
extensions of languages, etc.).

Architectural models such as platforms [Mihal, 02]
[Sangiovanni-Vincentelli, 01] address system-level de-
sign based on IP reuse. Platforms are common archi-
tectures based on principal components that remain
fixed within a certain degree of parameterization.
Such platforms can support a variety of applications in
a given application domain. Platforms emphasize not
the design of functionality, but the communication-
based design independent of the behaviour of parti-
cular components. The design process focuses on refi-
nement of a platform for a specific application.

We introduce a concept of Embedded Component
in the context of the AmI-oriented design as follows.
Embedded Component is a design abstraction common
to SW/HW systems. It has three representation forms:
generic specification (GS), reusable instance (RI) and
embeddable instance (EI) (see Figure 1). These forms
correspond to three hierarchic abstraction layers as
follows. Generic specification is at the generic layer of
abstraction (the highest one), reusable instance is at
the reuse layer (the middle one), and embeddable ins-
tance is at the embedding layer (the lowest one). A
higher abstraction layer is refined into a lower one
using a well-defined design process. Below, we de-
scribe these representation forms of Embedded Com-
ponent in more detail as follows.

Generic specification is parameterized description
of a family of related component instances. A family
includes several (from dozens to hundreds or even
thousands) reusable instances that differ in functiona-
lity and requirements. The environment for a generic
specification is a generic library of IP providers or
large design organizations.

Reusable instance is a particular instance gene-
rated from a generic specification that can be reused in
several applications. Usually it is not specific enough
to be embedded into a particular target system and
needs to be adapted to its environment of application.
The environment for a reusable instance is either

17

V. Štuikys, R. Damaševičius

libraries of IP providers, IP exchanges, or libraries of
design teams.

Embeddable instance is a component instance that
was adapted to a particular context of application and,
generally, is not reusable. The environment for an em-
beddable instance is an ES as a part of the AmI sys-
tem. An embeddable instance can be implemented in a
real system either (1) “use-as-is” without any modi-
fication, or (2) with customization/modification of a
reusable instance.

A Generic Embedded Component Model (see Fi-
gure 2) describes the structure of a generic specifica-
tion. A metainterface represents the generic parame-
ters at a higher level of abstraction and hides the
families of reusable instances and details of their
implementation from the user. The generic interface
and generic functionality represent the parameterized
interface and functionality of reusable instances, res-
pectively. The reusable instances are derived from a
generic specification automatically using transforma-
tion generation tools.

RI1RIiRIn

EIi
EIk

EIm EIj

EI1

AmI systems

GSj Generic Layer

Reuse Layer

Embedding
Layer

Generation

"Use-as-is"

Adaptation

Design Processes

Figure 1. Relationship between Embedded Component forms

Generation of reusable
component instances

Requirements for
generalization

Generic specification

Metainterface

Generic Interface
Generic

Functionality

Figure 2. Generic Embedded Component Model

The Generic Embedded Component Model sup-
ports:
 1) Domain-independence – the model is common for

HW, SW, and embedded SW domains [Štuikys,
03]. Here we have in mind the representation of
components only, but not the semantic aspects.

 2) Design automation – a generic specification is a
generic form representing a family of the related
reusable instances, and a generation/transforma-
tion process can be defined, supported and execu-
ted to obtain the reusable instances automatically.

 3) Common methodological background for trans-
forming, customizing and delivering of Embed-
ded Components.

2.2. Design processes

Design processes are a very important part of the
suggested framework. We describe these processes in
more detail latter. Now, we focus on the formulation
of the pre-conditions of the processes and present the
framework in the whole (see Figure 3).

18

Variability–Oriented Embedded Component Design for Ambient Intelligence

Analysis

Specification

Metaprogramming

Generation

Adaptation

Domain

AmI system

Figure 3. Embedded Component design processes for AmI

(1) Analysis process comprises the consideration of
roadmaps for ES and AmI domains [ITRS, 03]
[Eggermont, 02], including requirements for AmI,
and systematic analysis of experimental AmI
systems, HW and SW systems.

(2) Specification process is applied for describing
Embedded Components at a higher-level of abst-
raction using object-oriented approach based on
UML diagrams [Booch, 98] and design patterns
[Gamma, 95].

(3) Design process includes development of generic
representations of Embedded Components (i.e.,
generic specifications) using the metaprogram-
ming techniques [Štuikys, 02] in order to manage
the design variability in AmI domain.

(4) Generation process is automatic creation of re-
usable Embedded Component instances according
to the pre-specified requirements of a user or
application.

(5) Adaptation is a process of adapting a reusable
instance and integrating it into a real AmI system.
As the context of such a system may be unknown
for an Embedded Component designer, we do not
consider this process in the paper.

3. Design Methodology in Details
3.1. Well-Understood Domains and AmI

SW engineering considers “domain” as its basic
theme of exploration [Jacobson, 97]. The topic is so
important and widely discussed that a new discipline,
Domain Engineering, has emerged [Diaz-Herrera, 01]

[Harsu, 02]. A domain is an environment from which
SW engineers extract knowledge required for desig-
ning a system. In the context of reuse, domains can be
categorized as vertical (narrow) and horizontal
(broad) ones. From the evolutionary perspective, do-
mains can be treated either as poorly or well-
understood ones. AmI covers both vertical and hori-
zontal domains and, as a topic for research and crea-
ting the future advanced systems, it is not well-under-
stood in many aspects yet. However, design of an AmI
system relates to the variety of sub-domains (HW, SW,
and ES design) that are already well-understood.

To support the basic constrains and requirements
(reliability, functionality, variability for AmI systems,
etc.), the designers should pay an increased attention
to the well-understood domains in the first place. It is
particular important for designing Embedded Compo-
nents because the main intention of introducing them
is to ensure a high reuse context [ITRS, 03] [Egger-
mont, 02]. There is no precise definition in the
literature what a well-understood domain or sub-do-
main is. The term “well-understood domain” should
be conceived here as a domain that contains well-
proven model(s). There are many well-proven models
in both HW and SW domains. Examples selected
below refer to the aspects of componentry in HW and
SW design and experiments we have carried out.
 1) Communication models such as handshake [Ber-

kel, 94] and FIFO [Gajski, 97] protocols are
models for describing aspects of communication
between HW components given in a high-level
HW description language (HDL), such as VHDL,
Verilog or SystemC.

19

V. Štuikys, R. Damaševičius

20

 2) Triple Redundancy Model (TRM) is used in the
reliability-critical applications to mask HW faults.
TRM implements the two-out-of-three voting
concept, as well as the erroneous output indica-
tion (if needed). There are Space, Data and Time
Redundancy sub-models of TRM [Entrena, 01]
[Fuhrman, 95] [Pflanz, 98] as follows: a) Space
redundancy is based on the addition of extra hard-
ware in order to perform simultaneously the same
operations of a system. b) Time redundancy is
based on the usage of additional time to perform
system functions, thus achieving soft error tole-
rance. c) Data redundancy is based on the addi-
tion of redundant data (auxiliary data path, error-
detecting and correcting codes) to ensure reliabi-
lity during transfer of data via system intercon-
nections.

 3) Wrapper models are widely used in HW design,
e.g.: a) Bus wrapper provides an implementation
of a particular data protocol for communication
with other components. This solution is used in
Virtual Socket Interface methodology [Cyr, 01] to
connect the IPs to on-chip buses in System-on-
Chip (SoC) designs. b) Protocol wrapper
provides an implementation of an OSI protocol
layer. This solution is used in the FPX networking
platform [Braun, 02] to implement high-level
networking functions by abstracting the operation
of the lower-level packet processing functions. c)
Memory wrapper adapts the physical memory
interfaces to a communication network that may
have a different number of access ports. This
approach is used in [Gharsalli, 02] to facilitate the
integration of the standard memory components
into SoC designs.

3.2. General Domain Analysis Methods for Design
for Variability

The more complex system/component has to be
designed, the higher is the role of domain analysis.
Domain analysis methods can be categorized as ad
hoc and systematic ones. The first ones prevail in cur-
rent design practice, especially in HW and ES design.
The role of systematic methods increases alongside
with the growth of design complexity. We expect that
they will become extremely important in design of
future AmI systems. Thus, we present below a brief
survey of the systematic domain analysis methods that
can be used to design the Embedded Components for
AmI systems.

Multi-Dimensional Separation of Concerns [Os-
sher, 01] claims that design concerns can be under-
stood in terms of an n-dimensional design space,
called a hyperspace. Each dimension is associated
with a set of similar concerns, such as a set of compo-
nent instances; different values along a dimension are
different instances. A hyperslice is a set of instances
that pertain to a specific concern. A hypermodule is a
set of hyperslices and integration relationships that

dictate how the units of hyperslices are integrated. The
method is especially useful in domains where a great
variety of requirements exists at different layers of
abstraction such as in ES design.

Feature-Oriented Domain Analysis [Kang, 90]
[Prieto-Diaz, 91] deals with analysis and documen-
tation of distinctive features of SW systems. Features
are domain characteristics that define both common
domain aspects as well as differences between related
domain systems. The underlying concepts are: aggre-
gation (composition of separated concerns into a
generic component), decomposition (abstraction and
isolation of domain commonalties and variations),
parameterization (substitution of the application-spe-
cific concerns with values of component parameters),
generalization (capturing domain commonalties,
while expressing the variations at a higher level of
abstraction), and specialization (tailoring a generic
component into a specific component that incorporates
the application-specific details).

Family-oriented Abstraction, Specification and
Translation [Weiss, 99] method focuses on grouping
similar entities or concepts into families. A family is a
collection of system parts that are treated together
because they are more alike than different. Grouping
is based on commonalties that fall along many dimen-
sions (structure, algorithm, etc.). Commonality defines
the shared context that is invariant across abstractions
of the application. The individual family members
(instances) are distinguished by their differences,
called variabilities. Variability captures the properties
that distinguish abstractions in a domain. The aim of
the method is to uncover variability and provide
means for its implementation.

Conceptually, the analyzed methods have many in
common. First, they emphasize decomposition of a
design space into smaller dimensions related to the
specific design concerns. Secondly, they describe ma-
nagement of variability and commonality in a domain
and, finally, integration of similar entities (features) at
a higher layer of abstraction. From that perspective,
any of the analyzed methods can be used for designing
Embedded Components. The selection depends upon
the skills of a designer and the available tools.

We summarize our analysis as follows. We assume
that SW/HW components designed for AmI systems
have variant and invariant parts. These parts represent
variability and commonality in the domain. The
primary goal of using domain analysis methods is to
recognize the parts, and express them in a suitable
form for further refinement. At a higher level, we use
domain concerns alongside with the domain-oriented
abstractions to describe the variant and invariant parts
more precisely. Finally, we formulate the issues of
domain analysis either explicitly or implicitly. The
explicit artifacts are taxonomy of domain objects and
their features (requirements, parameters), methods,
processes and models for ES design. The implicit
artifacts are domain knowledge in the form of a

Variability–Oriented Embedded Component Design for Ambient Intelligence

conceptual model used for further refinement of the
obtained domain artifacts and models.

3.3. Domain-Specific Analysis Methods

The domain-specific analysis methods mostly
focus on design space exploration, i.e., analyzing and
searching the domain for the optimal design solutions
(in terms of power, area, delay, etc.). Design space
exploration tasks today often deal with high-level
synthesis problems, such as automated resource
allocation, binding of computation and communica-
tion to resources, and scheduling.

As complexity of the design systems increases, it
is becoming more and more unlikely that a designer
will find an optimal design solution using his expe-
rience, domain knowledge and prior design decisions
as a basis only. A disciplined approach to design space
exploration is inevitably needed in order to evaluate
ever-increasing design spaces. Here, we analyze an
approach for the automated and systematic design
space exploration widely known as Y-Chart [Kienhuis,
97] [Gerstlauer, 02].

The Y-chart identifies three sub-domains: (1)
Functional sub-domain: functional components, algo-
rithms, etc. (2) Structural sub-domain: processors,
memories, busses, etc. (3) Physical sub-domain: hard-
ware resources, delays, constraints, etc.

The Y-Chart also defines system, register-transfer,
gate, and transistor levels where each level is defined
by the type of objects. The higher-level objects are
hierarchically composed of the lower-level ones. At
each level, the design can be described in the form of
a behavioral, a structural model, or a physical model
as follows.
(1) Behavioral model describes the desired functio-

nality as a composition of abstract functional
entities that get activated, process input data,
produce output data, and terminate.

(2) Structural model describes the net-list of physical
components and their connectivity. Structural
objects represent real components and wires that
are processing the data.

(3) Physical model describes the physical placement
of the sub-components on the chip.

The design activities begin at the highest-level
sub-domain that corresponds to the highest-level of
abstraction in the domain. Then, a successive refine-
ment process between each sub-domains is applied
according to various abstraction levels. The design
process ends at the lowest level of abstraction in phy-
sical sub-domain.

In the Y-Chart, system design is the process of mo-
ving from a behavioral description to a structural de-
scription under a set of constraints where the structural
objects are each designed at the next lower level.

At the system level, system design is the process
of deriving a structural description of the system and
the system architecture from a behavioral system

specification. Behavioral objects at the system level
are general functions and algorithms that communi-
cate by transferring data through global variables.
Structural objects are processing elements, e.g. gene-
ral-purpose processors, custom hardware, compo-
nents, and memories that communicate via buses. For
each design task, the models at the input and output of
the flow have to be defined such that the transfor-
mation between the models becomes possible.

An application and architecture are modeled
separately and explicitly mapped onto each other.
Next, a performance analysis for alternative applica-
tion instances, architecture instances and mappings
has to be done, thereby exploring the design space of
the target system.

3.4. UML-Based Specification

The Object-oriented design (OOD) methodology is
based on the concept of using high-level models orga-
nized around real world concepts. This approach has
actually become the de-facto standard for SW design.
Objects are usually modeled using UML [Booch, 98].
Recently, UML has gained acceptance in HW and ES
design community, too [Jong, 02] [Martin, 02] [Chen,
03] [Edwards, 03] [Goudarzi, 04]. Advantages of
using UML for OO HW design are as follows: 1) high
level specification of a designed system, 2) better soft
IP reusability and adaptability, 3) better documenta-
tion for further reuse and maintenance of a system.

Design patterns are another abstraction for repre-
senting common design solutions in UML notation
[Gamma, 95]. Design patterns are used to abstract and
encapsulate common design solutions as well as to
describe contexts to which they can be applied in an
implementation-independent way. They originated in
SW domain for creating the SW systems using pre-
vious successful design experience. However, recently
there are evident signs and efforts for adapting them
for HW design [Yoshida, 01] [Åström, 01] [Doucet,
02] [Damaševičius, 03] [Selic, 03a] [Damaševičius,
04a, b].

In the context of Embedded Component design for
AmI systems, the OO specification of a system using
UML is extremely important due to the following rea-
sons. 1) Describing a system in an abstract and imple-
mentation-independent way significantly raises the
level of abstraction. 2) Using the standard UML dia-
grams eases the communication between different
design teams. 3) Using the already verified design
solutions ensures a higher design quality. 4) Using
graphical design tools, catalogues of design patterns,
and automatic code generation tools can increase
design productivity as well as accelerate design reuse,
sharing and transfer.

Additionally, the usage of design patterns may re-
duce the gap between the development of SW and HW
parts, as the OO and pattern-based design is widely
used in SW domain. It can be very useful to co-design
the HW and SW parts of a system using the same

21

V. Štuikys, R. Damaševičius

design methodology, and partition these parts as late
as possible in the design cycle. The same high-level
description can be implemented either in HW, or in
SW running on an embedded processor. This allows
achieving greater flexibility for the system designer.

However, in order to exploit the full potential of
design patterns in HW design domain, much work still
is to be done. As has been shown in [Yoshida, 01] only
a few SW design patterns can be introduced in HW
design without changes. The others require a certain
degree of adaptation, and the rest ones from currently
known list of 23 main SW design patterns [Gamma,
95] are not adopted at all, yet.

3.5. Metaprogramming

Several related efforts in the area are aspect-
oriented programming [Kiczales, 97], generative
programming [Czarnecki, 00] [Sztipanovits, 02], and
generic programming [Gibbons, 03]. Metaprogram-
ming is a kind of higher-level programming the
interest and attention for which is constantly growing

[Sheard, 01]. It can be applied in different domains
and in the various contexts where the multi-language
design paradigm [Kleinjohann, 98] [Jerraya, 99] is
used. In this context, we consider metaprogramming
as a design technology for managing variability and
implementing domain code generation [Štuikys, 02].

The main aim of metaprogramming is to create a
metaspecification – a program generator for a narrow
domain of application. Conceptually, a metaspecifi-
cation is based on the generic embedded component
model (Figure 2). Whereas structurally, a metaspeci-
fication (see Figure 4) consists of a generic interface,
related domain program instances and a modification
algorithm that describes generation of a particular
instance depending upon values of the generic para-
meters. The modification algorithm can include meta-
if (conditional generation) and meta-for (repetitive
generation) constructs as well as sophisticated applica-
tion-specific patterns composed of nested combina-
tions of simpler metaconstructs.

Metaspecification

Generic interface
has has

Generic parameter
contains

1

*
Modification algorithm

contains

Program instance

1

*

Metaconstruct

implements

Metalanguage describes
Domain language

describes
depends

Metacode
contains

Figure 4. Detailed architecture of a metaspecification

Depending upon the representation of a metaspeci-
fication, there are two basic dimensions of metaprog-
ramming: the homogeneous and heterogeneous ones.
Here we focus on the latter.

Heterogeneous metaprogramming is based on ex-
plicit separation of concerns and the usage of two
different languages in the same metaspecification. The
lower-level language (domain language) is used for
expressing the basic domain functionality. The higher-
level language (metalanguage) is used for expressing
generalization and describing domain program modi-
fications. A designer uses a metalanguage as a higher-
level abstraction to integrate together the different
domain program instances and make up a metaspecifi-
cation. The main mechanism allowing to implemen-
ting this integration is external (generic) parameteri-
zation. The latter separates the programming concerns
explicitly and bridges the higher- and lower-levels
while developing a metaspecification. Then a meta-
specification is used as a set of instructions for a

metalanguage processor to generate the specific do-
main program instances.

Heterogeneous metaprogramming can be imple-
mented in several ways [Štuikys, 03]. One way is to
use some general-purpose programming language
(e.g., Java, C++) in the role of a metalanguage and a
domain-specific language (e.g., VHDL, Verilog or
SystemC) as a domain language. The other way is to
use a dedicated language in the role of a meta-
language. Though there are no essential differences
between both methods, the second has some advan-
tages from the user's perspective. A dedicated meta-
language processor can better ensure the explicit sepa-
ration of concerns when implementing external para-
meterization, thus giving some advantages for a user.

The advantages of heterogeneous metaprogram-
ming are as follows. 1) The usage of a domain-inde-
pendent metalanguage allows automatic (pre-program-
med) adaptation to limitations of a particular synthe-
sizer, and automatic documentation generation. 2) The
end-user has access to customized instances because

22

Variability–Oriented Embedded Component Design for Ambient Intelligence

they are explicitly separated. 3) An instance is much
more readable than a generic component.

The disadvantages of heterogeneous metaprogram-
ming are as follows. 1) It requires two design environ-
ments, thus the validation process is more complex. 2)
Clashing of component names must be prevented
(manually or automatically).

3.6. Design of Generic Embedded Components
Using Metaprogramming

Generic aspects of Embedded Component are
represented in a metaspecification. Each metaspeci-
fication has an interface for describing the generic
parameters, and a body that contains the generic inter-
face and generic functionality of Embedded Compo-
nents. Metaspecifications serve for 1) concise repre-
sentation of the families of qualified instances that
have the related functionality, and 2) selection and
generation of the particular domain component instan-

ces depending upon the values of the generic para-
meters introduced through a metalanguage interface.

Development of a metaspecification can be de-
scribed as follows (see Figure 5). The domain (repre-
sented by one or more available component instances,
models and the requirements) is analyzed, and the
modification concerns are identified and separated.
These concerns represent the variable aspects in a
domain that depend upon generic parameters. The
separated concerns are expressed through generic
parameters, implemented using the metaprogramming
techniques, and then integrated back with the fixed
aspects of a domain that are orthogonal with respect to
the generic parameters. The result is a metaspecifica-
tion that encapsulates a family of the related Embed-
ded Component instances and implements a Generic
Embedded Component. For illustrative example, see
Figure 6.

Domain
Program(s)

Modification
Algorithm

Meta-
specification

Metaprogramming

Require-
mentsIPs

Domain Analysis

Models

Figure 5. Framework for development of a metaspecification

 void generate_gate(String func, int no, int width) {
// generating VHDL entity of a gate ...

println("ENTITY GATE_"+func+"_"+no+"x"+width+" IS");
 print("PORT (X0");
 for(int i=1; i<no; i++) print(", X"+i);
 print(" : IN STD_LOGIC");
 if (width > 1)

print("_VECTOR("+(width-1)+" downto 0)");
 println(";");
 print("\t Y : OUT STD_LOGIC");
 if (width>1)

print("_VECTOR("+(width-1)+" downto 0)");
 println(");");
 println("END GATE_"+func+"_"+no+"x"+width+";");
// generating VHDL architecture of a gate ...
 println("ARCHITECTURE BEHAVE OF ");

println("\t\t GATE_"+func+"_"+no+"x"+width+" IS");
 println("BEGIN");
 print("\t\t Y <= X0");
 for(int i=1; i<no; i++) print(" "+func+" X"+i);
 println(";");
 println("END BEHAVE;");
}

ENTITY GATE_AND_3x8 IS
PORT (X0, X1, X2: IN STD_LOGIC_VECTOR(7 downto 0);

Y: OUT STD_LOGIC_VECTOR(7 downto 0));
END GATE_AND_3x8;

ARCHITECTURE BEH OF GATE_AND_3x8 IS
BEGIN
 Y <= X0 AND X1 AND X2;
END BEH;

Figure 6. Generic gate specification (metalanguage - Java, domain language - VHDL), and its VHDL instance
(when function = AND, no = 3, width = 8)

23

V. Štuikys, R. Damaševičius

In general, a metalanguage is used to express all
possible variability in a domain, while a domain lan-
guage is used to express the invariant part or commo-
nality in a domain. As metaparameters obtain values
from a restricted set relevant to a domain, a metaspeci-
fication describes the family of the related component
instances in a domain. Thus, a metaspecification that
expresses in total commonality and variability of a do-
main as well as a metalanguage environment (proces-
sor, compiler) is a domain generator.

3.7. Generation from UML-based Specifications
Using Metaprogramming Techniques

Design of a generic embedded component can be
split into two parts: the structural and behavioral ones.
Our aim here is to demonstrate how the structural part
of a given design problem can be specified at a higher
abstraction layer using UML.

To implement the transformation process from the
UML-based specifications, the design methodology
must (1) ensure a mapping between the UML subset
used to model HW and the HDL abstractions. (2)
Implement a set of translation rules (and an automatic
translation program, if possible) between the UML-
based specification of a HW model and the HDL-
based specification of a HW component.

A mapping is described semi-formally using UML
metamodel, i.e., the model that describes the syntax of

UML diagrams using a subset of UML. A metamodel
consists of a class diagram, where classes describe the
syntactic components of the used UML diagram. A
metamodel for mapping UML to VHDL was initially
described in [Damaševičius, 04a] and is extended now.
Other mappings also can be used (see, e.g.,
[McUmber, 99] [Björklund, 02]). Below, we present a
mapping between UML class diagrams and a structu-
ral subset of VHDL (see Figure 7). VHDL abstractions
are shown in parentheses.

Elements of UML class diagrams are classifiers,
relationships and features. Classifiers are interfaces
and classes that describe basic design blocks. Rela-
tionships (Figure 7, a) describe different types of con-
nections and associations between classifiers. Features
(Figure 7, b) describe parameters, attributes and me-
thods of classifiers. We map an abstract class (inter-
face) to a VHDL entity. A class that realizes an ab-
stract class is mapped to VHDL architecture. Class
parameters are mapped to a VHDL generic statement,
class attributes – to the VHDL ports (public) and sig-
nals (private), and class methods – to the VHDL
processes (procedures). The composition relationship
describes composition of a system from the compo-
nents and is mapped to a VHDL port map statement.
The inheritance relationship means that a VHDL
entity inherits the I/O ports from a base entity.

Interface (entity)

Realization (of)

1

1

1

*
Inheritance

*

*

Composition (port map)

1

1 *

1
Class (architecture)

Classifier

ModelElement

Relationship

(a)

Method (process)

Interface (entity) Class (architecture)

Parameter (generic)

Public attribute (port)

Private attribute (signal)

1

*

1

*

1

*

1

*

ModelElement

Classifier

Feature

(b)

Figure 7. A mapping between UML class diagrams and VHDL structural abstractions: (a) relationships and (b) features

Once the mapping between UML and HDL has
been defined, rules that describe the translation

process between UML and HDL can be formulated.
The aim of the translation rules is to describe how an

24

Variability–Oriented Embedded Component Design for Ambient Intelligence

instance of a UML metamodel (i.e., any UML model
described using a subset of UML defined in a meta-
model) can be transformed into an instance of a target
model (i.e., a concrete HDL specification that descri-
bes the implementation of a HW model specified
using UML). These rules can be implemented manual-
ly by a HW designer, or automatically using a dedica-
ted translation tool or code generator using a wide
range of code generation strategies [Selic, 02].

We have implemented code generation using meta-
programming integrated with in UMLStudio [Prag-
Soft, 03]. The tool provides capabilities to generate
code from UML diagrams. The generation process is
specified using a built-in scripting language Prag-
Script that provides access to the data stored by
UMLStudio projects. (Note that scripting languages
are a kind of metalanguages). A script written in Prag-
Script is, in fact, a metaspecification that provides a
generic interface to UMLStudio. UMLStudio allows
the end-users to write their own scripts if they require
code generation in selected language. Using Prag-
Script, we have written a metaspecification, which
implements generation of a VHDL structural code
from UML class diagrams.

We summarize the difficulties of using UML for
HW design as follows:
 1) Specification of interconnections between HW

components. Block-based diagrams are more
common for HW designers. They are more
straightforward and are oriented at interconnec-
ting components. Whereas UML class diagrams
are more intuitive and oriented at reusing and
customizing components.

 2) Specification of generic domain functionality.
UML specifications are usually used to specify
concrete systems and are not good for describing
families of "look-alike" systems and thus mana-
ging variability in a domain.

 3) Model validation problem. HW models must be
validated much more accurately than SW models.
The problem is that UML models describe
systems at a high level of abstraction and leave
many details for a designer to implement later.

 4) Increased initial development time. The designers
must get used to a new design paradigm and
spend much time for developing a library of basic
OOD models.

Furthermore, a great deal of work still must be
done in adapting UML for HW and ES design, stan-
dardizing UML extensions for parallelism and real
time design, developing UML-based tools and integ-
rating them into a HW/SW co-design and SoC design
flow before the full potential of the model-based and
OOD might be exploited.

4. Experiments and Case Study

We demonstrate applicability of our approach by
designing an Embedded Component for two applica-
tions: communication control and fault-tolerance. Two
different well-proven models are considered: protocols
and triple redundancy model (TRM). Below, we
describe the experiments using an Embedded Compo-
nent design framework shown in Figure 3. First, we
begin with the analysis of a domain.

4.1. Analysis

The main purpose of communication control is to
ensure relevant transmission of data (e.g., operands,
commands, addresses, etc.) to and from the IP. Trans-
mission can be described using different rules or
protocols, i.e. an agreed format for transmitting data
between the IPs. In Figure 8, we present a generalized
architecture of a communication control circuit. Here,
IP is a third-party soft IP that implements basic func-
tionality of a circuit, and ASPC (FSM) is an applica-
tion-specific protocol controller (finite state machine)
that controls the reading and writing of data to and
from IP, respectively. We consider here two common
communication protocols, namely, handshake protocol
that deals with an asynchronous flow of data, and
FIFO protocol that deals with sudden bursts of data in
a producer-consumer model.

The main purpose of fault-tolerance is to ensure
operation of ES under normal as well as exceptional
conditions. Fault-tolerance usually relies on redun-
dancy, i.e., the addition of resources, time, or informa-
tion beyond that is needed for normal system opera-
tions (see Figure 9). Here IP1, IP2, IP3 are instances of
the same IP component, and ASIC (voter) is an appli-
cation-specific integrated circuit that implements
majority voting. There are three types of redundancy
as described in sub-section 3.1.

IP
ASPC
(FSM)

IP data

Protocol control

IP data

Protocol control

Figure 8. Generalized architecture of a communication control circuit

25

V. Štuikys, R. Damaševičius

IP1

ASIC
(voter)

IP data

fail signalIP2

IP3

IP data

Figure 9. Generalized architecture of a fault-tolerant circuit

IP

WrapperModel

Wrapper

IPModel

Figure 10. Specification of a Wrapper design pattern

4.2. Specification

To specify an Embedded Component, we have
used UML class diagrams and applied a Wrapper
design pattern (see Figure 10) [Damaševičius, 03].
Wrapper design pattern allows adapting an interface
and behavior of the IP component to the context of a
given application. It allows specifying well-proven
domain models within well-understood domains (see
Section 3.1). Below, we explain it briefly.

The abstract class (entity in VHDL) Wrapper in-
herits the I/O ports of the IP, and declares new I/O
ports for wrapper functionality. The class (architecture
in VHDL) IPModel implements the functionality of
entity IP. The architecture WrapperModel implements
the functionality of Wrapper and contains component
IP. This description means that WrapperModel wraps
IPModel with a new functionality.

4.3. Design

We have designed the universal wrapper generator
to automatically generate five different wrappers
(Handshake, FIFO, Space TMR, Time TMR, and Data
TMR) for the black-box third-party soft IP cores
described in VHDL. The design flow for
implementing the analyzed architectures (see Figures
8, 9) is shown in Figure 11 and presented below.
 1) The designer specifies a design problem in UML

class diagrams using a Wrapper design pattern.
We use UMLStudio [PragSoft] as a front-end tool
to draw UML diagrams. The designer develops an
UML metamodel and a script for translation from
UML to VHDL using a scripting language Prag-
Script that provides straightforward access to the
data stored by UMLStudio projects. A PragScript
script provides a generic interface to UMLStudio.

PragScript interpreter uses UML model (class
diagram) and a translation script to generate a
structural VHDL model.

 2) Since the structural VHDL model is not enough
for a wrapper, and UML class diagrams cannot
describe functionality, several Java metaspecifica-
tions were developed. These metaspecifications
capture the behavioral models of wrapper functio-
nality using the heterogeneous metaprogramming
techniques (metalanguage – Java, domain lan-
guage – VHDL). Each metaspecification is a Java
class, which encapsulates a generic domain entity
(e.g., FIFO buffer, voter, etc.). Java processor
processes metaspecifications and generates speci-
fic behavioral VHDL models for a target system
using values of the generic parameters specified
via class constructor.

3) The VHDL parser analyses the supplied soft IP
source code, constructs a syntax tree, and extracts
the values of the parameters for generation.

4) The universal wrapper generator performs wrap-
ping of the soft IP by generating the instances of
the component instances that belong to a spe-
cified wrapper, and the port map statements to
map the signals of the wrapper to the soft IP.

The generation process is fully automatic. The user
only has to supply values of the parameters for the
wrapper generator. The result is a fully synthesizable
reusable instance in VHDL that can be used as an
Embedded Component for ES design.

4.4. Generation of Reusable Instances

We use two kinds of metaspecifications in our de-
sign flow (see Figure 11): (1) a script developed using
embedded UMLStudio scripting language PragScript,

26

Variability–Oriented Embedded Component Design for Ambient Intelligence

27

and (2) the metaspecifications of behavioral VHDL
models developed using an external metalanguage
(Java).

The first metaspecification is for describing the
structural variability of a component family, while the
second one is for representing the behavioral varia-
bility. Note that an external metalanguage can be used
for specifying both structural and behavioral variabili-
ty of a design problem, which leads to metaprogram-
ming-only implementation [Štuikys, 02]. Here our aim
was to integrate the different kinds of meta-specifi-
cations into a unified design flow.

A metaspecification that describes a generic em-
bedded component is used as a set of instructions for a
metalanguage processor (compiler) to generate the
domain language code (reusable instances) depending
upon the values of the generic parameters specified by
a designer or other program.

The tools for implementing generation process are
conventional compilers because general-purpose prog-
ramming languages such as C++, Java can be used in
the role of metalanguages, too (see Figure 7 and [Štui-
kys, 03]).

well-proven
models

Meta-
specifications

(Java + VHDL)

UML metamodel
(mapping)

specification

VHDL
parser

UMLStudio

translationUML model
(class diagram)

PragScript
interpreter

script for
translation
into VHDL

VHDL
model(s)

(structural)
design

problem

parameters

scripting

Wrapper
pattern

soft IP
(VHDL)

third
party

generation VHDL
model(s)

(behavioral)

Target
system

(VHDL)

Java
processor

parameters

Figure 11. Implementation of wrapping for well-proven models

4.5. Results

In our experiments, we have used the freely avail-
able third-party soft (HW) IPs as follows. 1) Free-
6502 core [Kessner, 99] is a CPU core compatible
with 8-bit 6502 microprocessor. 2) DRAGONFLY
core [LEOX, 01] is a 8-bit controller that can be used
for serial communication management, FLASH and
SDRAM control, etc. 3) AX8 core [Wallner, 01] is a
16-bit AT90Sxxxx compatible micro-controller core.
4) i8051 micro-controller [Givargis, 00] is compatible
with 8-bit microprocessor designed by Intel.

Synthesis results of the original soft IPs and the
generated wrappers (Synopsys; CMOS 0.35 µm tech-
nology) are presented in Tables 1-4.

The synthesis results show the following average
increase in chip area of the generated wrappers with
respect to the original soft IPs: 10% for the Space
TRM wrapper, 44% for the Time TRM wrapper, 10%
for the Data TRM wrapper, 10% for the Handshake
wrapper, and 50% for the FIFO (size = 4) wrapper.

Table 1. Synthesis results (FIFO and handshake models; area)

Soft IP Area, cells (IP) Increment area, cells
(Handshake)

Over-head Increment area, cells
(FIFO(4))

Over-head

Free-6502 4670 471 10 % 2210 47 %
Dragonfly 5883 921 16 % 4568 78 %
AX8 8020 836 10 % 4199 52 %
i8051 24258 1016 4 % 5063 21 %

Table 2. Synthesis results (triple redundancy models; area)

Soft IP

Area, cells
(Space TRM)

Over-head Area, cells
(Time TRM)

Over-head Area, cells
(Data TRM)

Over-head

Free-6502 678 15 % 2024 43 % 348 7 %
Dragonfly 698 12 % 3973 68 % 1024 17 %
AX8 956 12 % 3576 45 % 874 11 %
i8051 406 2 % 4314 18 % 1142 5 %

V. Štuikys, R. Damaševičius

28

Table 3. Synthesis results (FIFO and handshake models; est. power usage)

Soft IP Power, uW (IP) Power, uW
(Handshake wrapper)

Overhea
d

Power, uW
(FIFO(4) wrapper)

Overhea
d

Free-6502 8.2693 0.8607 10 % 4.9414 60 %
Dragonfly 19.9421 5.2775 26 % 5.3653 27 %

AX8 31.2318 13.4852 43 % 5.3563 17 %
i8051 50.5518 16.6699 33 % 10.2537 20 %

Table 4. Synthesis results (triple redundancy models (TRM); est. power usage)

Soft IP

Power, uW
(space TRM)

Overhea
d

Power, uW
(data TRM)

Overhea
d

Power, uW
(time TRM)

Overhea
d

Free-6502 25.844 212 % 11.120 34 % 12.211 47 %
Dragonfly 58.247 192 % 23.639 18 % 21.721 9 %
AX8 34.605 11 % 34.082 9 % 40.595 30 %
i8051 100.262 98 % 63.912 26 % 56.517 12 %

The synthesis results show the following average
increase in estimated power usage of the wrapped soft
IPs with generated wrappers with respect to the ori-
ginal soft IPs: 26% for the Handshake wrapper, and
39% for the FIFO (buffer size = 4) wrapper. 201% for
space redundancy, 26% for data redundancy and 23%
in time redundancy for the generated fault tolerant
components with respect to the original soft IPs. Note
that space redundancy here means that there are 3
instances of the original soft IP. The considerable po-
wer usage of protocol wrappers can be explained by
the fact that the protocol-based communication to
transfer data requires more switching power than di-
rect point-to-point communication.

Furthermore, the experiments we have carried out
show that using the third-party soft IPs as black-box
entities and well-proven models for their modification
enables us to simplify the design validation problem.
This result follows from the fact that we use the
qualified soft IPs and apply thorough testing proce-
dures only for the newly created functionality intro-
duced by the performed modifications.

5. Evaluation and Conclusions

Future Ambient Intelligence (AmI) systems will
require a diversity of components with much higher
complexity in order to respond to new requirements
and constraints. Management of complexity and varia-
bility in design through raising the level of abstraction
has already been approved in the past and should be
exploited further.

In this paper, we have suggested the Generic Em-
bedded Component Model within a general design
framework as a higher-level design abstraction to sup-
port design of the AmI systems. The model has the
following properties. 1) It is common for design of
SW as well as HW components. 2) It contains diffe-
rent representation forms (generic specification, fami-
ly of related instances, and embeddable instances). 3)
It supports generative reuse.

We have also proposed to apply the combined
systematic domain analysis methods and to use the

high-level abstractions and object-oriented specifica-
tion methods and metaprogramming for representing
the model and automatically generating the reusable
instances. We have restricted the application of the do-
main analysis methods for the well-understood do-
mains only, because Embedded Components for AmI
systems must be based on the well-proven models in
the first place.

The suggested design framework particularly fo-
cuses on the usage of heterogeneous metaprogram-
ming techniques. The techniques allow us: 1) To
describe the Generic Embedded Components at a
higher level of abstraction. 2) To parameterize them
with respect to the variety of user- and application-
specific requirements. 3) To flexibly manage variabi-
lity in a domain. 4) To generate the customized ready-
to-use Embedded Component instances for well-
understood domains of application.

The techniques can be applied in two different
modes: either as a built-in implementation embedded
into higher-level design tools (e.g., UML-based tools,
but there is a little progress now due to UML restric-
tions), or as an independently used technique to sup-
port generative reuse. We have demonstrated suitabi-
lity and validity of the proposed model for HW do-
main by developing a universal wrapper generator for
two applications: communication control and fault-
tolerance.

Future work still requires many efforts for adop-
ting and integrating the higher-level abstractions such
as UML and metaprogramming techniques into a
unified design flow in order to fully exploit their
capabilities for embedded system design. If one could
combine the retrieval of third-party soft IPs with auto-
matic domain analysis and design space exploration
(for different soft IP characteristics tradeoffs), at the
same time providing information for variability mana-
gement of soft IPs, the approach could substantially
increase design productivity and flexibility for deve-
loping future AmI-oriented embedded components
and systems.

Variability–Oriented Embedded Component Design for Ambient Intelligence

References
[Agaësse, 99] J. F. Agaësse and B. Laurent. Virtual Com-

ponents Application and Customization. Proc. of
Design, Automation and Test in Europe DATE 99,
Munich, Germany, March 9-12, 726-727.

[Åström, 01] P. Åström, S. Johansson, P. Nilsson. Appli-
cation of Software Design Patterns to DSP Library
Design. Proc. of the 14th Int. Symposium on System
Synthesis (ISSS’01), October 1-3, 2001, Montreal,
Canada, 239-243.

[Basten, 03a] T. Basten, L. Benini, A. Chandrakasan, M.
Lindwer, J. Liu, R. Min, and F. Zhao. Scaling into
Ambient Intelligence. Proc. of Design, Automation
and Test in Europe DATE 03, Munchen, Germany, 3-7
March 2003. Los Alamitos: IEEE CS Press, 2003, 76-
81.

[Basten, 03b] T. Basten, M. Geilen, H. de Groot, Eds.
Ambient Intelligence: Impact on embedded-system
design. Kluwer Academic Publishers, Boston, Novem-
ber 2003.

[Becker, 01] M. Becker. Generic Components – A Sym-
biosis of Paradigms. G. Butler, S. Jarzabek (Eds.): Ge-
nerative and Component-Based Software Engineering,
Second International Symposium, GCSE 2000, Erfurt,
Germany, October 9-12, 2000. Lecture Notes in
Computer Science, Vol.2177 Springer 2001, 100-113.

[Berkel, 94] K. Van Berkel. Handshake Circuits: An Asyn-
chronous Architecture for VLSI Programming.
Cambridge University Press, 1994.

[Björklund, 02] D. Björklund and J. Lilius, "From UML
Behavioral Descriptions to Efficient Synthesizable
VHDL", in NORCHIP 2002, 11-12 November 2002,
Copenhagen, Denmark.

[Boekhorst, 02] F. Boekhorst. Ambient Intelligence, the
Next Paradigm for Consumer Electronics: How Will it
Affect Silicon? Proc. of Int. Solid-State Circuits
Conference (ISSCC), San Francisco, CA, 2002, 28-31.

[Booch, 98] G. Booch, I. Jacobson, J. Rumbaugh, J.
Rumbaugh. The Unified Modeling Language, User
Guide. Addison-Wesley, 1998.

[Braun, 02] F. Braun, J. Lockwood, M. Waldvogel.
Protocol Wrappers for Layered Network Packet Pro-
cessing in Reconfigurable Hardware. IEEE Micro,
22(3), 2002, 66-74.

[Cai, 05] Y. Cai (Ed.). Ambient Intelligence for Scientific
Discovery – Foundations, Theories, and Systems. Lec-
ture Notes in Computer Science Vol.3345, Springer
2005.

[Chen, 03] R. Chen, M. Sgroi, L. Lavagno, G. Martin, A.
Sangiovanni-Vincentelli, J. Rabaey. UML and Plat-
form-based Design. L. Lavagno, G. Martin, and B. Se-
lic, Eds. UML for Real. Kluwer Academic Publishers,
Boston, November 2003, 107-126.

 [Cyr, 01] G. Cyr, G. Bois, M. Aboulhamid. Synthesis of
Communication Interface for SoC using VSIA
Recommendations. DATE 2001 Designer's Forum,
March 13-16, 2001, Munich, Germany, 155-159.

[Czarnecki, 00] K. Czarnecki, U. Eisenecker. Generative
Programming: Methods, Tools and Applications. Ad-
dison-Wesley, 2000.

[Damaševičius, 03] R. Damaševičius, G. Majauskas, V.
Štuikys. Application of Design Patterns for Hardware
Design. Proc. of 40th Design Automation Conference
DAC 2003, June 2-6, Anaheim, CA, USA, 48-53.

[Damaševičius, 04a] R. Damaševičius, V. Štuikys. Appli-
cation of UML for Hardware Design Based on Design
Process Model. Asia South Pacific Design Automation
Conference (ASP-DAC 2004), Yokohama, Japan,
January 27-30, 2004, 244-249.

[Damaševičius, 04b] R. Damaševičius, V. Štuikys. Appli-
cation of the Object-Oriented Principles for Hardware
and Embedded System Design. INTEGRATION, the
VLSI Journal, Elsevier Ltd., 2004, 38(2), 309-339.

[Diaz-Herrera, 00] J.L. Diaz-Herrera, V.K. Madisetti.
Embedded Systems Product Lines. Proc. of 22nd Int.
Conference on Software Engineering (ICSE), Work-
shop on Software Product Lines: Economics, Architec-
tures, and Implications, Limerick, Ireland, June 2000,
90-97.

[Diaz-Herrera, 01] J.L. Diaz-Herrera. Domain Engi-
neering and Object Technology. S.K. Chang (Ed.),
Handbook of Software Engineering and Knowledge
Engineering, Vol.I: Fundamentals. Singapore: World
Scientific Publishing, 2001.

[Doucet, 02a] F. Doucet, R.K. Gupta. Microelectronic
System-on-Chip Modeling using Objects and their
Relationships. Online Symposium for Electrical
Engineers (OSEE 2000), 2000.

[Ducatel, 01] K. Ducatel, M. Bogdanowicz, F. Scapolo, J.
Leitjen, J.C. Burgelman. Scenarios for Ambient
Intelligence in 2010. IST Advisory Group Report,
IPTS, Seville, Spain, 2001.

[Edwards, 03] M. Edwards, P. Green. UML for Hardware
and Software Object Modeling. L. Lavagno, G. Mar-
tin, and B. Selic, Eds. UML for Real, Kluwer Acade-
mic Publishers, 2003, 127-148.

[Edwards, 97] S. Edwards, L. Lavagno, E.A. Lee, A. San-
giovanni-Vincentelli. Design of Embedded Systems:
Formal Models, Validation, and Synthesis. Proc. of
the IEEE, 85 (3), 1997, 366-390.

[Eggermont, 02] E.D.J. Eggermont (Ed.). Embedded
Systems Roadmap 2002. STW Technology Founda-
tion/PROGRESS, Utrecht, the Netherlands, 2002.

[Entrena, 01] L. Entrena, C. Lopez, E. Olias. Automatic
Generation of Fault Tolerant VHDL Designs in RTL.
Forum on Design Languages FDL’2001, Lyon, Fran-
ce.

[Fuhrman, 95] C.P. Fuhrman, S. Chutani, H.J. Nussbau-
mer. Hardware/software fault tolerance with multiple
task modular redundancy. IEEE Symposium on Com-
puters and Communications (ISCC'95), June 27 - 29,
1995, Alexandria, Egypt, 171-177.

[Gajski, 97] D. Gajski. Principles of Digital Design. Pren-
tice Hall, 1997.

[Gamma, 95] E. Gamma, R. Helm, R. Johnson, J. Vlissi-
des. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

[Gerstlauer, 02] A. Gerstlauer, D.D. Gajski. System-
Level Abstraction Semantics. Proc. of International
Symposium on System Synthesis (ISSS'02), Kyoto,
Japan, October 2002.

[Gharsalli, 02] F. Gharsalli, S. Meftali, F. Rousseau, A.A.
Jerraya. Automatic Generation of Embedded Memo-
ry Wrapper for Multiprocessor SoC. Proc. of Design
Automation Conference DAC 2002, June 10-14, 2002,
New Orleans, LA, USA, 596-601.

[Gibbons, 03] J. Gibbons, J. Jeuring (Eds.). Generic
Programming. Kluwer Academic Publishers, 2003.

29

V. Štuikys, R. Damaševičius

[Givargis, 00] T. Givargis. Intel 8051 micro-controller,
2000, http://www.cs.ucr.edu/~dalton/i8051/i8051syn/.

[Goudarzi, 04] M. Goudarzi, S. Hessabi, A. Mycroft.
Object-Oriented Embedded System Development Ba-
sed on Synthesis and Reuse of OO-ASIPs. Journal of
Universal Computer Science, Vol.10, No.9, September
2004, 123-1156.

[Haase 99] J. Haase. Design Methodology for IP Providers.
Proc. Design Automation and Test in Europe Confe-
rence DATE’1999, Munich, Germany, March 1999,
728-732.

[Harsu, 02] M. Harsu. A survey on domain engineering.
Report 31, Institute of Software Systems, Tampere
University of Technology, December 2002.

[ITRS, 03] ITRS (International Technology Roadmap for
Semiconductors), 2003.

[Jacobson, 97] I. Jacobson, M. Griss, P. Jonsson. Soft-
ware Reuse: Architecture, Process and Organization
for Business Success. Addison-Wesley, 1997.

[Jerraya, 99] A.A. Jerraya, M. Romdhani, Ph.Le Mar-
rec, F. Hessel, P. Coste, C. Valderrama, G.F. Mar-
chioro, J.M. Daveau, N.-E. Zergainoh. Multi-lan-
guage Specification for System Design and Co-design.
In A.A. Jerraya, J. Mermet, Eds. System Level Synthe-
sis. Kluwer Academic Publishers, 1999.

[Jong, 02] G. de Jong. UML-based design methodology
for real-time and embedded systems. Proc. of Design
Automation and Test in Europe Conference DATE
2002, 4-8 March 2002, Paris, France, 776-778.

[Kang, 90] K. Kang, S. Cohen, J. Hess, W. Nowak, S. Pe-
terson. Feature-Oriented Domain Analysis (FODA)
Feasibility Study. Technical Report CMU/SEI-90-TR-
21, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pennsylvania, Nov., 1990.

[Kessner, 99] D. Kessner. Free-6502 core, 1999,
http://www.free-ip.com/6502/.

[Kiczales, 97] G. Kiczales, J. Lamping, A. Mendhekar, C.
Maeda, C. Videira Lopes, J.-M. Loingtier, J. Irwin.
Aspect-Oriented Programming. Proc. of the European
Conference on Object-Oriented Programming. Lec-
ture Notes in Computer Science, Vol.1241, Springer-
Verlag, 1997, 220-242.

[Kienhuis, 97] B. Kienhuis, E. Deprettere, K. Vissers, P.
van der Wolf. An Approach for Quantitative Analysis
of Application-Specific Dataflow Architectures. In: L.
Thiele, J. Fortes, K. Vissers, V. Taylor, T. Noll, and J.
Teich, Eds., Proc. of ASAP '97, 338-349.

[Kleinjohann, 98] B. Kleinjohann. Invited Talk: Multilan-
guage Design. Proc. of Int. IFIP WG 10.3/WG 10.5
Workshop on Distributed and Parallel Embedded
Systems (DIPES'98), Paderborn, Germany, 1998.

[Lee, 98] E.A. Lee, A. Sangiovanni-Vincentelli. A Frame-
work for Comparing Models of Computation. IEEE
Transactions on CAD, Vol.17, No.12, 1998, 217-1229.

[LEOX, 01] LEOX Team, DRAGONFLY micro-core, 2001,
http://www.leox.org.

[Lindwer, 03] M. Lindwer, D. Marculescu, T. Basten, R.
Zimmermann, R. Marculescu, S. Jung, E. Canta-
tore. Ambient Intelligence Visions and Achievements:
Linking abstract ideas to real-world concepts. Proc. of
Design, Automation and Test in Europe DATE 03,
Munchen, Germany, 3-7 March 2003, Los Alamitos:
IEEE CS Press, 2003, 10-15.

[Martin, 02] G. Martin. UML for embedded systems spe-
cification and design: motivation and overview. Proc.
of Design Automation and Test in Europe Conference
DATE 2002, 4-8 March 2002, Paris, France, Los Ala-
mitos: IEEE Computer Society Press, 2002, 773-775.

[McUmber, 99] W.E. McUmber, B.H.C. Cheng. UML-
Based Analysis Of Embedded Systems Using a Map-
ping to VHDL. IEEE High Assurance Software Engi-
neering (HASE 1999), November, 1999.

[Meguerdichian, 01] S. Meguerdichian, F. Koushanfar,
A. Mogre, D. Petranovic, M. Potkonjak. MetaCores:
Design and Optimization Techniques. Proc. of Design
Automation Conference DAC’2001, Las Vegas, Neva-
da, USA, June 18-22, ACM, 2001, 585-590.

[Mihal, 02] A. Mihal, C. Kulkarni, C. Sauer, K. Vissers,
M. Moskewicz, M. Tsai, N. Shah, S. Weber, Y. Jin,
K. Keutzer, S. Malik. A Disciplined Approach to the
Development of Architectural Platforms. IEEE Design
and Test of Computers, No.19, 2002, 2-12.

[Nitsch, 03] C. Nitsch, C. Lara, U. Kebschull. A Novel
Design Technology for Next Generation Ubiquitous
Computing Architectures. Proc of Int. Parallel and
Distributed Processing Symposium (IPDPS'03), April
22-26, 2003, Nice, France, 191b.

[Ossher, 01] H. Ossher, P. Tarr. Multi-Dimensional Sepa-
ration of Concerns and The Hyperspace Approach. In
M. Aksit, Ed. Software Architectures and Component
Technology: The State of the Art in Software Develop-
ment. Boston: Kluwer Academic Publishers, 2001.

[Pflanz, 98] M. Pflanz, H.T. Vierhaus. Generating Reli-
able Embedded Processors. IEEE Micro, Vol.18, No.
5, 1998, 33-41.

[Pragsoft] PragSoft Corp. UMLStudio,
http://www.pragsoft.com.

[Prieto-Diaz, 91] R. Prieto-Diaz, G. Arango. Domain Ana-
lysis and Software Systems Modeling. Los Alamitos:
IEEE Computer Society Press, 1991.

[Remagnino, 03] P. Remagnino, G.L. Foresti, N.Mone-
kosso. Coarse to fine scene understanding, first steps
towards an Ambient Intelligence system. 8th National
Congress of Italian Association for Artificial Intelli-
gence AI*IA 2003, Workshop on Ambient Intelligence,
23 September, 2003, Pisa, Italy.

[Riva, 03] G. Riva, P. Loreti, M. Lunghi, F. Vatalaro, F.
Davide. Presence 2010: The Emergence of Ambient
Intelligence. In G. Riva, F. Davise, and W.A.I. Jssel-
steijn, Eds. Being There: Concepts, effects and measu-
rement of user presence in synthetic environments,
Amsterdam: Ios Press, 2003, 59-82.

[Sangiovanni-Vincentelli, 01] A. Sangiovanni-Vincentelli,
G. Martin. A Vision for Embedded Systems: Plat-
form-Based Design and Software Methodology. IEEE
Design and Test of Computers, Vol.18, No.6, Novem-
ber/December 2001, 23-33.

[Selic, 02] B. Selic. Complete High-Performance Code Ge-
neration from UML Models. Embedded Systems Con-
ference 2002, San Francisco, USA.

[Selic, 03a] B. Selic. Architectural Patterns for Real-Time
Systems. In L. Lavagno, G. Martin, and B. Selic, Eds.
UML for Real,. Kluwer Academic Publishers, 2003,
171-188.

30

Variability–Oriented Embedded Component Design for Ambient Intelligence

[Selic, 03b] B. Selic. Models, Software Models and UML.
In L. Lavagno, G. Martin, and B. Selic, Eds. UML for
Real, Kluwer Academic Publishers, Boston, 2003, 1-
16.

[Sheard, 01] T. Sheard. Accomplishments and Research
Challenges in Metaprogramming. 2nd Int. Workshop
on Semantics, Application, and Implementation of
Program Generation (SAIG’2001), Florence, Italy.
Lecture Notes in Computer Science, Vol.2196, Sprin-
ger, 2-44.

[Siegmund, 00] R. Siegmund, D. Mueller. A Method for
Interface Customization of Soft IP Cores. In R. See-
pold, and M. Navidad (Eds.), Virtual Component De-
sign and Reuse. Kluwer Academic Publishers, 2000.

[Sztipanovits, 02] J. Sztipanovits, G. Karsai. Generative
Programming for Embedded Systems. In D.S. Batory,
C. Consel, and W. Taha, Eds. Generative Program-
ming and Component Engineering, Proc. of ACM
SIGPLAN/SIGSOFT Conference GPCE 2002, Pitts-
burgh, PA, USA, October 6-8, 2002. LNCS Vol.2487,
Springer 2002, 32-49.

[Szyperski, 99] C. Szyperski. Component Software beyond
Object-Oriented Programming. Addison-Wesley, 1999.

[Štuikys, 02] V. Štuikys, R. Damaševičius, G. Ziberkas,
G. Majauskas. Soft IP Design Framework Using
Metaprogramming Techniques. In B. Kleinjohann, K.
H. (Kane) Kim, L. Kleinjohann, and A. Rettberg, Eds.
Design and Analysis of Distributed Embedded Sys-
tems, Kluwer Academic Publishers, Boston, July 2002,
257-266.

[Štuikys, 03] V. Štuikys, R. Damaševičius. Metaprogram-
ming Techniques for Designing Embedded Compo-
nents for Ambient Intelligence. In T. Basten, M. Gei-
len, and H. de Groot, (Eds.) Ambient Intelligence: Im-
pact on embedded-system design. Kluwer Academic
Publishers, Boston, 2003.

[Vahid, 03] F. Vahid. The Softening of Hardware. IEEE
Computer, 36(4), 2003, 27-34.

[Vermeulen, 00] A. Vermeulen, F. Catthoor, D. Verkest,
H. De Man. Formalized Three-Layer System-Level
Reuse Model and Methodology for Embedded Data-
Dominated Applications. Proc. Design Automation
and Test in Europe DATE’2000, 92-98.

[Wallner, 01] D. Wallner. AX8 core, 2001,
http://hem.passagen.se/dwallner/vhdl.html.

[Weber, 03] W. Weber. Ambient intelligence: industrial
research on a visionary concept. Proc. of the 2003 Int.
Symposium on Low Power Electronics and Design,
Seoul, Korea, New York: ACM Press, 2003, 247-251.

[Weiss, 99] D.M. Weiss, C.T.R. Lai. Software Product-
Line Engineering: A Family-Based Software Develop-
ment Approach. Reading: Addison-Wesley, 1999.

[Yoshida, 01] N. Yoshida. Design Patterns Applied to
Object-Oriented SoC Design. In 10th Workshop on
Synthesis and System Integration of Mixed Techno-
logies (SASIMI 2001), October 18-19, 2001, Nara,
Japan.

[Zhu, 01] J. Zhu. MetaRTL: Raising the Abstraction Level
of RTL Design. Proc. Design Automation and Test in
Europe DATE 2001, Munich, Germany, March 13-16,
71-76.

Received December 2006.

