
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2006, Vol.35, No.4

STAGNATION-PROTECTED TABU SEARCH VARIANTS
FOR UNSTRUCTURED QUADRATIC ASSIGNMENT PROBLEMS

Alfonsas Misevičius, Arūnas Tomkevičius, Juozas Karbauskas
Department of Multimedia Engineering, Kaunas University of Technology

Studentų St. 50, LT−51368 Kaunas, Lithuania

Abstract. Tabu search (TS) algorithms have been proven to be extremely efficient for solving combinatorial opti-
mization problems. In this paper, we discuss new variants of the tabu search for the well-known combinatorial
problem, the quadratic assignment problem (QAP). In particular, a so-called stagnation-protected tabu search (SPTS)
strategy is proposed. The goal is to fight against the chaotic behaviour and stagnation phenomenon, especially at long
runs of TS. SPTS seems to be quite useful for the unstructured (random) quadratic assignment problems. These
problems, which resemble a "needle-in-a-haystack" problem, are hardly solvable by the ordinary heuristic algorithms
and still remain a challenge for the QAP community. The results obtained from the experiments with SPTS on the un-
structured QAPs taken from the QAP library QAPLIB demonstrate that this new strategy is superior to other tabu
search algorithms.

Keywords: combinatorial optimization, quadratic assignment problem, heuristics, tabu search, stagnation-pro-
tected tabu search.

Introduction

The quadratic assignment problem (QAP) was in-
troduced by Koopmans and Beckmann [11] as a
mathematical model for the location of economic
activities. Recently, this problem is frequently used as
a "platform" for investigation of the performance of
both exact and heuristic algorithms. The QAP can be
formulated as follows. Let two matrices A = (aij)n×n
and B = (bkl)n×n be given. The goal is to find a per-
mutation π of n elements that minimizes the following
objective function:

∑∑
= =

=
n

i

n

j
jiijbaz

1 1
)()()(πππ , (1)

where π ∈ Π, Π is the set of all possible permutations
of n elements. A neighbourhood function Ν: Π → 2Π
assigns for each π ∈ Π a set Ν(π) ⊆ Π − the set of
neighbouring solutions of π. An example of the
neighbourhood function for the QAP is the 2-
exchange function Ν2. In this case, Ν2(π) = {π′ | π′
∈ Π, ρ(π, π′) ≤ 2}, where π ∈ Π, and ρ(π, π′) is a
distance between permutations π and π′:

)}()(|{),(iii ππππρ ′≠=′

Π→Ν×Ν×Π

. Every neighbouring solu-
tion from Ν2(π) can be reached from the current solu-
tion π by a perturbation (move) perturb(π, i, j):

, which gives π′ such that π′(i) = π(j),

π′(j) = π(i). We will also use the notation pij such that
the expression ijp⊕=′ ππ would mean that π ′ is
obtained from π by applying perturb(π, i, j). The so-
lution π ∈ Π is said to be a locally optimal solution
with respect to the neighbourhood Ν if z(π′) ≥ z(π) for
every π′ ∈ Ν(π). The solution πopt is called an optimal

solution if .






=Π∈ ∇

opt π =
Π∈

∇)(minarg|opt πππ
π

z

The quadratic assignment problem is an NP-hard
combinatorial optimization problem. It can be solved
exactly for very small sizes only (n ≤ 36). Therefore,
heuristic methods are extensively used for solving
medium- and large-scale QAPs [2,4,15]. Tabu search
(TS) algorithms, which are based on the intelligent
neighbourhood search with memory, are among those
that have been proven to be extremely efficient for the
QAP [1,5,6,13,16,17]. Despite of this, there is still a
room for further improvements of TS, especially if we
are handling the unstructured (random) quadratic
assignment problems (see, for example, the instances
tai20a, tai25a, tai30a, tai35a, tai40a, tai50a, tai60a,
tai80a, and tai100a taken from the QAP instances
library QAPLIB [3]). These problems are characte-
rized by random, uniformly distributed (regular)
values of the data matrices. Although the data are re-
gular, there is no regularity in the solution space. The
landscapes of such problems are obviously disordered

 This work is supported by Lithuanian State Science and Studies Foundation through grant number T-06276.

363

A. Misevičius, A. Tomkevičius, J. Karbauskas

with the enormous number of local optima. This is
why the tabu search algorithms (as well as other
heuristic algorithms) face severe difficulties when
dealing with this class of problems. In fact, many heu-
ristics work quite well with respect to the average
quality of solutions; however, things look to be very
pessimistic if one seeks for the pseudo-optimal (or
near-pseudo-optimal) solutions. It seems that the large
unstructured QAP instances (n ≥ 80) are not prac-
tically solvable even to pseudo-optimality. The current
work aims to focus on this issue.

The paper is organized as follows. In Section 1, we
discuss our motivation of using the stagnation-pro-
tected tabu search strategy. Some variants of the
stagnation-protected tabu search for the QAP are
described in Section 2. In Section 3, we present the
results of the computational experiments on the
unstructured QAPs. Section 4 completes the paper
with concluding remarks.

1. Stagnation-protected tabu search:
preliminaries and motivation

For the unstructured problems, it is a common case
that the search process converges quite rapidly, but
without finding an optimal or even near-optimal solu-
tion. New (better) locally optimal solutions are en-
countered very easily at the early stage of the search
process; however, as the search progresses, new better
solutions grow rarer with each search iteration. It takes
longer and longer time to reveal new record-breaking
solutions at the later phases of the search. This ten-
dency is particularly evident for extensive runs of
time-consuming iterative heuristic algorithms like
simulated annealing, tabu search, iterated local search,
and others. For these methods, it can be observed that
the time intervals between successive detections of a
new better solution increase catastrophically without
getting satisfactory results. This is even more true for
large-scale problems. We call the above phenomenon
the stagnation phenomenon (or simply stagnation).
The following are the main reasons of stagnation:
• a huge number of locally optimal solutions over

the solution space;
• many isolated local optima;
• complex, non-monotonic landscapes with small

basins of attraction;
• cycles of the search trajectories;
• deterministic chaos (chaotic attractors).

Note that the large number of local optima does
not necessarily imply complex landscape. There exist
some special kind landscapes, which are relatively
easy for heuristics (see Figure 1). Regarding determi-
nistic chaos, it can be identified by the situation where
getting stuck at local optima and cycling trajectories
are absent − this is just the case of the standard
(simple) tabu search − but the search configurations

are still confined in limited parts of the search space.
If these parts do not contain the pseudo-optimal
solution, it may not be discovered.

solutions

ob
je

ct
iv

e
fu

nc
tio

n

Figure 1. A special type landscape: "big valley"

The illustrations of stagnation episodes within the
tabu search are shown in Figures 2−3. In Figure 2, the
graph is presented which clearly demonstrates that the
tabu search process returns to the same point (solu-
tion) from time to time. In Figure 3, the search tra-
jectories are visualized by plotting the lines between
the points that correspond to the solutions of the QAP
(i.e. permutations). The co-ordinates (u, v) of these
points are derived by using simple formulas:
u = (w div GS) ∗ SF, v = (w mod GS) ∗ SF, where

, GS is a grid size, SF

corresponds to a scaling factor (we used
GS = SF = 24), and H denotes a hashing constant
which is used by mapping a permutation π to a scalar
w (in our experiments, H = 10000). It is obvious from
Figure 3 that the search process is cyclic and chaotic.

Hiiw
n

i
 mod))((

1








∗= ∑

=

π

Eliminating stagnation is one of the key issues by
creating competitive TS algorithms. Several attempts
to overcome the stagnant behaviour of TS have alrea-
dy been done (see, for example, the reactive tabu
search [1], the tabu search with diversification
strategies [10], the enhanced (iterated) tabu search
[13]). The results from the experiments, however,
demonstrate that finding the pseudo-optimal solutions
of the unstructured problems remains a tough task
even for the accurately designed and elaborated algo-
rithms.

In this paper, we continue our endeavour to fur-
ther enhance the performance of the tabu search
algorithms. A new concept of the "stagnation-pro-
tected tabu search" (SPTS) is proposed. The focus is,
in particular, on prevention of stagnation, minimizing
cycling trajectories, avoiding becoming trapped at
local optima, and, consequently, improving efficiency
of the tabu search, especially at long and extra-long
runs. Some different variants of SPTS for the QAP are
described in the next section.

364

Stagnation-Protected Tabu Search Variants for Unstructured Quadratic Assignment Problems

365

700000

720000

740000

760000

780000

800000

820000

0 20 40 60 80 100 120 140 160 180 200
iterations

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
es

objective function values corresponding
to the mutated solutions

×
×

×

repeating values of the
objective function

Figure 2. Illustration of the stagnation phenomenon for the unstructured QAP instance tai20a.
Note. The instance tai20a is from the library of the QAP instances QAPLIB [3]

2. Stagnation-protected tabu search for the
QAP

The paradigm we rely is the enhanced (iterated)
tabu search‡ [13], which, in turn, is based on the
adapted robust tabu search (RoTS) algorithm [17] and
the modified random pairwise interchange mutation
procedure (see below). The goal of RoTS is to search
for a better solution in the neighbourhood of the cur-
rent solution, while mutation is responsible for es-
caping from the recent local optimum by generating
diversified starting solutions. Combining of tabu
search and mutation is done according to a so-called
(Q, τ, 1)-strategy. In this case, the total number of
SPTS iterations (global iterations) is equal to Q. At
every global iteration, τ internal iterations are

performed; in addition, one call to the mutation pro-
cedure takes place every τ iterations. The quantity Qτ
stands for the overall number of iterations. The user
can flexibly control the run time of the SPTS algo-
rithm by choosing appropriate values of Q and τ.

search trajectories solutions

cycling trajectories

starting (initial)
solution

At each internal iteration, the set of the neigh-
bouring solutions of π − the set Ν2(π) − is considered
and the move to the solution that improves most the
objective function value is chosen. The complete
evaluation of Ν2(π) takes O(n2) operations, except the
first iteration, which takes O(n3) operations (see [17]).
The tabu list (memory) is organized as an n × n integer
matrix T = (tij)n×n, where n is the problem size. At the
beginning, all the entries of T are set to zero. As the
search progresses, the entry tij stores the current
iteration number plus the tabu tenure, h, i.e. the num-
ber of the future iteration starting at which ith and jth
elements of the permutation may again be inter-
changed. The perturbation consisting of exchanging
ith and jth elements is forbidden if the corresponding
tabu criterion holds, i.e. tij is equal or greater than the
current iteration number. However, the tabu status is
ignored if an aspiration criterion is met, for example,
the perturbation results in a solution that is better than
the best so far (BSF) solution. Thus, the perturbation
pij (i.e. the move from the current solution π to the
solution ijp⊕π) is allowable if only it is not forbid-
den or aspired − an acceptance criterion is said to be
satisfied.

Figure 3. Visualization (hypothetical view) of solutions
and search trajectories for the unstructured QAP instance

tai20a

Regarding mutation of solutions, we use the
modified random pairwise interchange mutation
(mrpi-mutation) procedure. It can simply be seen as a
sequence of µ − 1 random perturbations

, where ri is an array of random

indices such that 1 ≤ ri
µµ riririririri ppp

13221
,...,,

−

~π

k ≤ n, k = 1, 2, …, µ, rik ≠ ril,
k = 1, 2, …, µ, l = 1, 2, …, µ, k ≠ l. The mutated
permutation can thus be defined as a composition

‡ We assume that the reader is familiar with the basic

principles of the TS method. Those interested in the
fundamentals of TS are addressed to [7,8,9].

A. Misevičius, A. Tomkevičius, J. Karbauskas

r is a pseudo-random number from the interval [0, 1];
α plays the role of the randomization parameter (in
fact, α is a probability that the tabu status will be
ignored even if the aspiration criterion does not hold);
finally, z• denotes the intermediate BSF objective
function value, i.e. , and z)(min),(

1,...,0

qk

kk
zz ′

−=′

• = π ∗ is

the overall BSF objective function value, i.e.

µµ
π riririririririri pppp

kk 113221
......

−+
⊕⊕⊕⊕⊕⊕

µππρ =),(~ ~π

)(minarg
),(
,...,1,1,...,1

),(
ij

_criterionacceptance
nijni

qk pz
ji

⊕=

=
+=−=

ππ
TRUE










==

<

=

otherwise ,

)_(or))

_(and)((,

_

),(

),(
min

),(

FALSE

TRUEFALSE
TRUE

ji

ji

ji

criterionaspiration

criteriontabuzz

criterionacceptance



 ≥≥

=
otherwise ,

)(and)(,
_),(

FALSE
TRUE αrkt

criteriontabu ijji








<=

<
= ∗

•

otherwise ,
)(or))_(

and)((,

_

),(

),(

FALSE
TRUE

TRUE
zzcriteriontabu

zz

criterionaspiration

ji

ji

. This

guarantees that , where π, are the
actual and mutated permutations, respectively. The
parameter µ (1 < µ ≤ n) is called the mutation level.
Note that the value of µ should be large enough to
allow to leave the current local optimum and to move
towards new regions in the solution space; on the
other hand, µ should be small enough to keep
characteristics of the good solutions since parts of
these solutions may be close to the ones of the
(pseudo-)optimal solution. In our implementation, µ is
related to the problem size n, i.e. µ = max{2, ξ ⋅ n},
where ξ ∈ (0, 1] (we recommend ξ = 0.3 ÷ 0.4). It is
easy to generate several distinct sequences of random
perturbations and receive many mutated solutions
instead of the single one. Our SPTS algorithm pro-
duces λ (λ = n) mutated solutions, but only the best
"mutant" (i.e. the mutated solution that has the
smallest objective function value) serves as an output
of mrpi-mutation.









⊕

==∞

=

=

++−−=

<++−−>≥∨
,)(min

2and 1,

),(
2
1

2
1

)1()1(
)1()1(,,1,:,min

lm

_criterionacceptance
jiinic

cmllnllmmlml
pz

 ji

z

ml

π

TRUE



















=

=
′′

=′−=′

′

−=′

•

∗

otherwise,
)(minmin

),(min
min

1,

),(

01,...,1

),(

1,...,0

qk

,...,τkqq

qk

kk

z

z
qz

z

π

π
.

The solution is regar-

ded as the final solution of the SPTS procedure.









=

==

∗)(minargminarg),(

0,...,1

qk

,...,τkQq
z ππ

We call the tabu search variant defined by for-
mulas (3a)−(3c) as basic. It will be referred to as
SPTS1. In this variant, the only instrument for
avoiding stagnation is the mutation procedure, which
aims mainly at diversifying the search trajectories.
The cycles still occur − we can make sure of this fact
by looking at Figure 2.

We are going to discuss the SPTS algorithm in
more detail. So, let SPTS start with a random initial
solution π°. Also, let q be the current global iteration
number (counter) (q = 1, 2, …, Q) and k be the current
internal iteration number (k = 1, 2, …, τ). Further-
more, let denote the starting solution of the RoTS
procedure by π(0,q) (π(0,q) (q > 1) corresponds to the
solution which is the result of the mutation procedure
performed at the (q−1)th iteration (note that
π(0,1) = π°)). Then, the resulting solution of the kth
iteration of the adapted RoTS procedure is the
permutation π(k,q) such that:

In the next SPTS variants we propose, the stagna-
tion avoidance is due to the extended tabu, aspiration,
and/or acceptance criteria. These variants are denoted
by SPTS2, SPTS3, SPTS4, and SPTS5. They are
formally defined as follows:

SPTS2:
acceptance_criterion(i, j) is equivalent to (3a)

s.t. (3b) and
, (2)









<>

=<

=

∗

•

otherwise ,
)(or))(and)

_(and)((,

_

),(

),(

FALSE
TRUE

TRUE
zzk

criteriontabuzz

criterionaspiration
ji

ji

η
; (4)

where

SPTS3: , (3a)
acceptance_criterion(i, j) is equivalent to (3a)

s.t. (4) and





 =≥≥

=

otherwise ,
)(or))(and)((,

_
▼

),(

FALSE
TRUE zzrkt

criteriontabu

ij

ji

α , (5) , (3b)

, (3c) where z▼ is the objective function value that cor-
responds to the previous local optimum, i.e.

, here q is the cur-

rent global iteration number;




 =∞

= −′

=′
otherwise ,)(min

1,
)1,(

0

▼
qk

,...,τk
z

q
z πwhere i, j are the current indices of the permutation

elements to be interchanged (i = 1, …, n − 1, j = i + 1,
…, n); z denotes the current objective function value
obtained by interchanging ith and jth elements of the
actual permutation π;

SPTS4:
acceptance_criterion(i, j) is equivalent to (3a)

s.t. (3b) and
otherwise ;

366

Stagnation-Protected Tabu Search Variants for Unstructured Quadratic Assignment Problems











=

≠

=<

=

otherwise ,
)_(

or))(and)

_(and)((,

_

),(

),(
min

),(

▼

FALSE
TRUE

FALSE

TRUE

ji

ji

ji

criterionaspiration

zz

criteriontabuzz

criterionacceptance

, (7)








<≠>

=<

=

∗

•

otherwise ,
)(or))(and)(and)

_(and)((,

_

▼

),(

),(

FALSE
TRUE

TRUE

zzzzk

criteriontabuzz

criterionaspiration
ji

ji

η
; (6)

SPTS5:
s.t. (3b) and (4).

procedure StagnationProtectedTabuSearch;
 // input: π° − the initial solution, n − the problem size, Q,τ − the numbers of iterations, h − the tabu tenure, //
 // α, β, γ, λ, ξ − the control parameters (α ∈ [0, 1], β > 0, γ > 0, λ ≥ 1, ξ ∈ (0, 1]) //
 // external variable: trace − the trail of the pairwise interchanges performed in the mutation procedure //
 // output: π∗ − the best solution found //
begin
 delay_interval := max(1, β ⋅ n); intensification_interval := max(1, γ ⋅ h); µ := max(2, ξ ⋅ n); η := 0.5 ⋅ µ;
 π := π°; π∗ := π°; z∗ := z(π∗); T := 0;
 for q := 1 to Q do begin // outer cycle //
 if q = 1 then z▼ := ∞ else z▼ := z•; π• := π; z• := z(π•); i := 1; j := 1; k′ := 1;
 calculate differences in the objective function values dlm, l=1,…,n−1, m=l+1,…,n;
 for k := 1 to τ do begin // inner cycle //
 zini := z(π); zmin := ∞;
 repeat // target analysis: exploration of the neighbourhood Ν2(π) //
 i ;))1,1,1(,,(: +−<<= iniinj IFIF)1,1,(: ++<= ijnjj IF ;
 z := zini + dij;
 if acceptance_criterion(i, j) = TRUE then begin zmin := z; imin := i; jmin := j end
 until i = n − 1; // cycle continues until all the pairs (i, j) are examined //
 if zmin < ∞ then begin

minmin jip ,: ⊕= ππ ; // the current permutation is replaced by the new one //
 update differences dlm, l = 1,…,n − 1, m = l + 1,…,n;
 if k > delay_interval then hkt

minmin ji +=:, else 1:, += kt
minmin ji // the move becomes tabu //

minmin jip ,

 end; // if //
 if k − k′ ≥ intensification_interval then begin
 switch to the alternative intensification (steepest descent);
 k′ := k
 end; // if //
 if z(π) < z(π•) then begin π• := π; z• := z(π•) end; // saving the intermediate BSF solution //
 if z(π) < z(π∗) then begin
 π∗ := π; z∗ := z(π∗); // saving the overall BSF solution //
 T := 0 // wiping out of the tabu list to intensify the search in the neighbourhood of π∗ //
 end
 end; // for k... //
 if q < Q then begin
 T := 0; // emptying the tabu list //
 π := ModifiedRandomPairwiseInterchangeMutation(π•, n, λ, µ); // escaping from a local optimum //
 // π serves as a starting point for the next iteration //
 for k := µ − 1 downto µ − η do
 ht

kk tracetrace =
+

:
1, // update the tabu list T taking into account the interchanged elements of π //

 // this step is optional //
 end // if //
 end // for q... //
end.

Figure 4. Template of the stagnation-protected tabu search algorithm for the QAP.
Note. For the detailed description of acceptance_criterion(i,j), see formulas (3a)−(3c), (4)−(7)

367

A. Misevičius, A. Tomkevičius, J. Karbauskas

In SPTS1−5, we wipe out the tabu list T every τ
iterations. In SPTS2−5, we additionally include η
moves into the tabu list each time the mutation
procedure is performed. Shortly speaking, we simply
follow (in the reverse order) the trail of the random
indices (i.e. the pairwise interchanges made in mrpi-
mutation). The value of η is proportional to the actual
mutation level, µ (we used η = 0.5µ). Note that the
aspiration criterion must be ignored as long as k ≤ η,

unless z < z∗. Doing so prevents the TS algorithm
from considering the elements that have recently
been affected in the mutation procedure.

In SPTS3−5, the additional conditions "z = z▼"
and "z ≠ z▼" help preventing stagnation, in particular,
by hindering the algorithm from falling back into the
previous local optimum and long-term cycling.

function ModifiedRandomPairwiseInterchangeMutation(π, n, λ, µ);
 // input: π − the current solution (permutation), n − the problem size, //
 // λ − # of mutation iterations, µ − the mutation level (strength) //
 // external variable: trace − the trail of the random pairwise interchanges //
 // output: − the best mutated solution // ~~π
begin
 := π; ~π z(:= ∞;
 for k := 1 to λ do begin
 // generation of array of random indices ri //
 for i := 1 to n do rii := i;
 for i := 1 to µ do begin
 generate j, randomly, uniformly, i ≤ j ≤ n;
 ijpriri ⊕=:
 end;
 // random pairwise interchange mutation //
 for i := 1 to µ − 1 do ;

1,
~~ :

+
⊕=

ii riripππ

 if z() <~π z(then begin
 := // saving the best mutated solution with respect to the objective function // ~~π ~π
 trace := ri // saving the actual trail of the random pairwise interchanges //
 end // if //
 end; // for //
 return ~~π
end.

Figure 5. Template of the procedure for the modified random pairwise interchange mutation

1 8 6 2 4 5 3 7 9
6 7 1 4
1 8 6 2 4 3 5 7 9
5 8 6 2 4 3 1 7 9
2 8 6 5 4 3 1 7 9
2 8 6 5 4 3 1 7 9

current permutation π

67p⊕π
p⊕π

random indices (array ri)

mutated permutation ~π
14p7167

7167 p⊕
pp ⊕⊕π ⊕

Figure 6. Example of the modified random pairwise interchange mutation (µ = 4,) 4),(~ =ππρ

The detailed template of the stagnation-protected
tabu search algorithm is presented in Figure 4, while
the template of the mrpi-mutation procedure is given
in Figure 5. In addition, an example of mrpi-mutation
is shown in Figure 6.

The values of the control parameters are tuned to
the maximum performance of the SPTS algorithm; in
particular, Q is equal to 100 for shorter runs and Q is
equal to 200 for longer runs; τ = n2; h is equal to 0.3n
for smaller instances and h is equal to 0.15n for
larger instances; α = 0.05; β = 1; γ = 2; λ = n; finally,
ξ is equal to 0.4 for smaller instances and ξ is equal to
0.3 for larger instances.

3. Computational experiments

In this section, we present the results of compa-
rison of different algorithms. In the experiments, we
handled only the unstructured (random) instances
taken from the QAP library QAPLIB [3]. These
instances are denoted by tai20a, tai25a, tai30a, tai35a,
tai40a, tai50a, tai60a, tai80a, and tai100a (the numeral
in the instance name denotes the size of the problem).

The algorithms used in the experiments are as
follows: five variants of SPTS (SPTS1, SPTS2,
SPTS3, SPTS4, SPTS5), as well as the robust tabu
search algorithm (RoTS) [17], the reactive tabu search
algorithm (ReTS) [1], the fast ant algorithm ("fast ant
system" − FANT) [18], and the improved hybrid

368

Stagnation-Protected Tabu Search Variants for Unstructured Quadratic Assignment Problems

genetic algorithm (IHGA) [12]. The following are the
performance measures for the algorithms: a) the
average deviation from the best known solution (BKS)
− δ (%][z)(100 bksbkszz −=δ , where z is the ave-
rage objective function value over 10 restarts and zbks
is the objective function value that corresponds to the
best known solution; b) the number of solutions that
are within 1%-optimality (over 10 restarts) − C1%;

c) the number of the best known solutions found −
Cbks.

The experiments were organized in such a way that
all the algorithms require approximately the same
CPU time.

The results of the comparison are presented in
Tables 1−2.

Table 1. Results of comparison of the SPTS variants for the unstructured QAP instances.
 The best results obtained are printed in bold face. CPU times per restart are given in seconds.
 1.4 GHz PENTIUM computer was used in the experiments

Instance n BKV
δ , C1%/Cbks

 SPTS1 SPTS2 SPTS3 SPTS4 SPTS5
CPU time

tai20a 20 703482 a 0.062 10/ 6 0 0 0 0 2.5
tai25a 25 1167256 a 0.106 10/ 6 0 0.043 10/ 8 0.051 10/ 7 0 6.0
tai30a 30 1818146 a 0 0 0 0 0 12.4
tai35a 35 2422002 a 0.138 10/ 5 0.026 10/ 8 0.170 10/ 4 0.090 10/ 7 0 24.8
tai40a 40 3139370 a 0.379 10/ 0 0.337 10/ 0 0.370 10/ 0 0.295 10/ 0 0.256 10/ 1 43
tai50a 50 4941410 a 0.525 10/ 0 0.462 10/ 0 0.555 10/ 0 0.495 10/ 1 0.376 10/ 0 114
tai60a 60 7205962 b 0.521 10/ 0 0.451 10/ 0 0.501 10/ 0 0.426 10/ 0 0.374 10/ 0 247
tai80a 80 13526696 c 0.379 10/ 0 0.395 10/ 0 0.360 10/ 0 0.428 10/ 0 0.382 10/ 0 730
tai100a 100 21071558 c 0.343 10/ 0 0.299 10/ 0 0.366 10/ 0 0.278 10/ 0 0.279 10/ 0 2150

a comes from [3]; b comes from [13]; c comes from [14].

Table 2. Results of comparison of SPTS5 with other algorithms for the unstructured QAP instances.
 The best results obtained are printed in bold face. CPU times per restart are given in seconds.
 1.4 GHz PENTIUM computer was used in the experiments

Instance n BKV
δ , C1%/Cbks

 RoTS ReTS FANT IHGA SPTS5
CPU time

tai20a 20 703482 a 0.052 10/ 7 0.093 10/ 8 0.574 6/ 0 0.003 10/ 9 0 5.1
tai25a 25 1167256 a 0 0 1.088 2/ 0 0.009 10/ 9 0 12.4
tai30a 30 1818146 a 0.047 10/ 6 0 0.821 6/ 0 0 0 25.3
tai35a 35 2422002 a 0.131 10/ 3 0.171 10/ 5 1.211 1/ 0 0.015 10/ 8 0 51
tai40a 40 3139370 a 0.543 10/ 0 0.239 10/ 0 1.036 1/ 0 0.309 10/ 0 0.199 10/ 1 88
tai50a 50 4941410 a 0.848 7/ 0 0.425 10/ 0 1.398 0/ 0 0.554 10/ 1 0.291 10/ 1 231
tai60a 60 7205962 b 0.802 8/ 0 0.518 9/ 0 1.304 0/ 0 0.549 10/ 0 0.305 10/ 0 498
tai80a 80 13526696 c 0.926 9/ 0 0.385 10/ 0 1.453 0/ 0 0.518 10/ 0 0.297 10/ 0 1470
tai100a 100 21071558 c 0.764 10/ 0 0.338 10/ 0 1.137 1/ 0 0.476 10/ 0 0.196 10/ 1♠ 4320

♠ during long runs on the instance tai100a, SPTS5 was successful in finding the solution that is better
than that reported in [14]; the new objective function value is equal to 21071540.

It can be viewed from Tables 1−2 that our variants
of the stagnation-protected tabu search yield very
promising results for the unstructured QAP instances.
For the most part, this is true for the variant SPTS5,
which seems to be appreciably better than the re-
maining variants. The results from Table 2 also con-
firm that SPTS5 is superior to the robust and reactive
tabu search, the improved hybrid genetic algorithm,
and especially the fast ant algorithm. By the way,
IHGA performs relatively well. This is very probably
due to the fact that IHGA incorporates tabu search as a

local improvement (post-crossover) procedure. On the
other hand, SPTS5 is evidently better than the fast ant
algorithm. The last one does not use tabu search. We
conjecture that this circumstance is the main reason of
poor results of FANT. On the whole, it could be stated
that the tabu-search-based policy, in one or another
form, is obligatory if one seeks for good solutions for
the unstructured QAPs.

Finally, it should be emphasized that, in our expe-
rimentation, SPTS5 achieved the best-known solutions
for all the unstructured QAP instances tested, except

369

A. Misevičius, A. Tomkevičius, J. Karbauskas

the instances tai60a and tai80a. SPTS5 also found new
record-breaking solution for the largest unstructured
QAP instance from QAPLIB − tai100a.

4. Concluding remarks

The unstructured instances of the quadratic assign-
ment problem still pose a real challenge for the desig-
ners of heuristic algorithms. New algorithms capable
of the effective exploration of the unstructured solu-
tion spaces are needed. The stagnation-protected tabu
search (SPTS) is along this line of thinking. SPTS
aims, in particular, to improve the performance of the
tabu search by fighting against the stagnation pheno-
menon, which is one of the main barriers of the
straightforward TS algorithms, especially in the cases
where long and extra-long runs are necessary.

In this paper, five variants of SPTS with the dif-
ferent extended tabu, aspiration, and acceptance crite-
ria are proposed. The results obtained from the experi-
ments with SPTS demonstrate that the situation with
the unstructured QAP instances does not seem hope-
less. Our SPTS algorithms produce quite encouraging
solutions for these instances. For the unstructured
QAPs, SPTS obviously outperforms both the earlier
tabu search versions and other heuristic algorithms. In
addition, the new best-known solution for the un-
structured instance tai100a was discovered.

Two main directions for the future research are the
further investigation of innovative tabu, aspiration,
and acceptance criteria as well as trying other more
advanced mutation strategies. Intelligent recombina-
tion of pairs (or several) solutions instead of crude
random mutation might be experienced, too. It is also
worthy incorporating SPTS into the other modern
meta-heuristics like hybrid genetic or ant algorithms.

References
 [1] R. Battiti, G. Tecchiolli. The reactive tabu search.

ORSA Journal on Computing, 1994, Vol.6, 126-140.
 [2] R.E. Burkard, E. Çela, P.M. Pardalos, L. Pitsoulis.

The quadratic assignment problem. In D.Z.Du,
P.M.Pardalos (eds.), Handbook of Combinatorial Op-
timization, Kluwer, Dordrecht, 1998, Vol.3, 241–337.

 [3] R.E. Burkard, S. Karisch, F. Rendl. QAPLIB – a
quadratic assignment problem library. Journal of Glo-
bal Optimization, 1997, Vol.10, 391−403. [See also
http://www.seas.upenn.edu/qaplib/.]

 [4] E. Çela. The Quadratic Assignment Problem: Theory
and Algorithms. Kluwer, Dordrecht, 1998.

 [5] J. Chakrapani, J. Skorin-Kapov. Massively parallel
tabu search for the quadratic assignment problem.
Annals of Operations Research, 1993, Vol.41, 327–
341.

 [6] Z. Drezner. The extended concentric tabu for the
quadratic assignment problem. European Journal of
Operational Research, 2005, Vol.160, 416–422.

 [7] M. Gendreau. An introduction to tabu search. In
F.Glover, G.Kochenberger (eds.), Handbook of Meta-
heuristics, Norwell: Kluwer, 2002, 37–54.

 [8] F. Glover, M. Laguna. Tabu Search. Kluwer, Dor-
drecht, 1997.

 [9] A. Hertz, E. Taillard, D. de Werra. Tabu search. In
E. Aarts, J.K. Lenstra (eds.), Local Search in Combi-
natorial Optimization, Chichester: Wiley, 1997, 121–
136.

[10] J.P. Kelly, M. Laguna, F. Glover. A study of diversi-
fication strategies for the quadratic assignment prob-
lem. Computers & Operations Research, 1994, Vol.21,
885–893.

[11] T. Koopmans, M. Beckmann. Assignment problems
and the location of economic activities. Econometrica,
1957, Vol.25, 53−76.

[12] A. Misevicius. An improved hybrid genetic algorithm:
new results for the quadratic assignment problem.
Knowledge-Based Systems, 2004, Vol.17, 65−73.

[13] A. Misevicius. A tabu search algorithm for the quad-
ratic assignment problem. Computational Optimiza-
tion and Applications, 2005, Vol.30, 95−111.

[14] A. Misevičius, A. Lenkevičius, D. Rubliauskas. Ite-
rated tabu search: an improvement to standard tabu
search. Information Technology and Control, 2006,
Vol.35, 187−197.

[15] P.M. Pardalos, F. Rendl, H. Wolkowicz. The quad-
ratic assignment problem: a survey and recent deve-
lopments. In P.M. Pardalos, H. Wolkowicz (eds.),
Quadratic Assignment and Related Problems.
DIMACS Series an Discrete Mathematics and Theore-
tical Computer Science, Vol.16, Providence: AMS,
1994, 1–41.

[16] J. Skorin-Kapov. Extension of a tabu search adapta-
tion to the quadratic assignment problem. Computers
& Operations Research, 1994, Vol.21, 855-865.

[17] E. Taillard. Robust taboo search for the QAP.
Parallel Computing, 1991, Vol.17, 443–455.

[18] E. Taillard. FANT: fast ant system. Tech. Report
IDSIA-46-98, Lugano, Switzerland, 1998.

Received October 2006.

370

