
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2006, Vol.35, No.4

OPTIMIZATION OF RESOURCE CONSTRAINED PROJECT
SCHEDULES BY GENETIC ALGORITHM BASED

ON THE JOB PRIORITY LIST

Leonidas Sakalauskas

Vilnius Gediminas Technical University
Sauletekio Str. 11, Vilnius

Gražvydas Felinskas
Institute of Mathematics and Informatics, Faculty of Mathematics and Informatics

Siauliai university, P.Visinskio Str. 19, Siauliai

Abstract. Applications of information technologies are often related to making some schedules, timetables of tasks
or jobs with constrained resources. In this paper, we consider algorithms of job scheduling related to resources, time,
and other constraints. Schedule optimization procedures, based on schedule coding by the priority list of jobs, are
created and investigated. The optimal priority list of jobs is found by applying the algorithms of local and global
search, namely, Genetic Algorithm with constructed crossover, mutation, and selection operators, based on the job
priority list. Computational results with testing data from the project scheduling problem library are given.

Keywords: Resource constraint project, schedule optimization, Monte Carlo method, Genetic Algorithms, Vari-
able Neighborhood.

1. Introduction In this paper, we consider job scheduling and opti-
mization algorithms related to resources, time and
other constraints. In most cases, scheduling problems
belongs to complexity class NP [19]. Optimal solution
can be found using full binary recombination [9] or
using methods based on ideas of branch and bound
methods [2], etc. It is usually difficult or impossible to
perform a full binary recombination in acceptable
time, therefore, in order to schedule and optimize jobs,
we may apply heuristic methods, based on priority
rules [15], evolution process ideas [5,6], local search
[12,17,22], variable neighborhood search [10,14], etc.

Production scheduling is an important part of the
production planning of many manufacturing compa-
nies. By scheduling it is possible to find the proper
sequence to do the jobs and the proper schedule, when
each operation of the job should be processed at each
stage of the production process. A schedule is called
feasible, if the precedence relations of the operations
are maintained and the resource and other constraints
are satisfied.

Traditional scheduling methods, such as PERT
(The Program Evaluation and Review Technique) and
CPM (Critical Path Method), are not enough for pro-
duction scheduling, because they consider infinite re-
sources, i.e., they cannot take resource constraints into
account [3]. Scheduling with infinite resources may
give results, which are not feasible.

We explore application of Genetic Algorithms
[1,5,6,8,20] to schedule optimization because some
investigations show that development of GA is a pers-
pective trend to create efficient scheduling methods
[6,12,14,17]. However, in the application of genetic
algorithms important issues are to explore their effi-
ciency depending on schedule coding and decoding,
selection of parameter sets for a genetic algorithm. In
this paper, we analyze the genetic algorithm based on
the job priority list. Population forming, construction
of operators for crossover, mutation and selection
using the job priority list will be introduced and inves-
tigated. A more detailed discussion on the application
of GA method to schedule optimization is presented in
Sections 5.1 and 5.2.

 In manufacturing industry, efficient methods to
solve resource constrained scheduling problems are
needed. Input data for such problems are a set of jobs,
their durations, priority rules (successors, predeces-
sors) and necessary resources. The aim is to find such
schedule, which would meet the requirements of job
priority relations, resource constraints, minimizing it
by some criteria. In many cases this criterion is pro-
ject’s finishing time.

412

Optimization of Resource Constrained Project Schedules by Genetic Algorithm Based on the Job Priority List

The objective function defines the finishing time
of the whole job project, inequality (1) describes
priority relations, and the inequality (2) requires to
pay heed to resource constraints.

Computational results are given using data sets
from the project scheduling problems library (PSPLib)
[18,21]. A more detailed discussion about PSPLib,
testing data sets and solutions is given in Section 4.

2. Schedule optimization problem 3. Schedule coding and decoding
Resource constrained project scheduling problems

(RCPSPs) [13] involve assigning jobs or tasks to a
resource or a set of resources with limited capacity in
order to meet some predefined objective.

Efficiency of schedule optimization algorithm
depends on solution coding [4,10,14]. In this paper,
we analyze job scheduling problems under resource
constraints with solution coding in a shape of a
priority list [15,16]. The job priority list

()1210 += nn b,b,...,b,b,b can be determined by jobs’

starting times vector s, where if iji bb ss ≤ j< . It is

very important that this vector of starting moments
must meet priority relations and resource constraints.
On the other hand, for a given priority list, we can find
the vector of job starting times concerted with the
priority list and initial priority constraints. For this we
use serial decoder described in Section 3.2.

Input data for schedule planning and optimization
are set of jobs and their durations, description of
resource constraints and a set of priority relations.

Let‘s denote by a set of jobs,
where jobs and are dummy and
mean the beginning and the end of the whole project,

– duration of the job,

1} ,n{0,1,...,nJ +=
)1.(+nNo

thj d j

0.No

Jj ,d j ∈ Jj , ∈≥ 0 –

non-negative numbers and . 0dd 1n0 == +

We can define priority relations in a set as a set
of pairs C .
Let‘s denote a set of resources by . All
resources are renewable and non-additive – at every
moment we can use fixed amount of each type of
resources, remains are gone. Let’s assume amounts of
resources , be constant. Let‘s denote the

starting moment of the job by , and cor-

respondingly - amount of the resource,
needed for performing this job. Let’s assume that the
started jobs must be performed without breaks. Then
the finishing time of the job can be defined as

. The problem of schedule making may
be reduced to the problem of finding a vector

 of jobs’ starting time which would
meet priority and resource requirements and would
minimize a certain objective function. An objective
function may reflect the economical outlay (outgoing),
yield (incoming), finishing time, and etc. Project
finishing time is one of the most analyzed schedule
optimality criteria which will be applied in this paper.

J
before }j executedbemust i | j) (i, {=

}m{1,...,K =

Kk 0,Rk ∈>
thj 0s j ≥

0r jk ≥ thk

thj

jd

()1+ns,...

jj s c +=

0= ,ss

At first, we must be sure that the priority list is
concerted with priority constraints. Let’s call the
priority list from which we can find a vector of jobs’
starting times concerted with priority relations as a
permissible priority list. Using a set of priority
relations, we can check whether the solution is per-
missible or not. For any permissible job priority list,
by applying the serial decoding procedure, we can
determine jobs’ starting times vector which may
minimize a project finishing time, according to
priority relations, resource constraints, and a given job
priority list.

The constructed algorithm should enable us ope-
rating with job priority lists to search such job priority
list which would correspond to solution (maybe
optimal) of the problem (1),(2).

3.1. Determination of admissibility of the job
priority list

Let‘s denote by }ct s|Jj {A(t) jj <≤∈= a set
of jobs which were started but not yet completed at the
time moment t. Let T stand for the project
finishing time, .

)s(

1nc +=)sT(
After these definitions we can formulate the prob-

lem of minimization of the objective function .)s(T
Find , subject to:)sT(min

s

C)j,i(,sc ji ∈≤ , (1) j,b

0≥js , c , , jjj d s += Jj ∈ =⇒<
j ,gji

Let‘s analyze admissibility determination of the
job priority list. Let’s introduce the binary relation
matrix ()nj,i,vij ≤≤= 1

Cj
V , , 0,),(,1 =∈= ijij vCjiifv

iif ∉),(, related with a set of priority constraints
and define a full priority relations’ matrix

()nj,i,gijG ≤≤= 1 . This matrix describes all chains

of priority relations. So, if it is possible to find

such a sequence of index pairs that (

1=

C)k,k
kjg

∈1 ,
C)k,k(∈2)j,kl1 , ..., (C∈ . The matrix V has the

following property: 0=⇒1= jiv Gij

i b
0

v . The matrix
has this feature as well. The priority list is permissible
if are the components of b, and

ibb applies for any pair (. For

determination of full priority relations’ matrix,

)b,b ji

1
)(

0,, +
∈

≤≤∈≤∑ n
tAj

kkj ctKkRr (2)

413

L. Sakalauskas, G. Felinskas

4. Project scheduling problem library PSPLib according to the given set of priorities C , we can use
the following algorithm:

=

≤ ij

K≤

+

4.1. Description of the PSPLIB library FOR i=1 TO n DO
 FOR j=1 TO n DO g(i,j)=v(i,j);
FOR i=1 TO n DO
 FOR j=1 TO n DO
 IF v(i,j)=1 THEN
 FOR k=1 TO n DO
 IF g(j,k)=1 THEN g(i,k)=1;

This library [18,21] contains different problem sets
for various types of resource constrained project sche-
duling problems as well as optimal and heuristic
solutions. The data sets may be used for the evaluation
of solution procedures for single- and multi-mode
resource-constrained project scheduling problems. The
instances have been generated by the standard project
generator ProGen. Researchers may download the
benchmark sets to evaluate their algorithms, and they
may send their results to be added to the library. The
main parameters are given in the following sections.

3.2. The serial priority list decoder

Let‘s analyze the serial decoding procedure
constructed for the priority list decoding. This
procedure computes the early starting moments of
jobs, according to jobs’ priority list concerted with
priority relations, and resource constraints. In sche-
dules obtained in such way, none of jobs can be started
earlier than calculated time, without violation of
priority relations or resource constraints. We can call
such schedules active ones [14]. The optimal schedule
is considered to be active as well. Let‘s describe the
algorithm for determination of the active schedule.

4.2. Kinds of solutions and instance sets

For each instance set xyz of the mode mm, one can
find an archive file called xyz.mm.tgz that includes the
complete set of instances. E.g., the 480 single mode
problems with 30 jobs are in the file j30.sm.tgz.

Files containing heuristic solutions, optimal solu-
tions and lower bounds can be found in the archive.
They are grouped like the benchmark instances by
their mode (single, multi or other) and by the number
of jobs (30, 60 etc.). Detailed description of solutions
format can be found in [21].

Step 1. Set initial 000 == cs . Let i . 1
Step 2. Assume that starting times of the first

 jobs from the priority list have already been
determined. So, we know all .

)i(1−

1−,c,s
jj bb

4.3. Parameter Settings Let’s denote the moment
)smax,cmaxmax(T

ll
ib,lb

b
il

b

il
g

i
10

10
1 −≤≤

−≤≤
=

= There are a lot of RCPSP instances (input data
sets, best known solutions) in the PSPLIB. More
precisely, 480 samples for every problem with n=30,
60 and 90 jobs, and 600 samples for n=120. The
number of resource types is 4. All samples are divided
into classes. There are 10 samples in every class,
generated using random numbers generator with fixed
values of three parameters:

The starting time of the next job is equal to latter
moment, provided the resource constraints are met:

ib Ts
i

= if . k,Rr k
)iT(Aj

jk ≤≤∑
∈

1

If resource constraints are not met, then the
starting time of this job is equal to finishing time of
the first completed job, when resource constraints are
met:

• }.;.;.{ 128151NC ∈ – averaged number of jobs-
predecessors for every job.

• };;;{ 4321RF ∈ – number of resource types, nee-
ded for every job. 111 −≤≤>≤≤≤∑

∈

=
ij,Tc,Kk,Rr

bb

ijbk
)jbc(Al lk

ji
cmins

• }.;.;.;.{ 01705020RS ∈ – amount of given re-
source at every moment; Value matches
examples with minimum amount of given re-
sources, enough for solving problem; Value

20RS .=

1RS = matches the case without resource
constraints.

The finishing time of b -th job can be calculated
simply:

i

iii bbb dsc +=

Step 3. If i , then { T , end of
the algorithm}, else { , go to step 2}.

n= 1+= nb dc)S(
n

1+= jj It is known that values of parameters 4RF = ,
20RS .= match hard enough classes. Their

identifications are j3013, j3029, j3045 with value
30=n ; j6013, j6029, j6045 with value 60=n ;

j12016, j12036, j12056 with value . Each
triplet of these identifications matches values

120=n

1281 .;.51NC ;.= accordingly.

It is easy to notice that it is necessary to make
 elementary operations for performing step 2

of the algorithm [14]. Therefore, the computational
complexity of the decoding procedure is O .

)mn(O ⋅

)mn(⋅2

414

Optimization of Resource Constrained Project Schedules by Genetic Algorithm Based on the Job Priority List

4.4. Characterization of the Benchmark Instances

Currently, two benchmark sets are available for the
SMRCPSP and 25 benchmark sets for the MMRCPSP.
Input parameters are grouped into three classes: first,
fixed parameters which are constant for all benchmark
sets, second, base parameters mainly one of which is
adjusted individually for each benchmark set, and
third, variable parameters which are systematically
varied within each benchmark set.

Here we give a description of parameters settings
for mostly used single-mode RCPSP. (Detailed des-
cription of all parameters is given in [18]).

Table 1. Fixed Parameter Setting - SMRCPSP and
MMRCPSP

RP1 RP2 NP1 NP2 NETε RFε

0.00 1.00 0.00 1.00 0.05 0.05

Table 2. Base Parameter Setting (SMRCPSP)

 J jM jd R RU RQ N NU NQ 1S jS JP jP

min 30 1 1 4 1 1 0 0 0 3 1 3 1
max 30 1 10 4 10 2 0 0 0 3 3 3 3

Table 3. Variable Parameter Settings (SMRCPSP)

Parameter Levels
NC 1.50 1.80 2.10

RRF 0.25 0.50 0.75 1.00

RRS 0.20 0.50 0.70 1.00

The instances for the SMRCPSP have been
generated with the fixed, base, and variable
parameter settings given in Tables 1 to 3. Utilizing a
full factorial design of the variable parameters ,

 and with 10 replications per triplet
< , , > we can generate a total of

NC
RRF

NC
43

RRS

RRS
480

RRF
104 =××× benchmark problems for each set.

Table 4. Instance Sets - SMRCPSP

Instance set
P

E

Type

Varied base parameter
table 2.

Variable
setting

Number of
instances

Solution
obtained by

J30 []481.. [] 101.. SM 30== maxmin JJ Table 3 480 opt.

J60 []481.. [] 101.. SM 60== maxmin JJ Table 3 480 hrs.

Table 4 provides a summary of the instances

produced.
The first column (instance set) gives the prefix of

the file names the instances are stored under; the se-
cond column (P) displays the range of the cell index,
reflecting the combination of the variable parameters.
The third column (E) specifies the range of the ins-
tance index within a cell. The 4th column abbreviates
the acronym SMRCPSP to SM and serves as the suffix
of the filenames. The 5th column shows the varied
base parameters, here the number of activities which
has been set to 30 and 60, respectively. The 6th co-
lumn references to the table with the variable para-
meter levels employed. The 7th column displays the
number of instances within the benchmark set. Finally,
the 8th column shows how solutions of the benchmark
sets have been obtained. A complete file name, e.g.,
J301210.SM, corresponds to instance set J30, variable
parameter combination 12, and problem number 10 of
the SMRCPSP. The level of the variable parameter
settings for each parameter cell index can be found in
the files J30PAR.SM and J60PAR.SM, respectively.
Optimal objective function values for the instances of
the J30 benchmark set have been obtained by and are
documented in the file J30OPT.SM. Currently, the
instance set J60 cannot be solved by exact solution
procedures. For this, heuristic methods must be used.

5. Schedule optimization algorithms

5.1. Description of the Genetic Algorithms

For schedule optimization, we can apply evolutio-
nary algorithms such as Genetic Algorithm [5,6].

GAs owe their name to an early emphasis on
representing and manipulating individuals at the level
of genotype. In Holland’s original work [11], GAs
were proposed to understand adaptation phenomena in
both natural and artificial systems and they have three
key features that distinguish themselves from other
computational methods modeled on natural evolution:
1. The use of bit string for representation;
2. The use of crossover as the primary method for

producing variants;
3. The use of proportional selection.

Genetic Algorithms are the most popular technique
in evolutionary computation research. In the traditio-
nal genetic algorithm, the representation used is a
fixed-length bit string. Each position in the string is
assumed to represent a particular feature of an indi-
vidual, and the value stored in that position represents
how that feature is expressed in the solution. Usually,
the string is “evaluated as a collection of structural
features of a solution that have little or no inter-
actions” [1]. The analogy may be drawn directly to

415

L. Sakalauskas, G. Felinskas

genes in biological organisms. Each gene represents
an entity that is structurally independent of other
genes.

The more classical reproduction operator used is
one point crossover, in which two strings are used as
parents and new individuals are formed by swapping a
sub-sequence between the two strings (see Figure 1).

Crossover point

Figure 1. Bit-String Crossover of Parents
a) and b) to form Offspring c) and d)

Another popular operator is bit-flipping mutation, in
which a single bit in the string is flipped to form a new
offspring string (see Figure 2).

Figure 2. Bit-Flipping Mutation of Parent

a) to form Offspring b)

A great variety of other crossover and mutation
operators have also been developed. A primary dis-
tinction that may be made between the various opera-
tors is whether or not they introduce any new informa-
tion into the population. Crossover, for example, does
not while mutation does. All operators are also
constrained to manipulate the string in a manner
consistent with the structural interpretation of genes.
For example, two genes at the same location on two
strings may be swapped between parents, but not com-
bined based on their values.

Traditionally, individuals are selected to be parents
probabilistically based upon their fitness values, and
the offspring that are created replace the parents. For
example, if N parents are selected, then N offspring
are generated which replace the parents in the next
generation.

These methods are used to solve various design
optimization problems (including discrete design para-
meters, real parameters). Early applications of GAs
are optimization of gas pipeline control, structural
design optimization [8], aircraft landing strut weight
optimization [20], keyboard configuration design [7],
etc.

5.2. Schedule optimization using the Genetic
Algorithm

We applied the genetic algorithm with the const-
ructed crossover, mutation, and selection operators,
based on permissible job priority lists. In such a way
we bypassed the procedures of coding and decoding
from the binary code, which can generate impermis-
sible priority lists. [1,6,8]

Let us write such GA algorithm:

Step 1. Generate M permissible priority lists
(...,,M 2040=). Construct the matrix ()ijbBP = ,

Mi ≤≤1 j, N≤≤1 , – number of jobs, N M – num-
ber of lists in the population.

1=IT . .)listpriorityany(TT best =

(bestT best achieved value of the objective function
through evolution).

Step 2. (Crossover) In each thIT iteration per-
form the crossover procedure with every pair of
priority lists.

Let and b be priority lists (“parents“). Select
position randomly.

'b
w

*

From two permissible priority lists b' =
 and

we get two new priority lists b and

)...,,,...,,(''
1

''
1 Nww bbbb +

b''

*
wN,k

*
k b...,,b −1

b...,,b(b '
w

''
1

)'
, wNkb −

)b...,,b,b...,,b(b *
N

*
w

*
w

**
11 +=

'' **b
)b...,,b,b..., *

wN,k
*
k

'
w −1

*b
w
*b

...,,,...,,('
1

**
1

**
kw bbbb =

 (“children”).
Let’s construct , here

 – the components of vector that
were left after elimination of the first components
of vector from vector . Preserve the
order of the components in the resulting sequence.
Analogously construct

.

,b('= 1

)

Note that new priority lists and are permis-
sible too, because all precedence relations are kept.
Perform this crossover procedure with all pairs of
rows of matrix

'b *b

BP (M/2 pairs). . BC →BP crossover

Step 3. (Mutation) In each thIT iteration perform
the mutation procedure (theoretically, we give a
chance to construct any priority list from all solution
space). With the given probability pp, select chromo-
somes (priority lists) for mutation procedure. After
this selection, perform mutation procedure with these
priority lists (rows of matrix) in the following
way:

BC

Generate random numbers and , , l q ql ≠ ,1 l≤
Nq ≤ . With the probability perform one of

the following operations: move the job before the

 job (shift) or swap the and l jobs. If new
priority list after these operations is not permissible,
cancel the operation. .

50,

q

 →

p =

th

mutation

th

th

BC

thl q

MUTBC 
Step 4. (Selection) From MM + priority lists

(“parents“ and “children“) we must select only M
priority lists. (We can select and leave only priority
lists with smallest values of the objective function

)b(TZ = . Different methods of selection are de-
scribed in [6])

After merging matrices BP and , we get new
a matrix , with dimensions .

BC
N×BPC M2

416

Optimization of Resource Constrained Project Schedules by Genetic Algorithm Based on the Job Priority List

Select lists and b at random from the matrix
. Calculate and . If

'b *

(T=BPC

1

)1 'bZ)b(TZ *=2

2ZZ < , then leave priority list b and remove b .
Otherwise, leave and remove b . After

'

'

*

*b M such
“duels” we again get a matrix with dimensions

. NM ×

Step 5. Find the best solution in

the chromosomes population.
Mi≤≤

=
1

i)T(bmin T*

If best* TT < , then update not only value, but the
best solution as well *best TT = .

Step 6. If , then stop, otherwise set maxITIT =
1+= ITIT and go to Step 2.

6. Modeling results

We investigate the efficiency and convergence rate
of constructed genetic algorithm by statistical

simulation. The constructed algorithm was tested on
data sets from the project scheduling problems library
PSPLib.

6.1. Optimization by Genetic Algorithm and
efficiency dependence on parameter settings

To investigate the convergence rate of the objec-
tive function value to global minimum or to the best
known value, using the Genetic Algorithm, we took
several data sets of different dimension (the number of
jobs) and complexity (different amount of necessary
resources and different number of precedence rela-
tions).

Averages of the convergence rate were calculated
from 100 modeling experiments for data sets with 30
and 60 jobs and from 10 modeling experiments for
data sets with 90 and 120 jobs. In Tables 5, 6, 7, Avg.
denotes Average, it. – iterations.

Table 5. Convergence rate of the objective function value to global minimum using Genetic Algorithm (3 different instances of
input data sets from PSPLib, 4 different parameter settings for GA, number of jobs j=30)

 data set #1 data set #2 data set #3
Number of jobs 30 30 30

Known optimum of Objective Function 41 38 63
Avg. number of it. for optimal solution 83 15 21 18 162 42 35 18 24 6 8 5

Mutation probability mutP 0.1 0.1 0.3 0.3 0.1 0.1 0.3 0.3 0.1 0.1 0.3 0.3
Number of individuals in population 20 40 20 40 20 40 20 40 20 40 20 40

Avg. time for finding optimum, s. 3.17 1.38 0.99 1.33 6.04 3.28 1.48 1.58 1.51 0.65 0.48 0.61

Table 6. Convergence rate of the objective function value to the best known value using Genetic Algorithm (3 different instances
of input data sets from PSPLib, 4 different parameter settings for GA, number of jobs j=60)

 data set #1 data set #2 data set #3
Number of jobs 60 60 60

Best known value of Objective Function 77 59 76
Avg. number of it. for solution 110 92 45 32 358 188 345 175 892 141 38 57

Mutation probability mutP 0.1 0.1 0.3 0.3 0.1 0.1 0.3 0.3 0.1 0.1 0.3 0.3
Number of individuals in population 20 40 20 40 20 40 20 40 20 40 20 40

Avg. time for finding best known value, s. 23.8 39.9 10.7 14.4 77.8 80.7 75.3 76.1 193.4 60.6 8.3 24.8

Table 7. Convergence rate of the objective function value to the best known value using Genetic Algorithm (1 instance of input
data for j=90, 2 instances for j=120, 4 different parameter settings for GA)

 data set #1 data set #1 data set #2
Number of jobs 90 120 120

Best known value of Objective Function 67 99 111
Avg. number of it. for solution * * 944 452 * * 894 442 * * * 436

Mutation probability Pmut 0.1 0.1 0.3 0.3 0.1 0.1 0.3 0.3 0.1 0.1 0.3 0.3
Number of individuals in population 20 40 20 40 20 40 20 40 20 40 20 40

Avg. time for finding best known value, s. * * 636 623 * * 1388 1368 * * * 1350

* - best known value of the objective function not reached (during modeling, max 1000 iterations were done).

Computational results show us that in cases with
lower problem dimension (number of jobs 30 or 60)

better results we can reach using =0.3 and the
smaller number of chromosomes in population (20).

mutP

417

L. Sakalauskas, G. Felinskas

Too low mutation probability does not guarantee
enough recombination of priority lists and the big
number of chromosomes in the population can take
more computational time (Table 5 and Table 6). In
cases with higher problem dimension (number of jobs
90 or 120) with too low mutation probability and
number of chromosomes in population, finding the
optimum can take too much computational time (Table
7). Although with the higher number of chromosomes
(40) it takes more computational time for each itera-
tion, better recombination of solutions finally gives us
better results of overall computational time, needed
for finding best known objective function values.

7. Conclusions and further research

1. Algorithms for planning and optimizing schedules
of jobs with resource constraints, based on sche-
dule coding by the job priority list and the serial
priority list decoding procedure, were discussed in
this paper. This kind of schedule coding generally
allows us to apply several heuristic optimization
methods.

2. Genetic algorithm based on the priority list for
RCPSP optimization has been created. This algo-
rithm has been investigated and compared by sta-
tistical modeling, while using data sets and known
solutions from the PSP Library.

3. The testing results show that the created algorithm
is able to find the best known solutions of problem
instances from the PSP Library while using com-
putational time acceptable in practice.

4. The computational results with the examples from
the PSP Library have shown that GA performs
better with certain mutation probability (Pmut =
0.3). With an increase in the number of jobs in the
schedule, population of chromosomes must be in-
creased as well.

5. Future research plans include comparison of gene-
tic algorithms for RCPSP, based on the priority list
with other heuristic approaches, namely, Simulated
Annealing, Tabu Search, Scatter Search, etc.

References
 [1] P.J. Angeline. Genetic programming’s continued evo-

lution. Chapter 1 in K.E. Kinnear, Jr. and P.J. Ange-
line (Eds.), Advances in Genetic Programming 2.
Cambridge, MA: MIT Press, 1996, 1 -20.

 [2] P. Brucker, S. Knust, A. Schoo, O. Thiele. A branch
and bound algorithm for the resource-constrained pro-
ject scheduling problem. European Journal of Opera-
tional Research, 1998, Vol.107, No.2, 272-288.

 [3] B.P. Douglass. Software Estimation and Scheduling.
http://www.techonline.com/community/ed_resource/te
ch_paper/5947.

 [4] G. Felinskas, L. Sakalauskas. Pareto type models in
simulated annealing algorithms. Lithuanian Mathema-
tical Journal, ISSN 0132-2818, 2003, T.43, special
volume, 573-578 (in Lithuanian).

 [5] Genetic algorithms.
http://www.pcai.com/web/ai_info/genetic_algorithms.
html, 2000.

 [6] N.N. Glibovec, S.A. Medvidj. Genetic algorithms and
their application to project scheduling problem sol-
ving. Cybernetics and system analysis, 2003, No.1,
95-108 (in Russian).

 [7] D.E. Glover. Experimentation with an adaptive search
strategy for solving a key-board design/configuration
problem. Doctoral Dissertation, University of Iowa,
1986.

 [8] D.E. Goldberg. Genetic Algorithm in Search, Optimi-
zation and Machine Learning. Addison-Wesley Publi-
shing Company, Inc., Reading, Massachusetts, 1989.

 [9] Gray code from Wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Gray_code.

[10] P. Hansen, N. Mladenovic. An introduction to vari-
able neighborhood search. Metaheuristics: Advances
and Trends in Local Search Paradigms for Optimiza-
tion, Kluwer, 1999, 433-458.

[11] J.H. Holland. Adaptation in Natural and Artificial
Systems. University of Michigan Press, Ann Arbor,
1975.

[12] H.H. Hoos, Th. Stutzle. Stochastic Local Search.
Foundations and Applications, Morgan Kaufmann, El-
sevier, 2004.

[13] R. Klein. Scheduling of Resource-Constrained Pro-
jects. Kluwer Academic Publishers, 2000, 369.

[14] J.A. Kocetov, A.A. Stoliar. Application of alternating
environments to approximate solving of RCPSP.
Discrete analysis and operation research 2003, Ser.2,
Vol.10, No.2, 29-55 (in Russian).

[15] R. Kolisch. Efficient priority rules for the resource-
constrained project scheduling problem. Journal of
Operations Management, 1996, No.14, 179-192.

[16] R. Kolisch. Serial and parallel resource-constrained
project scheduling methods revisited: Theory and
computation. European Journal of Operational Re-
search, 1996, Vol.90, No.2, 320-333.

[17] R. Kolisch, S. Hartmann. Project scheduling: Recent
models, algorithms and applications. Kluwer, Amster-
dam, 1999, 147-178.

[18] R. Kolisch, A. Sprecher. PSPLIB – A project sche-
duling library. European Journal of Operational Re-
search, 1996, Vol.96, 205-216.

[19] R. Lassaigne, M. de Rougemont. Logic and Comp-
lexity. Zara, Vilnius, 1999, (in Lithuanian).

[20] A.K. Minga. Genetic algorithms in aerospace design.
The AIAA Southeastern Regional Student Conference,
Huntsville, AL, 1986.

[21] PSPLIB - A project scheduling library.
http://www.bwl.uni-kiel.de/Prod/psplib/, 1996.

[22] S. Voss. Meta-heuristics: The State of the Art. Local
Search for Planning and Scheduling, LNAI 2148,
2001, 1-23.

Received August 2006.

418

