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Abstract. The purpose of this research in the queueing theory is the theorem about the law of the iterated logarithm in
multiphase queueing systems and its application to the mathematical model of the message switching system. First we proof
the law of the iterated logarithm for the cumulative idle time of a customer. Then we present an application of the proved
theorem for the model of the message switching system.

Key words: mathematical models of technical systems, performance evaluation, queueing theory, multiphase queueing
systems, a law of the iterated logarithm, cumulative idle time of a customer.

1. Introduction

At first, the law of the iterated logarithm is
considered by investigating the cumulative idle time
of a customer in multiphase queueing systems.

Interest in the field of multiphase queueing sys-
tems has been stimulated by the theoretical values
of the results as well as by their possible applica-
tions in information and computing systems, commu-
nication networks, and automated technological pro-
cesses (see, for example, [20]). The methods of in-
vestigation of single-phase queueing systems are con-
sidered in [2], [3], etc. The asymptotic analysis of
models of queueing systems in heavy traffic is of
special interest (see, for example, [9], [10], [4], [5],
etc.). The papers [11], [18] and others desribed the
beginning of the investigation of diffusion approx-
imation to queueing networks. Intermediate models
- multiphase queueing systems - are considered sel-
dom due to serious technical difficulties (see, for ex-
ample, the book [7]). The works on cumulative idle
time for the multiphase queueing systems and open
Jackson networks in heavy traffic are also scarce. In
one of the first papers of this kind [16], Pike used nu-
merical methods to study values of the mean of the
cumulative idle time in single-server queues. Takacs
[22] obtained limit theorems for the cumulative idle
time in the systems GI/G/1 andM/G/1. MIlch and
Waggoner [12] presented expressions for the cumu-
lative idle time of a server in the GI/G/1 system.
Ridel [19] found the Laplace transform of the distri-
bution of the cumulative idle time in a finite time in-
terval for the GI/G/1 system. Kella [8] conceived
the Laplace transform of the expected cumulative
idle time in an M/G/1 queue. Puhalskii [17] con-
sidered the moderate-deviation behaviour of the cu-

mulative idle time with single-server queues. These
results complement the existing results on the heavy
traffic behaviour of this process. Whitt [23] estab-
lished functional central limit theorems for a cumu-
lative idle time process in a fluid queue. These limit
processes have discontinuous sample paths (e.g., to
be a non-Brownian stable process, or a more general
Levy process).

Let the cumulative idle time of a customer in the
phases of a queueing system be unrestricted, the prin-
ciple of service being “ffirst come, first served". All
the random variables studied are defined on one basic
probability space (Ω,F , P).

We present some definitions in the theory of met-
ric spaces (see, for example, [1]).

Let C be a metric space consisting of real contin-
uous functions in [0, 1] with a uniform metric

ρ(x, y) = sup
0≤t≤1

|x(t)− y(t)|, x, y ∈ C .

Let D be a space of all real-valued right-continuous
functions in [0,1] having left limits and endowed with
the Skorokhod topology induced by the metric d (un-
der which D is complete and separable). Also, note
that d(x, y) <= ρ(x, y) for x, y ∈ D .

In this paper, we will constantly use an analog of
the theorem on converging together (see, for example,
[6]):

Theorem 1. Let ε > 0 and Xn, Yn, X ∈ D .

If P
(lim
n→∞

d(Xn, X) > ε
)

= 0

and P
(

lim
n→∞

d(Xn, Yn) > ε
)

= 0,

then P
(

lim
n→∞

d(Yn, X) > ε
)

= 0.

(1)
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2. Statement of the problem

We investigate here a k-phase queue (i.e., af-
ter a customer has been served in the j-th phase of the
queue, he is routed to the j +1-th phase of the queue,
and, after the service in the k-th phase of the queue, he
leaves the queue). Let us denote by tn the time of ar-
rival of the n-th customer; by S

(j)
n – the service time of

the n-th customer in the j-th phase; zn = tn+1 − tn;
and by τj,n+j - departure of the n-th customer from
the j-th phase of the queue, j = 1, 2, · · · , k.

Let interarrival times (zn) at the multiphase
queueing system and service times (S(j)

n ) in each
phase of the queue for j = 1, 2, · · · , k be mutually
independent identically distributed random variables.

Next, denote by BIj,n the idle time of the n-th
customer in the j-th phase of the multiphase queue;

F̂j,n =
n∑

l=1

BIj,l stands for a cummulative idle time

of the n-th customer in the j-th phase of the multi-
phase queue, j = 1, 2, . . . , k.

When j = 1, 2, . . . , k, let

δj,n =

{
S

(j)
n−(j−1) − zn, if n >= k

0, if n < k.

Let us denote Sj,n =
∑n−1

l=1 δj,l, S0,n ≡ 0,

Ŝj,n = Sj−1,n − Sj,n, xj,n = τj,n − tn, x0,n ≡ 0,
x̂j,n+1 = xj,n − δj,n+1, x̂0,n ≡ 0, zj,n = x̂j,n −
Sj,n, αj = Mδj,n, α0 ≡ 0, Dzn = σ2

0 , DS
(j)
n =

σ2
j , σ̃2

j = σ2
0 + σ2

j , S
(0)
n = zn, j = 1, 2, . . . , k,

[x] as the integer part of number x.
We assume that the following conditions are ful-

filled:
there exists a constant γ > 0 such that

sup
n>=1

M |S(j)
n |4+γ < ∞, (2)

j = 0, 1, 2, . . . , k and

αk < αk−1 < · · · < α1 < 0. (3)

In this paper, we mostly use the equations pre-
sented in [13]:

x̂j,n = max
0<=l<=n

(x̂j−1,l − Sj,l) + Sj,n,

x̂0,n ≡ 0, n >= k, j = 1, 2, . . . , k.
(4)

3. On the law of the iterated logarithm for the cu-
mulative idle time of a customer

First we investigate the law of the iterated log-
arithm for the cumulative idle time in multiphase
queues.

We prove the following result.

Theorem 2. If conditions (2) and (3) are fulfilled,
then

P

(
lim

n→∞
F̂j,n − (−αj) · n

σ̃j · a(n)
= 1

)
=

P

(
lim

n→∞
F̂j,n − (−αj) · n

σ̃j · a(n)
= −1

)
= 1,

j = 1, 2, . . . , k and a(n) =
√

2n ln ln n.

Proof. Consider the following functions from the
space D

F̂n
j (t) =

F̂j,[nt] − (−αj) · [nt]
a(n)

,

Ẑn
j (t) =

ẑj,[nt] − (−αj) · [nt]
a(n)

,

Ŝn
j (t) =

(−Sj,[nt])− (−αj) · [nt]√
n

,

j = 1, 2, . . . , k and 0 <= t <= 1.
Using a triangle inequality, we see that, for each

fixed ε > 0,

P
(

lim
n→∞

d(F̂n
j , Ŝn

j ) > ε
)

<= P
(

lim
n→∞

d(F̂n
j , Ẑn

j ) >
ε

2

)

+P
(

lim
n→∞

d(Ẑn
j , Ŝn

j ) >
ε

2

)
<=

P
(

lim
n→∞

ρ(F̂n
j , Ẑn

j ) >
ε

2

)

+P
(

lim
n→∞

ρ(Ẑn
j , Ŝn

j ) >
ε

2

)
=

P


 lim

n→∞

sup
0<=t<=1

|Fj,[nt] − ẑj,[nt]|
a(n)

>
ε

2


+

P


 lim

n→∞

sup
0<=t<=1

|ẑj,[nt] − (−Sj,[nt])|
a(n)

>
ε

2




= P


 lim

n→∞

max
0<=l<=n

|Fj,l − ẑj,l|
a(n)

>
ε

2



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+P


 lim

n→∞

max
0<=l<=n

|ẑj,l − (−Sj,l)|
a(n)

>
ε

2


 ,

j = 1, 2, . . . , k.
Thus, we have for each fixed ε > 0,

P
(

lim
n→∞

d(F̂n
j , Ŝn

j ) > ε
)

<=

P


 lim

n→∞

max
0<=l<=n

|F̂j,l − ẑj,l|
a(n)

>
ε

2


+

P


 lim

n→∞

max
0<=l<=n

|ẑj,l − (−Sj,l)|
a(n)

>
ε

2


 ,

(5)

j = 1, 2, . . . , k.
It is proved (see [14]) that, if conditions (3) are

fulfilled, then, for each fixed ε > 0,

P


 lim

n→∞

max
0<=l<=n

|F̂j,l − ẑj,l|
√

n
> ε


 = 0,

j = 1, 2, . . . , k.
Using similar method as in [14], it can be proved

that, for each fixed ε > 0,

P


 lim

n→∞

max
0<=l<=n

|F̂j,l − ẑj,l|
a(n)

> ε


 = 0, (6)

j = 1, 2, . . . , k.
So the first term in (5) converges to zero. We will

prove that the second term in (5) converges to zero,
too.

Using (4), we see that

ẑj,n = max
0<=l<=n

(x̂j−1,l − Sj−1,l + Sj−1,l − Sj,l)

= max
0<=l<=n

(ẑj−1,l + Sj,l), j = 1, 2, . . . , k.

Thus,

ẑj,n = max
0<=l<=n

(ẑj−1,l + Sj,l), (7)

j = 1, 2, . . . , k, z0,· ≡ 0.
Also, we see that

ẑj,n −
j∑

i=1

Ŝi,n >= ẑj−1,n + Ŝj,n −
j∑

i=1

Ŝi,n

= ẑj−1,n −
j−1∑

i=1

Ŝi,n >= · · · >=

ẑ1,n − Ŝ1,n = max
0<=l<=n

(Ŝ1,n)− Ŝ1,n >= 0.

So,

ẑj,n −
j∑

i=1

Ŝi,n >= 0, j = 1, 2, . . . , k. (8)

But

ẑj,n <= max
0<=l<=n

(ẑj−1,l) + max
0<=l<=n

Ŝj,l

= ẑj−1,n + max
0<=l<=n

Ŝj,l <= · · ·

<=
j∑

i=1

{ max
0<=l<=n

Ŝi,l}.

It follows that

ẑj,n <=
j∑

i=1

{ max
0<=l<=n

Ŝi,l}, j = 1, 2, . . . , k. (9)

Using (8) and (9) we get that

0 <= ẑj,n −
j∑

i=1

Ŝi,n

<=
j∑

i=1

{ max
0<=l<=n

Ŝi,l − Ŝi,n},
(10)

j = 1, 2, . . . , k.
Applying (9) we achieve for each fixed ε > 0,

P




max
0<=l<=n

|ẑj,l −
j∑

i=1

Ŝj,l|
a(n)

> ε




= P




max
0<=l<=n

(ẑj,l −
j∑

i=1

Ŝj,l)

a(n)
> ε


 <=

(11)

P




j∑
i=1

max
0<=l<=n

{ max
0<=m<=l

Ŝi,m − Ŝi,l}
a(n)

> ε




<= P




k∑
i=1

max
0<=l<=n

{ max
0<=m<=l

Ŝi,m − Ŝi,l}
a(n)

> ε



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<=
k∑

i=1

P




max
0<=l<=n

{ max
0<=m<=l

Ŝi,m − Ŝi,l}
a(n)

>
ε

k




<=
k∑

i=1

P




max
0<=l<=n

{ max
0<=m<=l

Ŝi,m − Ŝi,l}
a(n)

>
ε

k




=
k∑

i=1

P




max
0<=l<=n

{ max
0<=m<=l

(−Ŝi,l−m)}
a(n)

>
ε

k




=
k∑

i=1

P




max
0<=l<=n

{ max
0<=m<=l

(−Ŝi,m)}
a(n)

>
ε

k




<=
k∑

i=1

P




max
0<=l<=n

(−Ŝi,l)

a(n)
>

ε

k


 , j = 1, 2, . . . , k.

Thus, we have that for each fixed ε > 0,

P




max
0<=l<=n

|ẑj,l −
j∑

i=1

Ŝj,l|
a(n)

> ε




<=
k∑

i=1

P




max
0<=l<=n

(−Ŝi,l)

a(n)
>

ε

k


 ,

j = 1, 2, . . . , k.

(12)

Note (see, for example, [14]) that for each fixed
ε > 0,

P


 lim

n→∞

max
0<=l<=n

(−Ŝi,l)

a(n)
> ε


 = 0, (13)

j = 1, 2, . . . , k, if conditions (3) are fulfilled.
Using relation

k∑

i=1

Ŝi,n = −Sj,n, j = 1, 2, . . . , k

and (12) - (13) we obtain that for each fixed ε > 0,

P


 lim

n→∞

max
0<=l<=n

|ẑj,l − (−Sj,l)|
a(n)

> ε


 = 0,

(14)
j = 1, 2, . . . , k.

Using the theorem on the law of the iterated log-
arithm for random functions Ŝn

j (t), j = 1, 2, . . . , k

(see, for example, [21]) we achieve that

P
(

lim
n→∞

(−Sj,n)− (−αj) · n
σ̃j · a(n)

= 1
)

= 1

and

P
(

lim
n→∞

(−Sj,n)− (−αj) · n
σ̃j · a(n)

= −1
)

= 1,

j = 1, 2, . . . , k.

(15)

Thus, applying (1), (5), (6), (14) and (15) we ob-
tain that

P

(
lim

n→∞
F̂j,n − (−αj) · n

σ̃j · a(n)
= 1

)
= 1

and

P

(
lim

n→∞
F̂j,n − (−αj) · n

σ̃j · a(n)
= −1

)
= 1,

j = 1, 2, . . . , k.

(16)

The proof of Theorem 2 is complete.

4. On the model of switching facility

In this section, we will present an applica-
tion of the proved theorem - a mathematical model of
message switching system.

As noted in the introduction, multiphase queue-
ing systems are of special interest both in theory
and in practical applications. Such systems consist of
several service nodes, and each arriving customer is
served at each of the consecutively located node (fre-
quently called phases). A typical example is provided
by queueing systems with identical service. Such sys-
tems are very important in applications, especially to
message switching systems. In fact, in many comu-
nication systems the transmission times of the cus-
tomers do not vary in the delivery process.

So, we investigate a message switching system
which consists of k phases and in which Sj

n =
Sn, j = 1, 2, . . . , k (the service process is iden-
tical in phases of the system).

Let

δn =
{

Sn−k − zn, if n >= k
0, if n < k.

Also, let us denote α = Mδn, Dzn = σ2
0 , DSn =

σ2, σ̃2 = σ2
0 +σ2, F̂j,n =

n∑
l=1

BIj,l, j = 1, 2, . . . , k.

We assume that the following conditions are ful-
filled:
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there exists a constant γ > 0 such that

sup
n>=1

M |Sn|4+γ < ∞ (17)

and
α < 0. (18)

Similarly as in the proof of Theorem 3.1, we
present the following theorem on the law of the iter-
ated logarithm for the cumulative idle time of a data
packet in message switching systems.

Theorem 3. If conditions (17) and (18) are fulfilled,
then

P

(
lim

n→∞
F̂j,n − (−α) · n

σ̃ · a(n)
= 1

)

= P

(
lim

n→∞
F̂j,n − (−α) · n

σ̃ · a(n)
= −1

)
= 1,

j = 1, 2, . . . , k.

We see that the cumulative idle time of data
packet is the same in all the phases of system.

5. A numerical example

We see that Theorem 3 implies that for fixed
ε > 0 there exists n(ε) such that for every n >=
n(ε), with probability one

(1− ε) · σ̃ · a(n)− α · n <= F̂j,n

<= (1 + ε) · σ̃ · a(n)− α · n,
(19)

where a(n) =
√

2n ln ln n, α = M(Sn − zn) <
0, σ̃2 = Dzn + DSn, j = 1, 2, . . . , k.

From this we can obtain

(1− ε) · σ̃ · a(n)− α · n <= F̂j,n

<= (1 + ε) · σ̃ · a(n)− α · n,

|M(F̂j,n − (−α) · n)− {(1− ε) · σ̃ · a(n)}|
<= 2 · ε · σ̃ · a(n),

|M
(

F̂j,n − (−α) · n)
σ̃ · a(n)

)
− (1 + ε)|

<= 2 · ε, j = 1, 2, . . . , k.

(20)

So from (20) we can get

MF̂j,n ∼ (−α) · n + (1 + ε) · σ̃ · a(n), (21)

j = 1, 2, . . . , k. MF̂j,n is average cumulative idle
time of the n-th message (time, which system is wait-
ing for processing message until the n-th message ar-
rival to the system).

We see from (21) that MF̂j,n consists of lin-
ear function and nonlinear slowly increasing function
(1 + ε) · σ̃ · a(n), j = 1, 2, . . . , k.

Now we present a technical example from the
computer network practice. Assume that messages ar-
rive at the computer v1 at the rate λ of 20 per hour
during business hours. These messages are served at
a rate µ of 25 per hour in the computer v1. After ser-
vice in the computer v1 messages arrive at the second
computer v2. Also we note that messages are served
at a rate µ of 25 per hour in the computer v2. So, mes-
sages are served in computers v1, v2,. . . ,vk, and after
messages have been served in computer vk, they leave
computer network.

So, Mzn = 1/λ = 1/20 = 0.05, MSn =
1/µ = 1/25 = 0.04, α = 0.04 − 0.05 = −0.01 <
0, Dzn = 1/λ = 1/20 = 0.05, DSn = 1/µ =
1/25 = 0.04, σ̃2 = 41/104, σ̃ ∼ 0.064, ε =
0.001, n >= 100.

Thus,

MF̂j,n ∼ (−α) · n + (1 + ε) · σ̃ · a(n) =
(0.01) · n + (0.064) · a(n), j = 1, 2, . . . , k.

(22)

From (22) we get

MF̂j,n

n
= (0.01) + (0.064) ·

√
2 ln ln n

n
,

j = 1, 2, . . . , k.

(23)

Now we present figure the values of MF̂j,n

n , j =
1, 2, . . . , k, when 100 <= n <= 1000, ε = 0.001
(see (23) and Table 1).

Time n MF̂j,n

n , j = 1, 2, . . . , k

100 0.02118510415
200 0.01826415546
300 0.01689524794
400 0.01605525217
500 0.01547101209
600 0.01503369681
700 0.01469010032
800 0.01441067288
900 0.01417749453

1000 0.01397897294

Table 1 Summary of computing results.

We see that when α = −0.01 < 0, computer
network is busy 99 % of this time.

Corollary 5.1. The average idle time of message
system direcly depends on the traffic coefficient α and
time n and is the same in all phases of message sys-
tem.
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