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Abstract. Applications of information technologies are often related to making some schedules, timetables of tasks 
or jobs with constrained resources. In this paper, we consider algorithms of job scheduling related to resources, time, 
and other constraints. Schedule optimization procedures, based on schedule coding by the priority list of jobs, are 
created and investigated. The optimal priority list of jobs is found by applying the algorithms of local and global 
search, namely, Genetic Algorithm with constructed crossover, mutation, and selection operators, based on the job 
priority list. Computational results with testing data from the project scheduling problem library are given. 
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1. Introduction In this paper, we consider job scheduling and opti-
mization algorithms related to resources, time and 
other constraints. In most cases, scheduling problems 
belongs to complexity class NP [19]. Optimal solution 
can be found using full binary recombination [9] or 
using methods based on ideas of branch and bound 
methods [2], etc. It is usually difficult or impossible to 
perform a full binary recombination in acceptable 
time, therefore, in order to schedule and optimize jobs, 
we may apply heuristic methods, based on priority 
rules [15], evolution process ideas [5,6], local search 
[12,17,22], variable neighborhood search [10,14], etc.  

Production scheduling is an important part of the 
production planning of many manufacturing compa-
nies. By scheduling it is possible to find the proper 
sequence to do the jobs and the proper schedule, when 
each operation of the job should be processed at each 
stage of the production process. A schedule is called 
feasible, if the precedence relations of the operations 
are maintained and the resource and other constraints 
are satisfied. 

Traditional scheduling methods, such as PERT 
(The Program Evaluation and Review Technique) and 
CPM (Critical Path Method), are not enough for pro-
duction scheduling, because they consider infinite re-
sources, i.e., they cannot take resource constraints into 
account [3]. Scheduling with infinite resources may 
give results, which are not feasible. 

We explore application of Genetic Algorithms 
[1,5,6,8,20] to schedule optimization because some 
investigations show that development of GA is a pers-
pective trend to create efficient scheduling methods 
[6,12,14,17]. However, in the application of genetic 
algorithms important issues are to explore their effi-
ciency depending on schedule coding and decoding, 
selection of parameter sets for a genetic algorithm. In 
this paper, we analyze the genetic algorithm based on 
the job priority list. Population forming, construction 
of operators for crossover, mutation and selection 
using the job priority list will be introduced and inves-
tigated. A more detailed discussion on the application 
of GA method to schedule optimization is presented in 
Sections 5.1 and 5.2.  

 In manufacturing industry, efficient methods to 
solve resource constrained scheduling problems are 
needed. Input data for such problems are a set of jobs, 
their durations, priority rules (successors, predeces-
sors) and necessary resources. The aim is to find such 
schedule, which would meet the requirements of job 
priority relations, resource constraints, minimizing it 
by some criteria. In many cases this criterion is pro-
ject’s finishing time. 
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The objective function defines the finishing time 
of the whole job project, inequality (1) describes 
priority relations, and the inequality (2) requires to 
pay heed to resource constraints. 

Computational results are given using data sets 
from the project scheduling problems library (PSPLib) 
[18,21]. A more detailed discussion about PSPLib, 
testing data sets and solutions is given in Section 4. 

2. Schedule optimization problem 3. Schedule coding and decoding 
Resource constrained project scheduling problems 

(RCPSPs) [13] involve assigning jobs or tasks to a 
resource or a set of resources with limited capacity in 
order to meet some predefined objective. 

Efficiency of schedule optimization algorithm 
depends on solution coding [4,10,14]. In this paper, 
we analyze job scheduling problems under resource 
constraints with solution coding in a shape of a 
priority list [15,16]. The job priority list 

( )1210 += nn b,b,...,b,b,b  can be determined by jobs’ 

starting times vector s, where  if iji bb ss ≤ j< . It is 

very important that this vector of starting moments 
must meet priority relations and resource constraints. 
On the other hand, for a given priority list, we can find 
the vector of job starting times concerted with the 
priority list and initial priority constraints. For this we 
use serial decoder described in Section 3.2. 

Input data for schedule planning and optimization 
are set of jobs and their durations, description of 
resource constraints and a set of priority relations. 

Let‘s denote by a set of jobs, 
where jobs  and  are dummy and 
mean the beginning and the end of the whole project, 

– duration of the  job, 

1} ,n{0,1,...,nJ +=
)1.( +nNo

thj d j

0.No

Jj ,d j ∈ Jj , ∈≥ 0  – 

non-negative numbers and .  0dd 1n0 == +

We can define priority relations in a set  as a set 
of pairs C . 
Let‘s denote a set of resources by . All 
resources are renewable and non-additive – at every 
moment we can use fixed amount of each type of 
resources, remains are gone. Let’s assume amounts of 
resources , be constant. Let‘s denote the 

starting moment of the  job by , and cor-

respondingly  - amount of the  resource, 
needed for performing this job. Let’s assume that the 
started jobs must be performed without breaks. Then 
the finishing time of the  job can be defined as 

. The problem of schedule making may 
be reduced to the problem of finding a vector 

 of jobs’ starting time which would 
meet priority and resource requirements and would 
minimize a certain objective function. An objective 
function may reflect the economical outlay (outgoing), 
yield (incoming), finishing time, and etc. Project 
finishing time is one of the most analyzed schedule 
optimality criteria which will be applied in this paper. 

J
before }j  executedbemust i | j) (i, {=

}m{1,...,K =

Kk 0,Rk ∈>
thj 0s j ≥

0r jk ≥ thk

thj

jd 

( )1+ns,...

jj   s c +=

0= ,ss

At first, we must be sure that the priority list is 
concerted with priority constraints. Let’s call the 
priority list from which we can find a vector of jobs’ 
starting times concerted with priority relations as a 
permissible priority list. Using a set of priority 
relations, we can check whether the solution is per-
missible or not. For any permissible job priority list, 
by applying the serial decoding procedure, we can 
determine jobs’ starting times vector which may 
minimize a project finishing time, according to 
priority relations, resource constraints, and a given job 
priority list. 

The constructed algorithm should enable us ope-
rating with job priority lists to search such job priority 
list which would correspond to solution (maybe 
optimal) of the problem (1),(2). 

3.1. Determination of admissibility of the job 
priority list 

Let‘s denote by }ct s|Jj {A(t) jj <≤∈=  a set 
of jobs which were started but not yet completed at the 
time moment t. Let T  stand for the project 
finishing time, . 

)s(

1nc +=)sT(
After these definitions we can formulate the prob-

lem of minimization of the objective function . )s(T
Find , subject to: )sT( min

s

C)j,i(,sc ji ∈≤ , (1) j,b

0≥js , c , ,  jjj d   s += Jj ∈ =⇒<
j ,gji

Let‘s analyze admissibility determination of the 
job priority list. Let’s introduce the binary relation 
matrix ( )nj,i,vij ≤≤= 1

Cj
V , , 0,),(,1 =∈= ijij vCjiifv

iif ∉),( , related with a set of priority constraints 
and define a full priority relations’ matrix 

( )nj,i,gijG ≤≤= 1 . This matrix describes all chains 

of priority relations. So,  if it is possible to find 

such a sequence of index pairs that (

1=

C)k,k
kjg

∈1 , 
C)k,k( ∈2 )j,kl1 , ..., ( C∈ . The matrix V  has the 

following property: 0=⇒1= jiv Gij

i b
0

v . The matrix  
has this feature as well. The priority list is permissible 
if  are the components of b, and 

ibb  applies for any pair ( . For 

determination of full priority relations’ matrix, 

)b,b ji

1
)(

0,, +
∈

≤≤∈≤∑ n
tAj

kkj ctKkRr  (2) 
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4. Project scheduling problem library PSPLib according to the given set of priorities C , we can use 
the following algorithm: 

=

≤ ij

K≤

+

4.1. Description of the PSPLIB library FOR i=1 TO n DO 
   FOR j=1 TO n DO g(i,j)=v(i,j); 
FOR i=1 TO n DO 
  FOR j=1 TO n DO 
    IF v(i,j)=1 THEN  
       FOR k=1 TO n DO 
         IF g(j,k)=1 THEN g(i,k)=1; 

This library [18,21] contains different problem sets 
for various types of resource constrained project sche-
duling problems as well as optimal and heuristic 
solutions. The data sets may be used for the evaluation 
of solution procedures for single- and multi-mode 
resource-constrained project scheduling problems. The 
instances have been generated by the standard project 
generator ProGen. Researchers may download the 
benchmark sets to evaluate their algorithms, and they 
may send their results to be added to the library. The 
main parameters are given in the following sections. 

 

3.2. The serial priority list decoder 

Let‘s analyze the serial decoding procedure 
constructed for the priority list decoding. This 
procedure computes the early starting moments of 
jobs, according to jobs’ priority list concerted with 
priority relations, and resource constraints. In sche-
dules obtained in such way, none of jobs can be started 
earlier than calculated time, without violation of 
priority relations or resource constraints. We can call 
such schedules active ones [14]. The optimal schedule 
is considered to be active as well. Let‘s describe the 
algorithm for determination of the active schedule. 

4.2. Kinds of solutions and instance sets 

For each instance set xyz of the mode mm, one can 
find an archive file called xyz.mm.tgz that includes the 
complete set of instances. E.g., the 480 single mode 
problems with 30 jobs are in the file j30.sm.tgz. 

Files containing heuristic solutions, optimal solu-
tions and lower bounds can be found in the archive. 
They are grouped like the benchmark instances by 
their mode (single, multi or other) and by the number 
of jobs (30, 60 etc.). Detailed description of solutions 
format can be found in [21]. 

Step 1. Set initial 000 == cs . Let  i . 1
Step 2. Assume that starting times of the first 

 jobs from the priority list have already been 
determined. So, we know all .  

)i( 1−

1−,c,s
jj bb

4.3. Parameter Settings Let’s denote the moment  
)smax,cmaxmax(T

ll
ib,lb

b
il

b

il
g

i
10

10
1 −≤≤

−≤≤
=

=  There are a lot of RCPSP instances (input data 
sets, best known solutions) in the PSPLIB. More 
precisely, 480 samples for every problem with n=30, 
60 and 90 jobs, and 600 samples for n=120. The 
number of resource types is 4. All samples are divided 
into classes. There are 10 samples in every class, 
generated using random numbers generator with fixed 
values of three parameters: 

The starting time of the next job is equal to latter 
moment, provided the resource constraints are met: 

ib Ts
i

=  if . k,Rr k
)iT(Aj

jk ≤≤∑
∈

1

If resource constraints are not met, then the 
starting time of this job is equal to finishing time of 
the first completed job, when resource constraints are 
met: 

• }.;.;.{ 128151NC ∈  – averaged number of jobs-
predecessors for every job. 

• };;;{ 4321RF ∈  – number of resource types, nee-
ded for every job. 111 −≤≤>≤≤≤∑

∈

=
ij,Tc,Kk,Rr

bb

ijbk
)jbc(Al lk

ji
cmins  

• }.;.;.;.{ 01705020RS ∈  – amount of given re-
source at every moment; Value  matches 
examples with minimum amount of given re-
sources, enough for solving problem; Value 

20RS .=

1RS =  matches the case without resource 
constraints. 

The finishing time of b -th job can be calculated 
simply: 

i

iii bbb dsc +=  

Step 3. If i , then { T , end of 
the algorithm}, else { , go to step 2}. 

n= 1+= nb dc)S(
n

1+= jj It is known that values of parameters 4RF = , 
20RS .=  match hard enough classes. Their 

identifications are j3013, j3029, j3045 with value 
30=n ; j6013, j6029, j6045 with value 60=n ; 

j12016, j12036, j12056 with value . Each 
triplet of these identifications matches values 

120=n

1281 .;.51NC ;.=  accordingly. 

It is easy to notice that it is necessary to make 
 elementary operations for performing step 2 

of the algorithm [14]. Therefore, the computational 
complexity of the decoding procedure is O . 

)mn(O ⋅

)mn( ⋅2
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4.4. Characterization of the Benchmark Instances 

Currently, two benchmark sets are available for the 
SMRCPSP and 25 benchmark sets for the MMRCPSP. 
Input parameters are grouped into three classes: first, 
fixed parameters which are constant for all benchmark 
sets, second, base parameters mainly one of which is 
adjusted individually for each benchmark set, and 
third, variable parameters which are systematically 
varied within each benchmark set. 

Here we give a description of parameters settings 
for mostly used single-mode RCPSP. (Detailed des-
cription of all parameters is given in [18]). 

Table 1. Fixed Parameter Setting - SMRCPSP and 
MMRCPSP 

RP1  RP2  NP1  NP2  NETε  RFε  

0.00 1.00 0.00 1.00 0.05 0.05 

Table 2. Base Parameter Setting (SMRCPSP) 

 J  jM  jd  R  RU  RQ  N  NU  NQ  1S  jS  JP  jP  

min 30 1 1 4 1 1 0 0 0 3 1 3 1 
max 30 1 10 4 10 2 0 0 0 3 3 3 3 

 
Table 3. Variable Parameter Settings (SMRCPSP) 

Parameter Levels 
NC  1.50 1.80 2.10  

RRF  0.25 0.50 0.75 1.00 

RRS  0.20 0.50 0.70 1.00 

The instances for the SMRCPSP have been 
generated with the fixed, base, and variable 
parameter settings given in Tables 1 to 3. Utilizing a 
full factorial design of the variable parameters , 

 and  with 10 replications per triplet 
< , , > we can generate a total of 

NC
RRF

NC
43

RRS

RRS
480

RRF
104 =×××  benchmark problems for each set. 

Table 4. Instance Sets - SMRCPSP 

Instance set  
P 

 
E 

 
Type 

Varied base parameter 
table 2. 

Variable 
setting 

Number of 
instances 

Solution 
obtained by 

J30 [ ]481..  [ ] 101.. SM 30== maxmin JJ  Table 3 480 opt. 

J60 [ ]481..  [ ] 101.. SM 60== maxmin JJ  Table 3 480 hrs. 

 
Table 4 provides a summary of the instances 

produced. 
The first column (instance set) gives the prefix of 

the file names the instances are stored under; the se-
cond column (P) displays the range of the cell index, 
reflecting the combination of the variable parameters. 
The third column (E) specifies the range of the ins-
tance index within a cell. The 4th column abbreviates 
the acronym SMRCPSP to SM and serves as the suffix 
of the filenames. The 5th column shows the varied 
base parameters, here the number of activities which 
has been set to 30 and 60, respectively. The 6th co-
lumn references to the table with the variable para-
meter levels employed. The 7th column displays the 
number of instances within the benchmark set. Finally, 
the 8th column shows how solutions of the benchmark 
sets have been obtained. A complete file name, e.g., 
J301210.SM, corresponds to instance set J30, variable 
parameter combination 12, and problem number 10 of 
the SMRCPSP. The level of the variable parameter 
settings for each parameter cell index can be found in 
the files J30PAR.SM and J60PAR.SM, respectively. 
Optimal objective function values for the instances of 
the J30 benchmark set have been obtained by and are 
documented in the file J30OPT.SM. Currently, the 
instance set J60 cannot be solved by exact solution 
procedures. For this, heuristic methods must be used. 

5. Schedule optimization algorithms 

5.1. Description of the Genetic Algorithms 

For schedule optimization, we can apply evolutio-
nary algorithms such as Genetic Algorithm [5,6]. 

GAs owe their name to an early emphasis on 
representing and manipulating individuals at the level 
of genotype. In Holland’s original work [11], GAs 
were proposed to understand adaptation phenomena in 
both natural and artificial systems and they have three 
key features that distinguish themselves from other 
computational methods modeled on natural evolution: 
1. The use of bit string for representation; 
2. The use of crossover as the primary method for 

producing variants; 
3. The use of proportional selection. 

Genetic Algorithms are the most popular technique 
in evolutionary computation research. In the traditio-
nal genetic algorithm, the representation used is a 
fixed-length bit string. Each position in the string is 
assumed to represent a particular feature of an indi-
vidual, and the value stored in that position represents 
how that feature is expressed in the solution. Usually, 
the string is “evaluated as a collection of structural 
features of a solution that have little or no inter-
actions” [1]. The analogy may be drawn directly to 
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genes in biological organisms. Each gene represents 
an entity that is structurally independent of other 
genes.  

The more classical reproduction operator used is 
one point crossover, in which two strings are used as 
parents and new individuals are formed by swapping a 
sub-sequence between the two strings (see Figure 1). 

 
Crossover point 

Figure 1. Bit-String Crossover of Parents  
a) and b) to form Offspring c) and d) 

Another popular operator is bit-flipping mutation, in 
which a single bit in the string is flipped to form a new 
offspring string (see Figure 2).  
 

 
Figure 2. Bit-Flipping Mutation of Parent  

a) to form Offspring b) 
 

A great variety of other crossover and mutation 
operators have also been developed. A primary dis-
tinction that may be made between the various opera-
tors is whether or not they introduce any new informa-
tion into the population. Crossover, for example, does 
not while mutation does. All operators are also 
constrained to manipulate the string in a manner 
consistent with the structural interpretation of genes. 
For example, two genes at the same location on two 
strings may be swapped between parents, but not com-
bined based on their values.  

Traditionally, individuals are selected to be parents 
probabilistically based upon their fitness values, and 
the offspring that are created replace the parents. For 
example, if N parents are selected, then N offspring 
are generated which replace the parents in the next 
generation. 

These methods are used to solve various design 
optimization problems (including discrete design para-
meters, real parameters). Early applications of GAs 
are optimization of gas pipeline control, structural 
design optimization [8], aircraft landing strut weight 
optimization [20], keyboard configuration design [7], 
etc. 

5.2. Schedule optimization using the Genetic 
Algorithm 

We applied the genetic algorithm with the const-
ructed crossover, mutation, and selection operators, 
based on permissible job priority lists. In such a way 
we bypassed the procedures of coding and decoding 
from the binary code, which can generate impermis-
sible priority lists. [1,6,8]  

Let us write such GA algorithm: 

Step 1. Generate M  permissible priority lists 
( ...,,M 2040= ). Construct the matrix ( )ijbBP = , 

Mi ≤≤1 j, N≤≤1 , – number of jobs, N M – num-
ber of lists in the population. 

1=IT . . )listpriorityany(TT best =

( bestT best achieved value of the objective function 
through evolution). 

Step 2. (Crossover) In each thIT  iteration per-
form the crossover procedure with every pair of 
priority lists. 

Let  and b  be priority lists (“parents“). Select 
position  randomly. 

'b
w

*

From two permissible priority lists b' =  
 and  

we get two new priority lists b  and 

)...,,,...,,( ''
1

''
1 Nww bbbb +

b''

*
wN,k

*
k b...,,b −1

b...,,b(b '
w

''
1

)'
, wNkb −

)b...,,b,b...,,b(b *
N

*
w

*
w

**
11 +=

'' **b
)b...,,b,b..., *

wN,k
*
k

'
w −1

*b
w
*b

...,,,...,,( '
1

**
1

**
kw bbbb =

 (“children”). 
Let’s construct , here 

 – the components of vector  that 
were left after elimination of the first  components 
of vector  from vector . Preserve the 
order of the components in the resulting sequence. 
Analogously construct  

. 

,b( '= 1

)

Note that new priority lists  and  are permis-
sible too, because all precedence relations are kept. 
Perform this crossover procedure with all pairs of 
rows of matrix 

'b *b

BP  (M/2 pairs). . BC →BP crossover

Step 3. (Mutation) In each thIT  iteration perform 
the mutation procedure (theoretically, we give a 
chance to construct any priority list from all solution 
space). With the given probability pp, select chromo-
somes (priority lists) for mutation procedure. After 
this selection, perform mutation procedure with these 
priority lists (rows of matrix ) in the following 
way:  

BC

Generate random numbers  and , , l q ql ≠ ,1 l≤  
Nq ≤ . With the probability  perform one of 

the following operations: move the  job before the 

 job (shift) or swap the  and l  jobs. If new 
priority list after these operations is not permissible, 
cancel the operation. . 

50,

q

 →

p =

th

mutation

th

th

BC

thl q

MUTBC 
Step 4. (Selection) From MM +  priority lists 

(“parents“ and “children“) we must select only M  
priority lists. (We can select and leave only priority 
lists with smallest values of the objective function 

)b(TZ = . Different methods of selection are de-
scribed in [6]) 

After merging matrices BP  and , we get new 
a matrix , with dimensions . 

BC
N×BPC M2
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Select lists  and b  at random from the matrix 
. Calculate  and . If 

'b *

(T=BPC

1

)1 'bZ )b(TZ *=2

2ZZ < , then leave priority list b  and remove b . 
Otherwise, leave  and remove b . After 

'

'

*

*b M  such 
“duels” we again get a matrix with dimensions 

. NM ×

Step 5. Find the best solution  in 

the chromosomes population. 
Mi≤≤

=
1

i )T(bmin T*

If best* TT < , then update not only value, but the 
best solution as well *best TT = . 

Step 6. If , then stop, otherwise set maxITIT =
1+= ITIT  and go to Step 2. 

6. Modeling results 

We investigate the efficiency and convergence rate 
of constructed genetic algorithm by statistical 

simulation. The constructed algorithm was tested on 
data sets from the project scheduling problems library 
PSPLib. 

6.1. Optimization by Genetic Algorithm and 
efficiency dependence on parameter settings 

To investigate the convergence rate of the objec-
tive function value to global minimum or to the best 
known value, using the Genetic Algorithm, we took 
several data sets of different dimension (the number of 
jobs) and complexity (different amount of necessary 
resources and different number of precedence rela-
tions).  

Averages of the convergence rate were calculated 
from 100 modeling experiments for data sets with 30 
and 60 jobs and from 10 modeling experiments for 
data sets with 90 and 120 jobs. In Tables 5, 6, 7, Avg. 
denotes Average, it. – iterations. 

Table 5. Convergence rate of the objective function value to global minimum using Genetic Algorithm (3 different instances of 
input data sets from PSPLib, 4 different parameter settings for GA, number of jobs j=30) 

  data set #1 data set #2 data set #3 
Number of jobs 30 30 30 

Known optimum of Objective Function 41 38 63 
Avg. number of it. for optimal solution 83 15 21 18 162 42 35 18 24 6 8 5 

Mutation probability  mutP 0.1 0.1 0.3 0.3 0.1 0.1 0.3 0.3 0.1 0.1 0.3 0.3 
Number of individuals in population 20 40 20 40 20 40 20 40 20 40 20 40 

Avg. time for finding optimum, s. 3.17 1.38 0.99 1.33 6.04 3.28 1.48 1.58 1.51 0.65 0.48 0.61 

Table 6. Convergence rate of the objective function value to the best known value using Genetic Algorithm (3 different instances 
of input data sets from PSPLib, 4 different parameter settings for GA, number of jobs j=60) 

  data set #1 data set #2 data set #3 
Number of jobs 60 60 60 

Best known value of Objective Function 77 59 76 
Avg. number of it. for solution 110 92 45 32 358 188 345 175 892 141 38 57 

Mutation probability  mutP 0.1 0.1 0.3 0.3 0.1 0.1 0.3 0.3 0.1 0.1 0.3 0.3 
Number of individuals in population 20 40 20 40 20 40 20 40 20 40 20 40 

Avg. time for finding best known value, s. 23.8 39.9 10.7 14.4 77.8 80.7 75.3 76.1 193.4 60.6 8.3 24.8 

Table 7. Convergence rate of the objective function value to the best known value using Genetic Algorithm (1 instance of input 
data for j=90, 2 instances for j=120, 4 different parameter settings for GA) 

  data set #1 data set #1 data set #2 
Number of jobs 90 120 120 

Best known value of Objective Function 67 99 111 
Avg. number of it. for solution * * 944 452 * * 894 442 * * * 436 

Mutation probability Pmut 0.1 0.1 0.3 0.3 0.1 0.1 0.3 0.3 0.1 0.1 0.3 0.3 
Number of individuals in population 20 40 20 40 20 40 20 40 20 40 20 40 

Avg. time for finding best known value, s. * * 636 623 * * 1388 1368 * * * 1350 

* - best known value of the objective function not reached (during modeling, max 1000 iterations were done). 
 

Computational results show us that in cases with 
lower problem dimension (number of jobs 30 or 60) 

better results we can reach using =0.3 and the 
smaller number of chromosomes in population (20). 

mutP
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Too low mutation probability does not guarantee 
enough recombination of priority lists and the big 
number of chromosomes in the population can take 
more computational time (Table 5 and Table 6). In 
cases with higher problem dimension (number of jobs 
90 or 120) with too low mutation probability and 
number of chromosomes in population, finding the 
optimum can take too much computational time (Table 
7). Although with the higher number of chromosomes 
(40) it takes more computational time for each itera-
tion, better recombination of solutions finally gives us 
better results of overall computational time, needed 
for finding best known objective function values.  

7. Conclusions and further research 

1. Algorithms for planning and optimizing schedules 
of jobs with resource constraints, based on sche-
dule coding by the job priority list and the serial 
priority list decoding procedure, were discussed in 
this paper. This kind of schedule coding generally 
allows us to apply several heuristic optimization 
methods.  

2. Genetic algorithm based on the priority list for 
RCPSP optimization has been created. This algo-
rithm has been investigated and compared by sta-
tistical modeling, while using data sets and known 
solutions from the PSP Library. 

3. The testing results show that the created algorithm 
is able to find the best known solutions of problem 
instances from the PSP Library while using com-
putational time acceptable in practice. 

4. The computational results with the examples from 
the PSP Library have shown that GA performs 
better with certain mutation probability (Pmut = 
0.3).  With an increase in the number of jobs in the 
schedule, population of chromosomes must be in-
creased as well. 

5. Future research plans include comparison of gene-
tic algorithms for RCPSP, based on the priority list 
with other heuristic approaches, namely, Simulated 
Annealing, Tabu Search, Scatter Search, etc. 
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