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Abstract. In this paper switched piecewise uniform vector quantization of two-dimensional memoryless Laplacian 
source is asymptotically analyzed for the case where the power of input signal varies in a wide range. One possible 
solution for encoder design is given for the same quantizer. The presented encoder is a compromise between memory 
space and number of logical circuits. Uniform quantizer optimality conditions and all main equations for the optimal 
number of levels and constant (nonoptimal) number of output points for each partition are presented (using rectangular 
cells). Switched quantization is used in order to give a higher quality in a wide range of signal volumes (variances). 
These systems, although not optimal, may have asymptotic performance arbitrarily close to the optimum. Furthermore, 
their analysis and implementation can be simpler than those of optimal systems. 
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1. Introduction 

The quantizers play an important role in the theory 
and practice of modern signal processing. The most 
basic of the approaches to source coding is a uniform 
scalar quantization [1, 2], which is commonly used for 
analog-to-digital conversion. Extensive results have 
been obtained on scalar quantization but more on 
vector quantization. The simplest vector quantization 
is two-dimensional vector quantization. 

During the two dimensional vector quantization, 
vector obtained by sampling of input signal in two 
adjacent points is replaced with vector from an 
allowed set of vectors in such way that the quantiza-
tion error is the smallest. Successful vector quanti-
zation depends on an appropriate choice of allowed 
vector set (codebook). Quantization is a necessary step 
in the digitalization process, but there are difficulties 
that cause the quantization error, which is unavoidable 
during this process. Hence, the quantization should be 
performed in such way that the quantization error does 
not reflect on signal reconstruction. This means that 
the allowed vector set should be chosen in a manner 
that the mean squared error (distortion) would be 
minimal. 

The analysis of vector quantizer for arbitrary dis-
tribution of the source signal is given in paper [3]. The 
authors derived the expression for the optimum 
granular distortion and optimum number of output 
points. However, they did not prove the optimality of 
the proposed solutions. Also, they did not define the 

partition of the multidimensional space into subre-
gions. In paper [4], the expressions for the optimum 
number of output points are derived, however the 
proposed partitioning of the multidimensional space 
for memoryless Laplacian source does not consider 
the geometry of the multidimensional source. In paper 
[5], vector quantizers of Laplacian and Gaussian sour-
ces are analyzed. The proposed solution for the quanti-
zation of memoryless Laplacian source, unlike in [4], 
takes into consideration the geometry of the source, 
however, the proposed vector quantizer design pro-
cedure is too complicated and unpractical. 

The goal of this paper is to solve a quantization 
problem in a case of switched piecewise uniform vec-
tor quantizer (PUQ) for Laplacian memoryless source, 
for a case of constant number of output points on each 
domain. Indeed, we want to suggest the quantizer that, 
compared to the one with optimal number of output 
points [10], may have asymptotic performance arbit-
rarily close to the optimum. We will give a general 
and simple way to design a switched piecewise uni-
form vector quantizer. We will derive the optimal 
number of levels for each partition and the optimality 
of the proposed solution is proved. At the end, we will 
propose one solution for encoder design for this 
quantizer.  

A block diagram of the encoder and decoder is 
shown in Figure 1. The encoder performs a mapping 
from the k-dimensional space  into the index set kR
I , and the decoder maps the index set I  into the 
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finite subset C , which is the codebook. The codebook 
has a positive integer number of code vectors which 
define the codebook size N. The bit rate R depends on 
N and the vector dimension k. Since the bit rate is the 
number of bits per sample, 
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o

∫
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kR /)(log= . (1) 

The decoding process is very simple and requires 
only a table (codebook) lookup, but the encoding pro-
cedure is complex and involves finding a best mat-
ching code vector, using a distortion measure as a 
criterion. 

 
Figure 1. Block diagram of encoder/decoder 

Let X be a two-dimensional random vector with 
joint density . N points vector quan-
tizer is a function Q (x) which maps x in R

),()x 21 xxf=

S1

2 into one of  
N output vectors. The quantizer is specified by the 
values of the output points and by a partition of the 
space R2 into N cells , where SNSS ,...,, 2 i= 

. Then we can write Q1 )y( RQ i ⊂− ,y)x( i=  
 A cell that is unbounded is 

called an overload cell. Each bounded cell is called a 
granular cell. Together all of overload (granular) cells 
are called the overload (granular) region.  

....,,2,1 Nx forSif i∈

The quality of a quantizer can be measured by the 
distortion of the resulting reproduction in comparison 
to the original. The total distortion D is a combination 
of the granular (Dg) and overload (Do) distortions, 

. The most convenient and widely used 
measure of distortion between an input vector 

 and quantized vector y

g DDD +=

),( 21 xxx = i (yi1, yi2) is the 
average mean-squared error per dimension, i.e. 
quantization noise [7] 
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The mean-squared error (MSE) is used as the 
criterion for optimization. 

The MSE of a two-dimensional vector source 
, where  are zero-mean statistically in-

dependent Laplacian random variables of variance 
, is commonly used for the transform coefficients 

of speech or imagery. The first approximation to the 
long-time-averaged probability density function (pdf) 
of amplitudes is provided by the Laplacian model [6, 
p.32]. The waveforms are sometimes represented in 
terms of adjacent-sample differences. The pdf of the 

difference signal for an image waveform follows the 
Laplacian function [6, p.33]. The Laplace source is a 
model for speech [7, p.384]. We will consider two 
independent identically distributed Laplace random 
variables (x

),( 21 xxx =

2σ

ix

1, x2) with the zero mean. To simplify the 
vector quantizer, the Helmert transformation is applied 
to the source vector giving contours with constant 
probability densities. The transformation is defined as:  

( )212
1 xxr += , ( )212

1 xx −=u .    (3) 

In this paper, quantizers are designed and analysed 
under an additional constraint — each scalar quantizer 
is a uniform one.  

PUQ consists of L optimal uniform vector 
quantizers. More precisely, our quantizer divides the 
input plane into L partitions and every partition is 
further subdivided into Li (1 ) subpartitions. 
Every concentric subpartition can be subdivided in 
four equivalent regions, i.e. the j-th subpartition in sig-
nal plane is allowed to have  (1  

Li ≤≤

ijp i≤ ,L≤ iLj ≤≤

iD
1 ) 

cells. We perform distortion optimization ( ) in eve-
ry partition under the constraint: 

 .   (4) i

L

j
ij Np

i

=∑
=1

4

In this work, we design a piecewise uniform vector 
quantizer for optimal compression function. We per-
form analytical optimisation of the granular distortion 
and numerical optimization of the total distortion 
using rectangular cells. 

2. Switched vector quantization model 

During the two dimensional vector quantization, 
the vector obtained by sampling of the input signal in 
two adjacent points is replaced with vector from allo-
wed set of vectors in such way that the quantization 
error is the smallest. Successful vector quantization 
depends on an appropriate choice of allowed vector 
set (codebook).  

The nearest neighbor quantizer completely 
searches codebook. If the codebook is of size N 
(N=216 for R=8 bit/sample, N=215 for R=7.5 bit/ 
sample), then N distortion estimations would be 
needed.  

The switching quantization aims are to improve 
the quality of the signal-to-noise ratio in a wide range 
of the signal average power (i.e. variance) or to 
decrease the sample rate. The switching quantization 
is adaptive quantization for memoryless sources and it 
is aplicable only if adaptation is performed on the 
basis of the signal average power, what was done in 
this paper. As an input source, we will consider me-
moryless Laplacian source. 
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Figure 2. Switched codebook adaptive vector quantization 

The basic scheme of switched codebook adapta-
tion is shown in Figure 2. One simple technique is 
switched codebook adaptive vector quantization. This 
technique uses a classifier that looks at the contents of 
the input frame buffer and decides that the next block 
of vectors belongs to a particular statistical class of 
vectors from a finite set of K possible classes. Namely, 
the index specifying the class is used to select a 
particular codebook from a predesigned set of K code-
books. This index is also transmitted as side informa-
tion to the receiver. Then each vector in the block is 
encoded by the vector quantizer which performs a 
search through the selected codebook. 
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The output point coordinates are given by the 
equations 
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Rectangular cell dimensions are: 

Lrrr ii /max1 =−=∆ + ,  
i

i L
∆

=∆ , One block is made of M vectors. The index to 
identify the class is sent at the end of the block, while 
the index to identify the codebook is sent with each 
vector. If each of the K codebooks has N code vectors, 
then the bit rate per sample is: 
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The range of the quantizer is . The total 
number of output points is 

maxr
where n is quantizer dimension. The second term in 
equation (5) is due to the side information [7]. 

 ,  (9) ∑
=
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L

i
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We will use this technique for solving our 

problem. In our case, the quantizer dimension is n = 2. 
We have K codebooks, i. e. K piecewise uniform 
quantizers designed for particular value σ0j and for the 
cover of particular input power range σ2∈[σ1j

2, σ2j
2], 

where σ1j < σ0j < σ2j. Also all codebooks are of the 
same size N. For selected value σ0j ,   j = 1, 2, ..., K, 
we will design piecewise uniform vector quantizers. 
We should determine distortion for input Laplacian 
source whose power is σ2∈[σ1j

2, σ2j
2], while the 

quantizer is designed in such way that it has the 
smallest distortion for the power σ0j

2. 

where  is the number of output points in the i-th 
domain. We can also write: 

iN
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We will now assume that the number of output 
points in the i-th domain  is constant under the 

constraint , where R  is bit rate (num-

ber of bits per sample). If we assume that the bit rate 
is R = R

iN

∑
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L
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1 + R2 , where 2R1 bits are used for 
representing the number of partitions L, we can find 
R1 from L = . The number of output points in the 
ith domain  is: iN

3. Piecewise uniform two - dimensional 
quantization 
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−   (11) The initial expression for granular distortion is [8-

10]: 
Equation (6) can be written as:  

)(
1

iDD
L

i
gg ∑

=

= . (12) 

399 



Z. H. Peric, V. M. Despotovic 

 By substituting  from equation (18) in equa-
tion (14) we get 

jip ,
After integration over u and reordering,  be-
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After approximating the sum by the integral, we 
can rewrite (19) as 

We will now assume that  is constant 

over . In that case, we can substitute 
( σ/2exp r− )

i∆ ( )σ/2rexp −  
with ( )σ/2 , jim−exp . Equation (13) can be now written 
as: 
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The functions ( )iI 0′ , ( )iI  and  are defined as 
follows: 
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where ( )jimP ,  denotes the probability 
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By using the Langrangian multipliers, we can 
obtain the optimum number of cells in one region 

, which yields the minimum granular distortion 
defined by the equation (14). Because we are 
designing an optimal quantizer for one value of 
variance 

jip ,

0σ , in calculating  we will use jip , 0σ  
instead of σ . We will start from the following 
equation: 
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σσ

σσσ
23

'
0

0

−
= . 

( ) ∑
=

+=
iL

j
jig piDJ

1
,λ . (16) ∂

After differentiating Dg from equation (20) with 
respect to Li, and for 0σ  and equalizing the derivate 
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4. Encoder design 
 Encoder design has to be a compromise between 

memory space and number of logical circuits (adders, 
comparators, counters etc.). The solution given in 
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Figure 3 is exactly the compromise between these de-
mands. Encoder uniquely determines index I for every 

cell. Based on this parameter, the represent of the cell 
is obtained at the decoder side. 

 
Figure 3. Encoder design 

Using Helmert transformation, the input signal X 
is represented in ru coordinate system with r and u 
values. The encoder can be divided into 3 parts. The 
first part of the encoder is used for determination of 
the partition number where input signal belongs 
(index i). Beside input signal r, as input values, dyna-
mic range of a two-dimensional quantizer rmax and the 
total number of partitions L are used for calculating of 
partition represents. We are looking for minimum 
subtraction between amplitudes of partition represents 
and input signal r.  

In similar way, by subtracting amplitudes of sub-
partition represents of particular partition and input 
signal r, number of subpartition (index j) can be 
found. The input parameters are input signal r, dyna-
mic range of quantizer rmax, the number of partitions L 
and the number of subpartitions for each partition Li.  

The third part of the encoder determines the posi-
tion (number) of a cell in a subpartition of a particular 
partition, as a minimum subtraction between ampli-

tudes of cell’s represents and input signal u (index k). 
Every subpartition is divided into 4 equivalent re-
gions, each having the same number of cells. Beside 
input signal u, as input values, dynamic range of a 
quantizer rmax and the number of cells for each region 
of a subpartition  pij are used. 

Indices i,j,k, the total number of cells for each par-
tition Ni and the number of cells for each subpartition 
4pij are used as parameters for determination of the 
unique index I of any cell where input signal belongs. 
One of possible ways of calculation of this index is: 
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Figure 4. Cell position in two-dimensional space 

Equation (24) is used for realization of logic 
block in Figure 3. The index Ik depends on the 
quadrant where particular cell is placed. Space 
partitioning for this case is shown in Figure 4.   

Cell position depends on a sign of variables in 
input vector (x1, x2). If positive values are encoded 
with 0 and negative with 1,  Table 1 shows a position 
of a cell in particular region of a subpartition. 

Table 1  
 

1x  2x  

I quadrant 0 0 
II quadrant 1 0 
III quadrant 1 1 
IV quadrant 0 1 

This encoder uses significantly less memory com-
pared to the one that stores limits of every cell in a 
memory. Also, because the number of output points in 
each partition Ni is constant, the logic block is much 
simpler than in the case of the optimum number of 
output points, and less adders will be used in our case.  

5. Conclusion 

We suggested a model of switched piecewise vec-
tor quantizer which solves problem of variable input 
power in a wide range. It is shown that this switched 
quantizer can be applied for speech signals that have 
not only the random nature of instantaneous signal 
values, but also the random nature of the average 
power. During the switched quantizer design, the par-
ticular memory is needed. In cases where the memory 
resources are limited, it is possible to decrease the 
vector classes number K, but SNRQ will have larger 
variation due to input power changes.  

We also proposed possible encoder design. The 
given solution is a compromise between memory 
space and number of logical circuits. Calculations for 
a special case of constant number of output points in 
each partition Ni were carried out. This significantly 
simplifies encoder compared to the one designed for 

optimal systems, and the performance is arbitrarily 
close to the optimum.  

A simple expression for granular distortion, the 
number of subdomains and the number of output 
points in closed form is obtained. Memoryless 
Laplacian source is used, considering the possible 
application of this quantizer.  
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