
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2007, Vol.36, No.1

NATURAL LANGUAGE AS PROGRAMMING PARADIGM
IN DATA EXPLORATION DOMAIN

Algirdas Laukaitis, Olegas Vasilecas
Fundamental Sciences Faculty, Vilnius Gediminas Technical University

 Saulėtekio al. 11, LT-10223 Vilnius, Lithuania

Abstract. In this paper we present the progress of the natural language usage as the programming
paradigm for information extraction in distributed database environments. Personal assistants form an
environment where distributed knowledge is explored with the JMining interlingua language to support
communication between the mobile agents, natural language queries and the mobile agents working
environment servers. The Aglets framework is used to build mobile agents and test conceptual designs for
information gathering. The implementation of the prototypes using the aglet framework shows that even
with the state of the art natural language technologies the applications development is achievable only on
the narrow domain and with the small interlingua language design. Presented architecture can be integrated
as a part of a corporate information delivery Web portal to bring new modalities for user interfaces with the
possibility to share locally stored knowledge bases.

Keywords: Natural language as programming paradigm, personal assistants architecture, mobile agents, aglets,
information extraction in distributed database environments.

1. Introduction

Data environments are becoming more and more
complex as the amount of information a company
manages continues to grow. Information delivery web
portals have emerged as the preferred way to bring
together information resources. Using information
delivery web portal, your organization's employees,
customers, suppliers, business partners, and other inte-
rested parties can have a customized, integrated, per-
sonalized, and secure view of all information with
which they need to interact. But one big challenge re-
mains for organization: how to teach employees or
customers to use and understand complex database
environment without involving experts and IT
resources which are costly and time consuming. Natu-
ral language interfaces between human and program-
mable agent can be the answer.

From the early 80’s and 90’s there was many ef-
forts involved in the research of natural language use
for information extraction from data base management
systems (DBMS) [3], [8]. Natural language database
interfaces (NLDBIS) are systems that allow users to
access information stored in a database by formulating
requests in natural language. The system that supports
(NLDBIS) functionality automatically would translate
user sentences to adequate SQL script, query some
DBMS and return results to the user. NLDBIS have

received particular attention within the natural lan-
guage processing community (see [2] for reviews of
the field), and they constitute one of the first areas of
natural language technology that have given rise to
commercial applications. Some successes have been
achieved and some commercial applications emerged
but the NLP techniques have not become a popular
approach for DBMS interfaces. As was mentioned by
many researchers [7], [28], [33] this is due to:
 1. Graphical and menu driven interfaces achieved

the level of sophistication that many data analyst
can do analysis without deep knowledge of some
data queering language (e.g. SQL), on the other
side NLP techniques has not been able to deliver
interfaces of adequate sophistication.

 2. Most research and achieved results report on the
possibility to generate only one data queering
script (in most cases this was one SQL sentence)
generated from one natural language sentence.
They do not support complex dialog, which is the
most usual case in real life when we want
interactively to build adequate request.

 3. Most systems are commercial products [22]. They
are close systems and there are difficulties in
extending such systems.

 4. In most available systems only system administ-
rators are able to parameterise the system. There

30

Natural Language as Programming Paradigm in Data Exploration Domain

are no available systems in which learning
process is integrated in the user daily work. The
resent advances is building personal assistants for
such fields like an adaptive information gathering
from the internet [5] or personalized learning
knowledge maps [24] will renew interest in
(NLDBIS) field.

In this paper several paradigms are suggested for
solving problems mentioned above.
 1. The dialog management instead of one sentence

must be provided for the communication with the
information gathering agents. You can get really
frustrated with the answers from the system con-
stantly suggesting reformulate query statements.
Several studies show that software engineers
spend half of their time communicating in order
to get information. We can hardly expect the at
this stage of natural language technological deve-
lopment computers will be more intuitive than
software engineers in understanding requirements
presented by natural language.

 2. Some philosophical arguments in the field of the
information systems suggest that most informa-
tion systems are developed as “trivial machines”
to be predictable and controllable. Requirements
for more flexibility and adaptability from the
information systems can lead to the use of sys-
tems based on intelligent, autonomous and mobile
agents. Nevertheless, mobile agents paradigm is
struggling to find the way out of research area
into the sound industrial applications. In this re-
search we used mobile agents to gather distri-
buted metadata, query distributed databases and
interact with several humans to get more informa-
tion. Behavior unpredictability that emerged from
such architecture is one of the exciting challenges
we met in our experiments.

 3. An interlingua language employment demonstra-
ted promising results in many areas of language
processing and particular in the area of machine
translation. In this research we redesigned the
JMining language, which was primary, used by
non-programmers to build small, reliable web
based information extraction programs. The new
language was used by the agents to communicate
with the JMining servers, that they visited during
information gathering session. We assume that
each server visited by mobile agent has natural
language interface to communicate with humans.

The contribution of this paper is threefold: Firstly,
we introduce architecture of NL dialog for information
delivery web portals. Proposed architecture is charac-
terized by its flexibility to extend and a possibility to
build complex information delivery web portals. Se-
condly, we investigate distributed agents architecture
where each agent move their code and data to remote
hosts and locally solves adequate tasks and returns to
their mother host with the solutions. Thirdly, all

presented concepts are implemented as Java open
source project.

 The remaining sections of this paper are organized
as follows. Section 2 presents the JMining portal
architecture and JMining natural language support
infrastructure. In Section 3, we present information
delivery portal infrastructure. In Section 4 the dialog-
supporting agent is presented and dialog supporting
modules are presented in Section 5. Final section con-
cludes the paper.

2. General architecture

To tackle mentioned problems the distributed hea-
vy personal assistants (DHPA) architecture is sug-
gested and implemented. The word “heavy” is used in
the sense that each personal assistant (PA) has almost
all components of enterprise application. Figure 1
shows the main components of the JMining personal
assistant. On the left side of the figure is the general
view of the infrastructure. We assume that all concep-
tual modules are installed on each computer, which is
involved in the information extraction process. The
grey shaded blocks represent the modules that have
been originally built by the authors of the paper and
they are discussed in the following subsections.

The white blocks represent software modules that
are developed by other developers. All of them are
free of charge (an important issuer if we are planning
to install them on all working personal computers) and
the following example shows our configuration tested
in the experiments.
 1. Database management systems, like MySQL,

can be installed on all personal computers without
bearing any additional cost for the company.

 2. We used Tomcat servlets container as the Web
server. Again it is free of charge end it is used to
handle user interfaces.

 3. Desktop search module represents software like
Google desktop search. Its primary use in our
architecture is to faster documents search for the
stationary and mobile agents. Our mobile agents
by imitating Web browser used desktop search
engine to find relevant documents for handling
users queries.

 4. Knowledge management represents software like
Protégé and is used to manage local knowledge
files.

 5. Mobile agent server is used to coordinate the
mobile agents activities and communications.

In our experiments we used Aglets framework for
mobiles agents implementation and coordination.

All those modules are parts of personal assistant
and in the JMining architecture we separate two kinds
of personal assistants: 1) local personal assistant is
responsible for handling local knowledge base of one
particular employee 2) enterprise personal assistants
are responsible for handling centralized knowledge

31

A. Laukaitis, O. Vasilecas

bases and by general means they represent enterprise
applications. Both, local and enterprise personal
assistants have the same conceptual architecture, the
differences are in the hardware profiles: local personal

assistant is assumed to run on the single powerful PC
computer and the enterprise personal assistant uses
enterprise level hardware profile.

Figure 1. a) conceptual modules of the personal assistant, b) general communication processes between human,

JMining personal assistant and information gathering personal assistants

Next, we will discuss the four conceptual modules
we developed to support natural language interface for
developing applications that extract information from
databases and presents it to the user.

Dialog management – represents state space dia-
log management agent. The state space dialogue stra-
tegy is a mapping from a set of states (which summa-
rize the entire dialogue) to a set of actions (such as
identification of tables and database queries). The
state space is defined by the collection of all variables
that characterize the state of the dialogue system at a
certain point in time. To avoid combinatorial explo-
sion the designer of the system must consider how on
the one hand to limit number of variables and the
number of values assigned to variables and on the
other hand how to use enough variables so that to co-
ver particular domain with various dialog flow pos-
sible paths. The set of actions describes what the sys-
tem can do, i.e. the set of functions the system can
invoke at any time (e.g. play a certain prompt, query a
database, hang up, etc.). The strategy is a mapping
between the state space and the action set. For any
possible state the strategy prescribes what the next
action to perform is. As a result of the action and its
interaction with the external environment (e.g. user,
database, etc.) the system gets some new observations
(e.g. database entities, attributes, etc.) and they can
modify the state of the system. This process continues
until a final state is reached (e.g. the state with
legitimate SQL, XML script) [20].

Data exploration and presentation objects are the
domains of our investigations. It is a collection of
objects for queering corporate databases, analyzing

retrieved data and presenting results to the user in
graphical and textual templates.

Natural language processing is an implementa-
tion of morphology, syntax and lexical semantics ana-
lysis of user sentences presented to the system in the
form of natural language.

Agents management module is used to query
other personal computers preinstalled with the same
framework. The use of mobile agents in architecture is
reasoned by the approach, which argues that know-
ledge consists largely of a personal, stored locally data
files. Mobile agents can travel to various hosts where
local knowledge is stored and gather necessary infor-
mation that meets user request. The paradigm of
agents is a very promising approach to overcome
some of the problems connected with heterogeneity on
the side of the data sources as well as on the side of
the users. As agents should operate autonomously and
can be loosely coupled, they are well suited for the
integration of distributed heterogeneous data sources,
building unifying wrappers around them. This
becomes especially beneficial, if agents can learn to
extract information from an information source
automatically (see for example [10] and [25]). On the
side of the users, the paradigm of personal information
agents offers a way to encapsulate the interests, the
knowledge as well as the preferences of individual
users. Personal agents can take the role of mediators
between users and information sources, as well as
between users among each other (see also [10] and
[30]). Furthermore we present an agent architecture
consisting of a set of asynchronously operating agents.
This architecture enables us to perform sophisticated
data and interaction analysis, without loosing the

32

Natural Language as Programming Paradigm in Data Exploration Domain

property of short respond times essential for inter-
active work in real-time. Based on the paradigm of
mobile agents, we present a model for expressing
knowledge that has been acquired continuously by
individuals and groups of users and for using this as a
means for semantic identification of various elements
to build necessary web applications.

3. Natural language based information
delivery portal

There are many commercially successful informa-
tion delivery web portal products that are available in
the market and the open source community is catching
up. For example, the open source information delivery
portal JMining [15], [16] has all conceptual functiona-

lity that is provided by its commercial counterparties
like SAS [29], Oracle [26], Microsoft [23],
Information builders [13], etc. Indeed, proprietary
products are close systems without almost any possi-
bility to adapt them for the natural language interfaces.
Another important issue in the information systems
development is the scale of the complexity that faces
us when we are trying to use natural language. To be
able move from SQL paradigm to application are even
information system development paradigm by natural
language we need establish well structured architec-
ture where each element of the architecture can be
manipulated by the state-of-the-art natural language
technologies. Figure 2 shows the main components
that we integrated with the natural language interface.

Figure 2. Idea of the atomic application

As mentioned above, one of the biggest problems
with NL dialog systems is the number states. Reduc-
tion of this number is one of key problems in any
dialog-based system. It is why we used JMining IDP
because a fundamental idea behind this IDP is that its
architecture is based on atomic applications container.

IDP JMining is implemented as database and plat-
form independent. Data base system accessed by one
of the following protocols (ODBC, JDBC or XML).
The JMining is server-based application written comp-
letely in Sun’s Java programming language. Because
the Jmining modules are written in Java, they can run
on any server platform that supports a Java Virtual
Machine. Data used by the portal: account credentials,
access controls, demographics, personalization para-
meters, and configuration information can be stored
within an X500 directory services database accessible
through LDAP (Light-weight Directory Access Pro-
tocol). All those data set can be stored into metadata
storage of our dialog management system and then
accessed and manipulated by other system of the dia-

log management. By such approach we achieve that
such users as system administrators can manipulate
(retrieve, modify or create new) some objects stored
within LDAP server during NL conversation with the
system. Next we describe mentioned fundamental idea
of used IDP, which is call atomic applications con-
tainer.

By atomic application (Figure 2) we understand
the small web application, which contains the follo-
wing components: database script, user interface
HTML page, data representation script (XML, XSL,
etc.) and documentation page (additionally there is
connection to DBMS parameters, name of the applica-
tion, and parent name of the application to organise all
atomic applications in one single directory structure).
Atomic application structure in some way resemb-
lance to well knows web applications developing tech-
nologies like Servelets, JavaServer Pages (JSP) and
Active Server Pages (ASP). With such technologies
like JSP you can have the full power of general prog-
ramming language like Java. But on the other hand it

33

A. Laukaitis, O. Vasilecas

is unlikely that nonprogrammer or person without
Java knowledge can handle such technology. On the
other hand by putting more constraint on the web ap-
plications structure we achieved that nonprogrammer
can successfully develop web applications. Surely that
doesn’t mean that no IT skills required. The user of
this IDP software actually is the user who previously
used such products like Microsoft Access to develop
some local based database applications. Such user
mostly has a good understanding of a database model
as well as some basic SQL knowledge (sure most
often that is no need for the user to write SQL sen-
tences, instead it is done by interactive software
wizards).

Atomic application represents one of the basic
classes. Object derived form the class (like a brick in
the house) is used to build an enterprise information
delivery web solution. As mentioned above the set of
such atomic applications can bring full portal solution
to some business subject. We think that the small num-
ber of components that can be manipulated to build
reliable small web application is attractive feature for
the systems number of control variables is a big con-
strain. Below we describe in details these components
that can be manipulated by our dialog management
system.

 SQL – set of SQL statements that are send to
DBMS. There unlimited number of SQL statements
that can be send to SQL server within one request but
the last one must be SELECT type SQL statement.
These statements are then executed in the selected
database management system to retrieve information
and to display it to the user through selected reporting
template, which can have graphical or textual formats.
Also the users have the choice of modifying these
SQL statements as well as reporting templates to
create their own applications.

HTML page – HTML document used to set user
request parameters which can be used later to form
dynamic SQL statements. Even if the primary inten-
tion of this parameter was to support dynamic SQL
statements, it can be used as an independent HTML
page for other web portal need. User has choice to

keep parameter values permanently to the end of Inter-
net session or just to the end of request implementa-
tion by web server.

Type of visualization object – used to choose
selected data representation object from web server
(e.g., graphic, bar char, some form of text (XML,
HTML, TXT) layout, etc.).

XML (XSL) – Extensible Markup Language
(XML) [34], [35] offers its users many advantages,
including: simplicity, extensibility, and openness.
XML as the atomic application component is used as
some script for data visualisation (e.g., it can say
which column forms x or y axis in a graphic or which
field represents grouping, total variables and how they
must be presented in the HTML document, etc.). From
DBMS selected data are parsed with statements that
are extracted from XML document. If the data comes
from XML document (it is common situation in orga-
nizations that some data now can be received from
XML documents instead traditional of DBMS) docu-
ment can be used to transform data to HTML format.

The proposed structure of atomic application is
optimal in the following way: it contains the minimum
number of components that are required for building
complex web portal. This IDP architecture is robust to
some faults done by non-professional programmers
(bugs can effect only one atomic application but the
whole system is unaffected).

One exclusive property of proposed architecture is
that the whole development and deployment is done
only through web browser interface. Developers have
a huge feasibility and mobility by choice of the
platform. Security level is the same as in most web
based e-commerce applications.

4. Natural language processing for scripts
generation and agent’s coordination.

Figure 3 presents the basic steps we use in natural
language processing and understanding. The final re-
sult of those steps is identified triplet: Entities, Rela-
tionships and associated probabilities.

Figure 3. Basic steps in natural language understanding

34

Natural Language as Programming Paradigm in Data Exploration Domain

The keystone of the whole process is GATE – Na-
tural Language Processing Engine. GATE – General
Architecture for Text Engineering – is a well-estab-
lished infrastructure for customisation and develop-
ment of NLP components [4]. It is a robust and
scalable infrastructure for NLP and allows users to use
various modules of NLP as the plugging. We briefly
describe modules used in our research for building
concepts vector spaces. The Unicode tokeniser splits
the text into simple tokens and is used for the next
steps of the natural language processing. The tagger is
a modified version of the Brill tagger, which produces
a part-of-speech tag as an annotation on each word or
symbol. The list of tags can be found in [4]. We used it
to extract nouns and verbs and remove all other words
from the dictionary. The gazetteer further reduces di-
mensionality of the documents corpus prior to classifi-
cation. It uses the lists of named entities and annotates
text with class labels such as cities, organisations,
days of the week, etc. We replaced each named entity
with the label of the class. Semantic tagger – provides
finite state transduction over annotations based on re-
gular expressions. It produced additional set of named
entities and we replaced each named entity with the
class label. Orthographic Coreference – the module
adds identity relations between named entities found
by the semantic tagger. Reduction of the state space
dimensionality is achieved by replacing marked to-
kens with named entities class labels found by the
semantic tagger. SUPPLE is a bottom-up parser that
constructs syntax trees and logical forms for English
sentences. We used it only to remove tokens not anno-
tated by this module. All modules within the GATE
produced annotations – pairs of nodes pointing to
positions inside the document content, and a set of
attribute-values, encoding linguistic information.

We are finishing this section by presenting our
motivation of using mobile agents approach. Mobile
agents are computational software processes capable
of roaming wide area networks (WANs) such as the
WWW, interacting with foreign hosts, gathering
information on behalf of its owner and coming ‘back
home’ having performed the duties set by its user.
Mobile agents may cooperate or communicate by one
agent making the location of some of its internal
objects and methods known to other agents. By doing
this, an agent exchanges data or information with
other agents without necessarily giving all its infor-
mation away [1].

The mobile agents need not be stationary; indeed,
the idea is that there are significant benefits to be ac-
crued, in certain applications, by putting away static
agents in favour of their mobile counterparts. These
benefits are largely non-functional, i.e. we could do
without mobile agents, and only have static ones but
the costs of such a move are high. For example, in our
case consider the scenario when mobile agent is
requested to find some knowledge structures related to
the words arrangement and accounts from several
users computers.

A static single-agent program would need to re-
quest for all files residing on the remote knowledge
sharing host, which may total to several gigabytes.
Each of these actions involves sifting through plenty
of extraneous information which could/would clog up
the network.

And consider the alternative. JMiningDialog NLU
module encapsulates, user sentences to the entire
program within an agent which consumes may be only
several kilobytes which roams the other hosts included
in the knowledge sharing network, arrive safely and
queries these hosts locally, and returns ultimately to
the home computer. This alternative obviates the high
communications costs of shifting, possibly, gigabytes
of information to user local computer. Hence, mobile
agents provide a number of practical, though non-
functional, advantages, which escape their static coun-
terparts. So their motivation include the following an-
ticipated benefits [1].
 1. Reduced communication costs: there may be a lot

of raw information that need to be examined to
determine their relevance.

 2. Limited local resources: the processing power and
storage on the local machine may be very limited
(only perhaps for processing and storing the
results of a search), thereby necessitating the use
of mobile agents.

 3. Easier coordination: it may be simpler to coordi-
nate a number of remote and independent re-
quests and only collate all the results locally.

 4. Asynchronous computing: you can ‘set off’ your
mobile agents and do something else and the re-
sults will be back in your mailbox, say, at some
later time. They may operate when you are not
even connected.

 5. A flexible distributed computing architecture:
mobile agents provide a unique distributed com-
puting architecture which functions differently
from the static set-ups. It provides for an innova-
tive way of doing distributed computation.

We have used aglets mobile agents framework in
our implementation. Aglets are Java objects that can
move from one host on the network to another and
have all features mentioned above. More on this tech-
niques can be found in [18].

5. Conclusion

We presented agent based natural language dialog
and understanding architecture for data querying from
database management systems and presenting it to the
user. We presented reasons why it is important to have
in the future, solutions based on mobile agent ap-
proach even if now our data amount can be solved by
stationary agents approach. Our experience shows that
even if we have limited amount of data for teaching
process, the right strategies can be found. We believe
that integration between agents that extract informa-
tion from Internet and others unstructured information

35

A. Laukaitis, O. Vasilecas

36

sources and information delivery software brings opti-
mal solution for companies data analysts. Our research
shows that distributed knowledge architecture is more
flexible and adaptable for such tasks then centralized
solutions.

References
 [1] Aglets Specification. ttp://www.trl.ibm.com/aglets/.
 [2] I. Androutsopoulos, G.D. Ritchie, P. Thanisch. Na-

tural Language Interfaces to Databases – An Introduc-
tion. Natural Language Engineering, 1(1), 1995, 29-
81.

 [3] I. Androutsopoulos, G.D. Ritchie, P. Thanisch. Ex-
perience Using TSQL2 in a Natural Language Inter-
face. J. Clifford and A. Tuzhilin, editors, Recent
Advances in Temporal Databases – Proceedings of the
International Workshop on Temporal Databases,
Zurich, Switzerland, Workshops in Computing,
Springer-Verlag, Berlin, 1995, 113–132.

 [4] P. Atzeni, G. Mecca, P. Merialdo. Design and Main-
tenance of Data-Intensive Web Sites, Proc. EDBT'98,
1998.

 [5] J.C. Bottraud ,G. Bisson, M.F. Bruandet. An Adap-
tive Information Research Personal Assistant. White
paper. http://www.dimi.uniud.it/workshop/ai2ia/
cameraready/bottraud.pdf.

 [6] H. Cunningham, D. Maynard, K. Bontcheva, V.
Tablan, Y. Wilks. Experience of using GATE for
NLP R/D. Proceedings of the Workshop on Using
Toolsets References 200 and Architectures To Build
NLP Systems at COLING-2000, Luxembourg, 2000.
http://gate.ac.uk/.

 [7] ELF Software Co. http://www.elf-software.com.
 [8] D. Esposito. Talk to Your Data. White paper.

http://msdn.microsoft.com/library/default.asp?url=/lib
rary/en-us/dnenq/html/mseq75.asp. 1999.

 [9] A. Fuggetta. Open source software – an evaluation.
Journal of Systems and Software 66(1), 2003, 77-90.

[10] M.N. Huhns, M. Larry, M. Stephens. Intelligent
Agents, in Multiagent Systems: A Modern Approach
to Distributed Artificial Intelligence. G. Weiss (Ed.),
MIT Press, Cambridge, MA. 1999.

[11] IBM. An Introduction to IBM Natural Language
Understanding. An IBM White Paper, 2003.

[12] IBM Voice Toolkit V5.1 for WebSphere® Studio.
http://www-306.ibm.com/software/pervasive/voice_
toolkit/, 2004.

[13] Information Builders. Leveraging Your Data Architec-
ture for Enterprise Business Intelligence. White Paper.

 http://www.informationbuilders.com, 2004.
[14] Joone – Java Object Oriented Neural Engine.

http://www.jooneworld.com/.
[15] A. Laukaitis, O. Vasilecas, R. Berniunas. JMining –

information delivery web portal architecture and open
source implementation. O. Vasilecas at al (Eds). Infor-
mation Systems Development. Advances in Theory,
Practice and Education. Springer Science, 2005, 199-
206.

[16] A. Laukaitis, O. Vasilecas. Mobile agents architec-
ture in data presentation domain. Edited by A. G. Nils-
son et al. (Eds). Advances in information system deve-
lopment, Springer Science, 2006, 891-902.

[17] A. Laukaitis, O. Vasilecas, R. Berniunas, E. Augi-
lius. An architecture for natural language dialog appli-
cations in data exploration and presentation domain.
Communications of the Ninth East-European Confe-
rence on Advances in Databases and Information Sys-
tems ADBIS, 2005, 135-149.

[18] A. Laukaitis, O. Vasilecas. The use of the natural lan-
guage understanding agents with conceptual models.
Communications of the 8th International Conference
on Enterprise Information Systems, 2006, 308-311.

[19] E. Levin, R. Pieraccini, W. Eckert. Using Markov
Decision Process for Learning Dialogue Strategies.
Proc. ICASSP 98, Seattle, WA, May 1998.

[20] E. Levin, R. Pieraccini, W. Eckert, G. DiFabbrizio,
S. Narayanan. Spoken language dialogue: From
theory to practice. IEEE Automatic Speech Recogni-
tion and Understanding Workshop, Keystone, Colora-
do, 12-15 December 1999.

[21] D.J. Litman, M. S. Kearns, M. A. Walker. Auto-
matic Optimization of Dialogue Management. White
paper, 1998.

[22] Microsoft corporation. SQL Server and English Que-
ry. http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/architec/8_ar_ad_0hyx.asp, 2003.

[23] Microsoft corporation. Building a Corporate Portal
using Microsoft Office XP and Microsoft SharePoint
Portal Server. White Paper, 2001.

[24] J. Novak, M. Wurst, M. Fleischmann1, W. Strauss.
Discovering, Visualizing, and Sharing Knowledge
through Personalized Learning Knowledge Maps.
White paper. 2002.

[25] H. S. Nwana. The Potential Benefits of Software
Agent Technology to BT. Internal Technical Report,
Project NOMADS, Intelligent Systems Research,
AA&T, BT Labs, UK 1996.

[26] Oracle corporation. Oracle9iAS Portal 3.0.9.8.2 Archi-
tecture and Scalability. White Paper. 2002

[27] R. Pieraccini, E. Levin, W. Eckert. AMICA, the
AT&T Mixed Initiative Conversational Architecure.
Proc. of EUROSPEECH 97, Rhodes, Greece, Septem-
ber 1997.

[28] S. Ruwanpura. SQ-HAL: Natural Language to SQL
Translator. http://www.csse.monash.edu.au/hons/proje
cts/2000/Supun.Ruwanpura, Monash University, 2000.

[29] SAS corporation. SAS Information Delivery Portal.
White paper. 2000.

[30] N.I. Takeuchi. The Knowledge-Creating Company.
Oxford University Press, 1995.

[31] M. Turunen, J. Hakulinen. Jaspis – A Framework
for Multilingual Adaptive Speech Applications. Pro-
ceedings of 6th International Conference of Spoken
Language Processing (ICSLP 2000), 2000.

[32] VoiceXML Development Guide. http://www.vxml.org.
[33] M. Watson. Practical Artificial Intelligence Program-

ming in Java. http://www.markwatson.com, 2002.
[34] World Wide Web Consortium, Extensible Markup

Language. http://www.w3.org/XML.
[35] World Wide Web Consortium, Extensible Stylesheet

Language. http://www.w3.org/Style/XSL.

Received December 2006.

