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Abstract. Tabu search (TS) algorithms have been proven to be extremely efficient for solving combinatorial opti-
mization problems. In this paper, we discuss new variants of the tabu search for the well-known combinatorial 
problem, the quadratic assignment problem (QAP). In particular, a so-called stagnation-protected tabu search (SPTS) 
strategy is proposed. The goal is to fight against the chaotic behaviour and stagnation phenomenon, especially at long 
runs of TS. SPTS seems to be quite useful for the unstructured (random) quadratic assignment problems. These 
problems, which resemble a "needle-in-a-haystack" problem, are hardly solvable by the ordinary heuristic algorithms 
and still remain a challenge for the QAP community. The results obtained from the experiments with SPTS on the un-
structured QAPs taken from the QAP library QAPLIB demonstrate that this new strategy is superior to other tabu 
search algorithms. 

Keywords: combinatorial optimization, quadratic assignment problem, heuristics, tabu search, stagnation-pro-
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Introduction 

The quadratic assignment problem (QAP) was in-
troduced by Koopmans and Beckmann [11] as a 
mathematical model for the location of economic 
activities. Recently, this problem is frequently used as 
a "platform" for investigation of the performance of 
both exact and heuristic algorithms. The QAP can be 
formulated as follows. Let two matrices A = (aij)n×n 
and B = (bkl)n×n be given. The goal is to find a per-
mutation π of n elements that minimizes the following 
objective function: 
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where π ∈ Π, Π is the set of all possible permutations 
of n elements. A neighbourhood function Ν: Π → 2Π 
assigns for each π ∈ Π a set Ν(π) ⊆ Π − the set of 
neighbouring solutions of π. An example of the 
neighbourhood function for the QAP is the 2-
exchange function Ν2. In this case, Ν2(π) = {π′ | π′ 
∈ Π, ρ(π, π′) ≤ 2}, where π ∈ Π, and ρ(π, π′) is a 
distance between permutations π and π′: 
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. Every neighbouring solu-
tion from Ν2(π) can be reached from the current solu-
tion π by a perturbation (move) perturb(π, i, j): 

, which gives π′ such that π′(i) = π(j), 

π′(j) = π(i). We will also use the notation pij such that 
the expression ijp⊕=′ ππ  would mean that π ′  is 
obtained from π by applying perturb(π, i, j). The so-
lution π ∈ Π is said to be a locally optimal solution 
with respect to the neighbourhood Ν if z(π′) ≥ z(π) for 
every π′ ∈ Ν(π). The solution πopt is called an optimal 
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The quadratic assignment problem is an NP-hard 
combinatorial optimization problem. It can be solved 
exactly for very small sizes only (n ≤ 36). Therefore, 
heuristic methods are extensively used for solving 
medium- and large-scale QAPs [2,4,15]. Tabu search 
(TS) algorithms, which are based on the intelligent 
neighbourhood search with memory, are among those 
that have been proven to be extremely efficient for the 
QAP [1,5,6,13,16,17]. Despite of this, there is still a 
room for further improvements of TS, especially if we 
are handling the unstructured (random) quadratic 
assignment problems (see, for example, the instances 
tai20a, tai25a, tai30a, tai35a, tai40a, tai50a, tai60a, 
tai80a, and tai100a taken from the QAP instances 
library QAPLIB [3]). These problems are characte-
rized by random, uniformly distributed (regular) 
values of the data matrices. Although the data are re-
gular, there is no regularity in the solution space. The 
landscapes of such problems are obviously disordered 
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with the enormous number of local optima. This is 
why the tabu search algorithms (as well as other 
heuristic algorithms) face severe difficulties when 
dealing with this class of problems. In fact, many heu-
ristics work quite well with respect to the average 
quality of solutions; however, things look to be very 
pessimistic if one seeks for the pseudo-optimal (or 
near-pseudo-optimal) solutions. It seems that the large 
unstructured QAP instances (n ≥ 80) are not prac-
tically solvable even to pseudo-optimality. The current 
work aims to focus on this issue. 

The paper is organized as follows. In Section 1, we 
discuss our motivation of using the stagnation-pro-
tected tabu search strategy. Some variants of the 
stagnation-protected tabu search for the QAP are 
described in Section 2. In Section 3, we present the 
results of the computational experiments on the 
unstructured QAPs. Section 4 completes the paper 
with concluding remarks. 

1. Stagnation-protected tabu search: 
preliminaries and motivation 

For the unstructured problems, it is a common case 
that the search process converges quite rapidly, but 
without finding an optimal or even near-optimal solu-
tion. New (better) locally optimal solutions are en-
countered very easily at the early stage of the search 
process; however, as the search progresses, new better 
solutions grow rarer with each search iteration. It takes 
longer and longer time to reveal new record-breaking 
solutions at the later phases of the search. This ten-
dency is particularly evident for extensive runs of 
time-consuming iterative heuristic algorithms like 
simulated annealing, tabu search, iterated local search, 
and others. For these methods, it can be observed that 
the time intervals between successive detections of a 
new better solution increase catastrophically without 
getting satisfactory results. This is even more true for 
large-scale problems. We call the above phenomenon 
the stagnation phenomenon (or simply stagnation). 
The following are the main reasons of stagnation: 
• a huge number of locally optimal solutions over 

the solution space; 
• many isolated local optima; 
• complex, non-monotonic landscapes with small 

basins of attraction; 
• cycles of the search trajectories; 
• deterministic chaos (chaotic attractors). 

Note that the large number of local optima does 
not necessarily imply complex landscape. There exist 
some special kind landscapes, which are relatively 
easy for heuristics (see Figure 1). Regarding determi-
nistic chaos, it can be identified by the situation where 
getting stuck at local optima and cycling trajectories 
are absent − this is just the case of the standard 
(simple) tabu search − but the search configurations 

are still confined in limited parts of the search space. 
If these parts do not contain the pseudo-optimal 
solution, it may not be discovered. 
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Figure 1. A special type landscape: "big valley" 

The illustrations of stagnation episodes within the 
tabu search are shown in Figures 2−3. In Figure 2, the 
graph is presented which clearly demonstrates that the 
tabu search process returns to the same point (solu-
tion) from time to time. In Figure 3, the search tra-
jectories are visualized by plotting the lines between 
the points that correspond to the solutions of the QAP 
(i.e. permutations). The co-ordinates (u, v) of these 
points are derived by using simple formulas: 
u = (w div GS) ∗ SF, v = (w mod GS) ∗ SF, where 

, GS is a grid size, SF 

corresponds to a scaling factor (we used 
GS = SF = 24), and H denotes a hashing constant 
which is used by mapping a permutation π to a scalar 
w (in our experiments, H = 10000). It is obvious from 
Figure 3 that the search process is cyclic and chaotic. 
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Eliminating stagnation is one of the key issues by 
creating competitive TS algorithms. Several attempts 
to overcome the stagnant behaviour of TS have alrea-
dy been done (see, for example, the reactive tabu 
search [1], the tabu search with diversification 
strategies [10], the enhanced (iterated) tabu search 
[13]). The results from the experiments, however, 
demonstrate that finding the pseudo-optimal solutions 
of the unstructured problems remains a tough task 
even for the accurately designed and elaborated algo-
rithms. 

In this paper, we continue our endeavour to fur-
ther enhance the performance of the tabu search 
algorithms. A new concept of the "stagnation-pro-
tected tabu search" (SPTS) is proposed. The focus is, 
in particular, on prevention of stagnation, minimizing 
cycling trajectories, avoiding becoming trapped at 
local optima, and, consequently, improving efficiency 
of the tabu search, especially at long and extra-long 
runs. Some different variants of SPTS for the QAP are 
described in the next section. 
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Figure 2. Illustration of the stagnation phenomenon for the unstructured QAP instance tai20a. 
Note. The instance tai20a is from the library of the QAP instances QAPLIB [3] 

 

2. Stagnation-protected tabu search for the 
QAP 

The paradigm we rely is the enhanced (iterated) 
tabu search‡ [13], which, in turn, is based on the 
adapted robust tabu search (RoTS) algorithm [17] and 
the modified random pairwise interchange mutation 
procedure (see below). The goal of RoTS is to search 
for a better solution in the neighbourhood of the cur-
rent solution, while mutation is responsible for es-
caping from the recent local optimum by generating 
diversified starting solutions. Combining of tabu 
search and mutation is done according to a so-called 
(Q, τ, 1)-strategy. In this case, the total number of 
SPTS iterations (global iterations) is equal to Q. At 
every global iteration, τ internal iterations are 

performed; in addition, one call to the mutation pro-
cedure takes place every τ iterations. The quantity Qτ 
stands for the overall number of iterations. The user 
can flexibly control the run time of the SPTS algo-
rithm by choosing appropriate values of Q and τ. 

search trajectories solutions

cycling trajectories 

starting (initial)
solution 

At each internal iteration, the set of the neigh-
bouring solutions of π − the set Ν2(π) − is considered 
and the move to the solution that improves most the 
objective function value is chosen. The complete 
evaluation of Ν2(π) takes O(n2) operations, except the 
first iteration, which takes O(n3) operations (see [17]). 
The tabu list (memory) is organized as an n × n integer 
matrix T = (tij)n×n, where n is the problem size. At the 
beginning, all the entries of T are set to zero. As the 
search progresses, the entry tij stores the current 
iteration number plus the tabu tenure, h, i.e. the num-
ber of the future iteration starting at which ith and jth 
elements of the permutation may again be inter-
changed. The perturbation consisting of exchanging 
ith and jth elements is forbidden if the corresponding 
tabu criterion holds, i.e. tij is equal or greater than the 
current iteration number. However, the tabu status is 
ignored if an aspiration criterion is met, for example, 
the perturbation results in a solution that is better than 
the best so far (BSF) solution. Thus, the perturbation 
pij (i.e. the move from the current solution π to the 
solution ijp⊕π ) is allowable if only it is not forbid-
den or aspired − an acceptance criterion is said to be 
satisfied. 

Figure 3. Visualization (hypothetical view) of solutions 
and search trajectories for the unstructured QAP instance 

tai20a 

Regarding mutation of solutions, we use the 
modified random pairwise interchange mutation 
(mrpi-mutation) procedure. It can simply be seen as a 
sequence of µ − 1 random perturbations 

, where ri is an array of random 

indices such that 1 ≤ ri
µµ riririririri ppp

13221
,...,,

−

~π

k ≤ n, k = 1, 2, …, µ, rik ≠ ril, 
k = 1, 2, …, µ, l = 1, 2, …, µ, k ≠ l. The mutated 
permutation  can thus be defined as a composition 

 
‡  We assume that the reader is familiar with the basic 

principles of the TS method. Those interested in the 
fundamentals of TS are addressed to [7,8,9]. 
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r is a pseudo-random number from the interval [0, 1]; 
α plays the role of the randomization parameter (in 
fact, α is a probability that the tabu status will be 
ignored even if the aspiration criterion does not hold); 
finally, z• denotes the intermediate BSF objective 
function value, i.e. , and z)(min ),(

1,...,0

qk

kk
zz ′

−=′

• = π ∗ is 

the overall BSF objective function value, i.e.  
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guarantees that , where π,  are the 
actual and mutated permutations, respectively. The 
parameter µ (1 < µ ≤ n) is called the mutation level. 
Note that the value of µ should be large enough to 
allow to leave the current local optimum and to move 
towards new regions in the solution space; on the 
other hand, µ should be small enough to keep 
characteristics of the good solutions since parts of 
these solutions may be close to the ones of the 
(pseudo-)optimal solution. In our implementation, µ is 
related to the problem size n, i.e. µ = max{2, ξ ⋅ n}, 
where ξ ∈ (0, 1] (we recommend ξ = 0.3 ÷ 0.4). It is 
easy to generate several distinct sequences of random 
perturbations and receive many mutated solutions 
instead of the single one. Our SPTS algorithm pro-
duces λ (λ = n) mutated solutions, but only the best 
"mutant" (i.e. the mutated solution that has the 
smallest objective function value) serves as an output 
of mrpi-mutation. 
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The solution  is regar-

ded as the final solution of the SPTS procedure. 
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We call the tabu search variant defined by for-
mulas (3a)−(3c) as basic. It will be referred to as 
SPTS1. In this variant, the only instrument for 
avoiding stagnation is the mutation procedure, which 
aims mainly at diversifying the search trajectories. 
The cycles still occur − we can make sure of this fact 
by looking at Figure 2. 

We are going to discuss the SPTS algorithm in 
more detail. So, let SPTS start with a random initial 
solution π°. Also, let q be the current global iteration 
number (counter) (q = 1, 2, …, Q) and k be the current 
internal iteration number (k = 1, 2, …, τ). Further-
more, let denote the starting solution of the RoTS 
procedure by π(0,q) (π(0,q) (q > 1) corresponds to the 
solution which is the result of the mutation procedure 
performed at the (q−1)th iteration (note that 
π(0,1) = π°)). Then, the resulting solution of the kth 
iteration of the adapted RoTS procedure is the 
permutation π(k,q) such that: 

In the next SPTS variants we propose, the stagna-
tion avoidance is due to the extended tabu, aspiration, 
and/or acceptance criteria. These variants are denoted 
by SPTS2, SPTS3, SPTS4, and SPTS5. They are 
formally defined as follows: 

SPTS2: 
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where 

SPTS3: , (3a) 
acceptance_criterion(i, j) is equivalent to (3a)  

s.t. (4) and 
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, (3c) where z▼ is the objective function value that cor-
responds to the previous local optimum, i.e. 

, here q is the cur-

rent global iteration number; 
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z πwhere i, j are the current indices of the permutation 

elements to be interchanged (i = 1, …, n − 1, j = i + 1, 
…, n); z denotes the current objective function value 
obtained by interchanging ith and jth elements of the 
actual permutation π; 

SPTS4: 
acceptance_criterion(i, j) is equivalent to (3a)  

s.t. (3b) and 
otherwise ; 
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SPTS5: 
s.t. (3b) and (4). 

 
procedure StagnationProtectedTabuSearch; 
  // input: π° − the initial solution, n − the problem size, Q,τ − the numbers of iterations, h − the tabu tenure, // 
  //     α, β, γ, λ, ξ − the control parameters (α ∈ [0, 1], β > 0, γ > 0, λ ≥ 1, ξ ∈ (0, 1]) // 
  // external variable: trace − the trail of the pairwise interchanges performed in the mutation procedure // 
  // output: π∗ − the best solution found // 
begin 
  delay_interval := max(1, β ⋅ n); intensification_interval := max(1, γ ⋅ h); µ := max(2, ξ ⋅ n); η := 0.5 ⋅ µ; 
  π := π°; π∗ := π°; z∗ := z(π∗); T := 0; 
  for q := 1 to Q do begin // outer cycle // 
    if q = 1 then z▼ := ∞ else z▼ := z•; π• := π; z• := z(π•); i := 1; j := 1; k′ := 1; 
    calculate differences in the objective function values dlm, l=1,…,n−1, m=l+1,…,n; 
    for k := 1 to τ do begin // inner cycle // 
      zini := z(π); zmin := ∞; 
      repeat // target analysis: exploration of the neighbourhood Ν2(π) // 
        i ; ))1,1,1(,,(: +−<<= iniinj IFIF )1,1,(: ++<= ijnjj IF ; 
        z := zini + dij; 
        if acceptance_criterion(i, j) = TRUE then begin zmin := z; imin := i; jmin := j end 
      until i = n − 1; // cycle continues until all the pairs (i, j) are examined // 
      if zmin < ∞ then begin 
         

minmin jip ,: ⊕= ππ ; // the current permutation is replaced by the new one // 
         update differences dlm, l = 1,…,n − 1, m = l + 1,…,n; 
         if k > delay_interval then hkt

minmin ji +=:,  else 1:, += kt
minmin ji  // the move  becomes tabu // 

minmin jip ,

      end; // if // 
      if k − k′ ≥ intensification_interval then begin 
         switch to the alternative intensification (steepest descent); 
         k′ := k 
      end; // if // 
      if z(π) < z(π•) then begin π• := π; z• := z(π•) end; // saving the intermediate BSF solution // 
      if z(π) < z(π∗) then begin 
         π∗ := π; z∗ := z(π∗); // saving the overall BSF solution // 
      T := 0 // wiping out of the tabu list to intensify the search in the neighbourhood of π∗ //    
      end 
    end; // for k... // 
    if q < Q then begin 
       T := 0; // emptying the tabu list // 
       π := ModifiedRandomPairwiseInterchangeMutation(π•, n, λ, µ); // escaping from a local optimum // 
       // π serves as a starting point for the next iteration // 
       for k := µ − 1 downto µ − η do 
         ht

kk tracetrace =
+

:
1,  // update the tabu list T taking into account the interchanged elements of π // 

                   // this step is optional // 
    end // if // 
  end // for q... // 
end. 

 

Figure 4. Template of the stagnation-protected tabu search algorithm for the QAP.  
Note. For the detailed description of acceptance_criterion(i,j), see formulas (3a)−(3c), (4)−(7) 
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In SPTS1−5, we wipe out the tabu list T every τ 
iterations. In SPTS2−5, we additionally include η 
moves into the tabu list each time the mutation 
procedure is performed. Shortly speaking, we simply 
follow (in the reverse order) the trail of the random 
indices (i.e. the pairwise interchanges made in mrpi-
mutation). The value of η is proportional to the actual 
mutation level, µ (we used η = 0.5µ). Note that the 
aspiration criterion must be ignored as long as k ≤ η, 

unless z < z∗. Doing so prevents the TS algorithm 
from considering the elements that have recently 
been affected in the mutation procedure. 

In SPTS3−5, the additional conditions "z = z▼" 
and "z ≠ z▼" help preventing stagnation, in particular, 
by hindering the algorithm from falling back into the 
previous local optimum and long-term cycling. 
 

 
function ModifiedRandomPairwiseInterchangeMutation(π, n, λ, µ); 
  // input: π − the current solution (permutation), n − the problem size, // 
  //     λ − # of mutation iterations, µ − the mutation level (strength) // 
  // external variable: trace − the trail of the random pairwise interchanges // 
  // output:  − the best mutated solution // ~~π
begin 
  := π; ~π z( := ∞; 
  for k := 1 to λ do begin 
    // generation of array of random indices ri // 
    for i := 1 to n do rii := i; 
    for i := 1 to µ do begin 
      generate j, randomly, uniformly, i ≤ j ≤ n; 
       ijpriri ⊕=:
    end; 
    // random pairwise interchange mutation // 
    for i := 1 to µ − 1 do ; 

1,
~~ :

+
⊕=

ii riripππ

    if z( ) <~π z(  then begin 
      :=  // saving the best mutated solution with respect to the objective function // ~~π ~π
      trace := ri // saving the actual trail of the random pairwise interchanges // 
    end // if // 
  end; // for // 
  return  ~~π
end. 

 

Figure 5. Template of the procedure for the modified random pairwise interchange mutation 
 

1 8 6 2 4 5 3 7 9 
6 7 1 4      
1 8 6 2 4 3 5 7 9 
5 8 6 2 4 3 1 7 9 
2 8 6 5 4 3 1 7 9 
2 8 6 5 4 3 1 7 9 

current permutation π 

67p⊕π
p⊕π

random indices (array ri) 

mutated permutation ~π  
14p7167

7167 p⊕
pp ⊕⊕π ⊕  

Figure 6. Example of the modified random pairwise interchange mutation (µ = 4, ) 4),( ~ =ππρ

The detailed template of the stagnation-protected 
tabu search algorithm is presented in Figure 4, while 
the template of the mrpi-mutation procedure is given 
in Figure 5. In addition, an example of mrpi-mutation 
is shown in Figure 6. 

The values of the control parameters are tuned to 
the maximum performance of the SPTS algorithm; in 
particular, Q is equal to 100 for shorter runs and Q is 
equal to 200 for longer runs; τ = n2; h is equal to 0.3n 
for smaller instances and h is equal to 0.15n for 
larger instances; α = 0.05; β = 1; γ = 2; λ = n; finally, 
ξ is equal to 0.4 for smaller instances and ξ is equal to 
0.3 for larger instances. 

3. Computational experiments 

In this section, we present the results of compa-
rison of different algorithms. In the experiments, we 
handled only the unstructured (random) instances 
taken from the QAP library QAPLIB [3]. These 
instances are denoted by tai20a, tai25a, tai30a, tai35a, 
tai40a, tai50a, tai60a, tai80a, and tai100a (the numeral 
in the instance name denotes the size of the problem). 

The algorithms used in the experiments are as 
follows: five variants of SPTS (SPTS1, SPTS2, 
SPTS3, SPTS4, SPTS5), as well as the robust tabu 
search algorithm (RoTS) [17], the reactive tabu search 
algorithm (ReTS) [1], the fast ant algorithm ("fast ant 
system" − FANT) [18], and the improved hybrid 
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genetic algorithm (IHGA) [12]. The following are the 
performance measures for the algorithms: a) the 
average deviation from the best known solution (BKS) 
− δ  ( %][ z)(100 bksbkszz −=δ , where z  is the ave-
rage objective function value over 10 restarts and zbks 
is the objective function value that corresponds to the 
best known solution; b) the number of solutions that 
are within 1%-optimality (over 10 restarts) − C1%; 

c) the number of the best known solutions found − 
Cbks. 

The experiments were organized in such a way that 
all the algorithms require approximately the same 
CPU time. 

The results of the comparison are presented in 
Tables 1−2. 

Table 1. Results of comparison of the SPTS variants for the unstructured QAP instances.  
 The best results obtained are printed in bold face. CPU times per restart are given in seconds.  
 1.4 GHz PENTIUM computer was used in the experiments 

Instance n BKV 
δ , C1%/Cbks 

 SPTS1 SPTS2 SPTS3 SPTS4 SPTS5 
CPU time

tai20a 20  703482 a 0.062 10/ 6   0  0  0  0 2.5 
tai25a 25  1167256 a 0.106 10/ 6  0 0.043 10/ 8 0.051 10/ 7  0 6.0 
tai30a 30  1818146 a  0  0  0  0  0 12.4 
tai35a 35  2422002 a 0.138 10/ 5 0.026 10/ 8 0.170 10/ 4 0.090 10/ 7  0 24.8 
tai40a 40  3139370 a 0.379 10/ 0 0.337 10/ 0 0.370 10/ 0 0.295 10/ 0 0.256 10/ 1 43 
tai50a 50  4941410 a 0.525 10/ 0 0.462 10/ 0 0.555 10/ 0 0.495 10/ 1 0.376 10/ 0 114 
tai60a 60  7205962 b 0.521 10/ 0 0.451 10/ 0 0.501 10/ 0 0.426 10/ 0 0.374 10/ 0 247 
tai80a 80  13526696 c 0.379 10/ 0 0.395 10/ 0 0.360 10/ 0 0.428 10/ 0 0.382 10/ 0 730 
tai100a 100  21071558 c 0.343 10/ 0 0.299 10/ 0 0.366 10/ 0 0.278 10/ 0 0.279 10/ 0 2150 

a comes from [3]; b comes from [13]; c comes from [14]. 

Table 2. Results of comparison of SPTS5 with other algorithms for the unstructured QAP instances.  
 The best results obtained are printed in bold face. CPU times per restart are given in seconds.  
 1.4 GHz PENTIUM computer was used in the experiments 

Instance n BKV 
δ , C1%/Cbks 

 RoTS ReTS FANT IHGA SPTS5 
CPU time

tai20a 20  703482 a 0.052 10/ 7 0.093 10/ 8 0.574 6/ 0 0.003 10/ 9  0 5.1 
tai25a 25  1167256 a  0  0 1.088 2/ 0 0.009 10/ 9  0 12.4 
tai30a 30  1818146 a 0.047 10/ 6  0 0.821 6/ 0  0  0 25.3 
tai35a 35  2422002 a 0.131 10/ 3 0.171 10/ 5 1.211 1/ 0 0.015 10/ 8  0 51 
tai40a 40  3139370 a 0.543 10/ 0 0.239 10/ 0 1.036 1/ 0 0.309 10/ 0 0.199 10/ 1 88 
tai50a 50  4941410 a 0.848 7/ 0 0.425 10/ 0 1.398 0/ 0 0.554 10/ 1 0.291 10/ 1 231 
tai60a 60  7205962 b 0.802 8/ 0 0.518 9/ 0 1.304 0/ 0 0.549 10/ 0 0.305 10/ 0 498 
tai80a 80  13526696 c 0.926 9/ 0 0.385 10/ 0 1.453 0/ 0 0.518 10/ 0 0.297 10/ 0 1470 
tai100a 100  21071558 c 0.764 10/ 0 0.338 10/ 0 1.137 1/ 0 0.476 10/ 0 0.196 10/ 1♠ 4320 

♠ during long runs on the instance tai100a, SPTS5 was successful in finding the solution that is better  
than that reported in [14]; the new objective function value is equal to 21071540. 

It can be viewed from Tables 1−2 that our variants 
of the stagnation-protected tabu search yield very 
promising results for the unstructured QAP instances. 
For the most part, this is true for the variant SPTS5, 
which seems to be appreciably better than the re-
maining variants. The results from Table 2 also con-
firm that SPTS5 is superior to the robust and reactive 
tabu search, the improved hybrid genetic algorithm, 
and especially the fast ant algorithm. By the way, 
IHGA performs relatively well. This is very probably 
due to the fact that IHGA incorporates tabu search as a 

local improvement (post-crossover) procedure. On the 
other hand, SPTS5 is evidently better than the fast ant 
algorithm. The last one does not use tabu search. We 
conjecture that this circumstance is the main reason of 
poor results of FANT. On the whole, it could be stated 
that the tabu-search-based policy, in one or another 
form, is obligatory if one seeks for good solutions for 
the unstructured QAPs. 

Finally, it should be emphasized that, in our expe-
rimentation, SPTS5 achieved the best-known solutions 
for all the unstructured QAP instances tested, except 
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the instances tai60a and tai80a. SPTS5 also found new 
record-breaking solution for the largest unstructured 
QAP instance from QAPLIB − tai100a. 

4. Concluding remarks 

The unstructured instances of the quadratic assign-
ment problem still pose a real challenge for the desig-
ners of heuristic algorithms. New algorithms capable 
of the effective exploration of the unstructured solu-
tion spaces are needed. The stagnation-protected tabu 
search (SPTS) is along this line of thinking. SPTS 
aims, in particular, to improve the performance of the 
tabu search by fighting against the stagnation pheno-
menon, which is one of the main barriers of the 
straightforward TS algorithms, especially in the cases 
where long and extra-long runs are necessary. 

In this paper, five variants of SPTS with the dif-
ferent extended tabu, aspiration, and acceptance crite-
ria are proposed. The results obtained from the experi-
ments with SPTS demonstrate that the situation with 
the unstructured QAP instances does not seem hope-
less. Our SPTS algorithms produce quite encouraging 
solutions for these instances. For the unstructured 
QAPs, SPTS obviously outperforms both the earlier 
tabu search versions and other heuristic algorithms. In 
addition, the new best-known solution for the un-
structured instance tai100a was discovered. 

Two main directions for the future research are the 
further investigation of innovative tabu, aspiration, 
and acceptance criteria as well as trying other more 
advanced mutation strategies. Intelligent recombina-
tion of pairs (or several) solutions instead of crude 
random mutation might be experienced, too. It is also 
worthy incorporating SPTS into the other modern 
meta-heuristics like hybrid genetic or ant algorithms. 
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