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Abstract. This paper addresses the study of a Generic Model Control (GMC) approach for regulation of the 
specific growth rate of for fed-batch cultivation process. This approach requires all the process states to be available on 
line. Since direct measurement of these states is not possible, a state estimator must be implemented. In this work, the 
estimator is a Kalman filter that uses the oxygen uptake rate (OUR) of the microorganisms as the measurable process 
output. Another practical issue constitutes the time delay present in the OUR measurements, a Smith predictor 
compensation is proposed to overcome this problem. Several simulations were carried out to test this scheme using an 
experimentally identified process model. 
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1. Indroduction 

The automatic control of the specific growth rate 
in cell cultivation processes has become a major issue 
in process control in the recent years. One of the im-
portant applications of advanced specific growth rate 
control schemes is the production of recombinant 
proteins for pharmaceuticals. The bacterium Escheri-
chia coli, with glucose as energy source, is frequently 
used as a host organism for recombinant protein 
production. A technical problem that may be encoun-
tered during this process is the formation of acetates 
by high growth rate of microorganisms that can inhibit 
cell growth during the cultivation. Because of this 
fact, the implementation of a reliable control scheme 
for the specific growth rate becomes mandatory [2,7]. 

Several control schemes for fed-batch bioprocess 
have been investigated up to this date, a good com-
pendium of them can be found in [7]. 

One of the possible control approaches is the use 
of model based control schemes [6]. 

In this paper one of them, known as Generic 
Model Control (GMC), [4,5] is investigated. In this 
theory, the nonlinear model process is directly em-
bedded in the control law. One of the major draw-
backs, however, is the need to have all the states of the 
process available on-line to calculate the control law. 
The lack of instrumentation to measure the values of 
the variables that characterize the process, such as 
substrate or biomass concentration, makes it necessary 
to use software sensors that can estimate the states 
using the on-line measurements available. A 

commonly used measurement is the oxygen uptake 
rate (OUR). In addition, the time delay present in the 
OUR measurement represents another practical prob-
lem. The solution proposed, is to compensate this 
measurement with the aid of a Smith predictor [9]. In 
this work, a MATLAB/SIMULINK simulation tools 
was implemented to test the proposed estimation and 
control scheme. A table is provided comparing the 
integrated square error (ISE) of control algorithm for 
different values of   estimated time delay in the Smith 
predictor and also for cases without time delay, and 
with uncompensated time delay. 

The paper covers an overview of the GMC 
theory, an introduction to the mathematical model of 
the process, a description of the implementation of the 
Kalman filter with Smith predictor, and finally the 
simulation results and conclusions. 

2. Generic model control theory 

The generic model control approach is a theory 
that incorporates the process model directly in the 
control law, it has the distinctive characteristic that it 
solves an optimisation problem in only one step of 
calculation [4,5]. This section shows the basics of the 
theory. 

Suppose a process is described by equations (1) 
and (2): 

( , , , )t=x f x u d&   (1) 
( )=y g x     (2) 
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Where x is the state vector with dimension n, u is 
the manipulated variable and has dimension m, d is 
the vector of disturbances with dimension l, y is the 
vector of measurements with dimension p. 

In the general case, both f and g are nonlinear 
functions. 

The classical approach in feedback control is to 
compare a set-point desired for the output with its 
actual value, in order to form an error signal to be 
given as input to the controller. 

In Generic Model Control, this error signal is also 
formed, but the control objective is expressed in terms 
of the value of the derivative of the output. The control 
scheme calculates the manipulated variable vector so 
that the derivative of the output follows an established 
pattern. To get the expression of this pattern, it must 
be considered that, when the error signal is zero, we 
want the system to remain steady (with null 
derivative), when the output is less than the set-point 
we want the system to increase the output (positive 
derivative) and when the output value is greater than 
the set-point we want the output to decrease. 

So, it is desirable that the rate of change in the 
output to be proportional to the error signal. In addi-
tion, to have zero error in steady state, the output 
should also change its value in presence of an integral 
error.  All these qualitative considerations lead to a de-
sired expression for the system’s output derivative as 
seen in equation (3): 

( ) (setpoint setpointsystem dt= − + −∫1 2y K y y K y y& )

dt

 (3) 

Where K1 and K2 are diagonal matrices that can 
be made to vary with time. The values for K1 and K2 
must be determined during tuning procedures. 

The manipulated vector u(t) must be determined 
in order that the system follows (3) as closely as 
possible. Therefore the optimal control problem can 
be formulated as follow: 

Using the model equations 
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it is necessary to find a control profile u(t),  u(t)≤α, 
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if we estimate the derivative of the system’s output  
using the equations (1) and (2) 
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Now it is easy to become an analytical solution 
for optimal control profile u(t) using equation (4) and 
(5). A complete solution of this task can be found in 
[4, 5]. 

3. Practical aspects of the control algorithm 
3.1. System identification 

Several experiments were carried out in a bio-
reactor, the data sets obtained from online and offline 
measurements were used to identify the parameters of 
a model with the structure of equations (8) to (11), 
using also the Monod equation, (12) for the kinetics of 
the growth rate. The method used for identification 
was non-linear least squares. 
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The explanation of the parameters and the iden-
tified values is featured in Table 1.  The explanation of 
the process variables is featured in Table 2. 

Table 1. List of identified model parameters 

Symbol Name Dimensions Value 

    α          yield biomass/oxygen g/g       0.82 

    β         maintenance term for oxygen g/g/h      0.01 
    sF          substrate  concentration in feed g/kg       490.0 (given value) 

    µ max    maximum growth rate l/h        0.6589 
    KS      saturation constant g/kg      0.0504 
    Yx/s     yield substrate/biomass g/g        0.4350 
    Fev Evaporation of medium kg/h 0.0129 
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Table  2. List of process variables 

Symbol Name Dimensions 

    µ          Specific biomass growth rate 1/h         
    s           Substrate concentration    g/kg       
    xb Biomass concentration    g/kg       
    F          Feeding rate kg/h        
    W Bioreactor weight kg 
    OUR Oxygen uptake rate g/h 

 
3.2. GMC control law 

))(),(),(( ttFtf
dt
d Nyy

=  (16) 
For the case of automatic control of the growth 

rate, equation (3) becomes equation (13). Here y represents the vector of states [x, s, W],  
F the feed rate, and N a vector of components of 

Gaussian noise additive to the states to account for 
model uncertainty. 
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The time derivative of the growth rate can be obtained 
by the chain rule as featured in equation (14). The output of the system, the oxygen uptake rate, eq. 

(11) can be associated to the general form of Eq. (17) 
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In the previous equation v is a vector of Gaussian 
noise to account for measurement errors.  Substituting eq. (9) into eq. (14) and operating with 

eq.(13) gives: The details of the implementation of the Kalman 
Filter can be found, among others in [3,8,10]. ( )
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 (15) In order to implement the Kalman Filter the 
differential equation of the process model were solved 
using Euler Method. The sampling time was chosen 
taking special care in the numerical stability of the 
method, which, for the values of this particular 
process, showed to be at risk for values of sampling 
time T>=0.005h. 

3.3. Kalman Filtering Scheme 

In order to implement the control law featured in 
eq.(15), all the states of the process, and also an  
estimation of the growth rate must be available to 
perform online calculations.   For this purpose, the 
control scheme with the Kalman filter algoritms 
[3,8,10] as featured in Figure 1 was investigated. The 
Kalman filter makes the prediction of the states in 
such way that the variance of the prediction error is 
minimized. 

The condition of numerical stability is featured in 
Eq.(18) 

( )1 ,T Fε ε
∂ 1+ ≤
∂

f y
y

   (18) 

In (18) yε,Fε  represent intermediate values of the 
states and the input, respectively, in any given interval 
between sampling times.  

            

The condition is to be fulfilled in all time inter-
vals of the simulation. Taking this into account, the 
sampling time was finally set in T=0.003h. 

3.4 Time delay treatment 

In practice, the measurement of the oxygen 
uptake rate has a time delay of approximately 2 
minutes. This time delay was involved in the process 
modeling scheme. 

Initially, before real information can be obtained 
for the process, the states are predicted by the 
mathematical model, when the simulation time equals 
the time delay, the estimation of states is switched to 
the Kalman filter. 

Figure 1. Block diagram of the control algorithm 

To implement it, the process represented by Eqs. 
(8) to (10) is considered to be of the general structure 
of Eq. (16). 
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The Kalman filter estimates the states of the 
system by the aid of the delayed measurement of the 
oxygen uptake rate. This case adds to the problems of 
model mismatch and noise in the OUR signal, also the 
problem of time delay. The problem of state prediction 
during initialisation stage offers no major problems 
because all of them occurs during batch mode of the 
cultivation. 

A Smith predictor in its original configuration [9] 
is used to compensate the time delay in process 
control schemes. The proposed configuration produces 
an estimation of the disturbances due to model 
mismatching and noise by subtracting the real 
measurement and the delayed model output. To this 

estimation of disturbances, the output of the model, 
without any delay, is added (Figure 2). 

An important design problem is concerned with 
the robust stability of the Smith Predictor in the 
presence of model mismatching and uncertainty in the 
time delay. For the case of linear systems, researches 
approaching the problem with H∞  and frequency 
domain modern control techniques are known [1, 11]. 

The scope of this work was only to carry out 
different simulation experiments to find the possible 
range of variation in the estimation of time delay, 
which guarantees the stability of the system. 

 
Figure 2. Block diagram of control algorithm with Smith predictor 

4. Simulation studies 

Four different kinds of simulation, representing a 
period of 12h were carried out with initial conditions, 
x(0)= 0.132g/kg  ;s(0)= 18.8 g/kg  ; W(0)= 5.13 kg. 

Firstly the GMC control law was simulated under 
conditions of no time delay and conditions of noise 
and model mismatch. For this purpose, the OUR data 
were disturbed with Gaussian noise with zero mean 
and standard deviation of 5 % around the measured 
values. For every simulation run every model para-
meter was disturbed with a random number normally 
distributed with zero mean and standard deviation of 5 
% around the original value. An exception was the 
value of µmax, for this case the standard deviation of 
the perturbation was 3 %. In order to analyse the 
method’s performance, 10 simulation runs were 
repeated. A typical controlled profile for the growth 
rate is featured in Fig.3; the average integrated square 
error (ISE) of controlled µ can be seen in Table 3. It 
must be pointed out that in programming of the GMC 

control law constraints were added to the control 
signal. 

 If the calculation of the feed rate goes below 
zero, then the feed is set to zero, and the state of the 
integrator is updated to correspond with the new 
value. The same case occurs if the variation between 
sampling times of the feed is greater than 50%. This 
value was taken arbitrarily, and in practice in must be 
substituted with a value related to the capacity of 
response of the valve used in the application. A typical 
profile for the feed rate is featured in Figure 4. 

Secondly, a type of simulation corresponding to 
the non-compensated time delay was performed, a 
typical profile for the growth rate can be seen in 
Figure 5. 

Finally, simulations with the Smith predictor 
compensation were carried out. The mismatch in the 
process parameters was programmed to be the same as 
in the Kalman filter. The analysed mismatch for the 
time delay was ± 20% since with greater errors, the 
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control turned out not to be possible. Results are 
shown in Figure 6 and Table 3. 

The conditions of noise and model mismatch were the 
same in all four kinds of simulation. 

 
Figure 3. Simulation results without time delay in measurements 

Table 3. List of integrated square errors (controlled variable µ ) 

Type of Simulation     Average ISE (10 repetitions of simulation) 

No time delay                18.87 

2 min time delay, (without Smith predictor)                 27.19 
2 min time delay, with  Smith predictor time delay-20%                24.62 
2min time delay, with Smith predictor time delay +20%                19.8 

 
Figure 4. Simulation results for the substrate feed rate (without time delay) 

5. Results and discussion 

From the analysis of Table 3, it can be deduced 
that with Smith Predictor compensation, from the 
point of view of the ISE is effective. The performance 
obtained is similar to that in the non-delay case. The 
case of an over-estimation of time delay is remarkably 
better than the sub-estimation case. This is due to the 
characteristics of the  µ set-point profile, (a decreasing 
function of time), and the delayed  OUR  signal, 
which increases with time. A big sub-estimation in the 
time delay will result in a µ bigger than the real one, 
and in the transition from batch to fed- batch process 

this error can result in a growth rate that goes far down 
the desired value without the control counteracting 
this fact on time. 

It must be pointed out that for greater values of 
errors in the time delay of OUR, it was not possible to 
get stable values of µ estimation. 

Another important issue concerns the parameter 
mismatch. The growth rate was calculated in this work 
according to equation (12). This equation presents a 
high sensibility to variations of µmax.  For the values of 
µmax mismatch greater than 3% the stability of the 
algorithm is not guaranteed. 
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Figure 5. Simulation results with time delay 2 min for OUR (without Smith predictor compensation) 

 
Figure 6. Simulation results with time delay 2 min. for OUR.  Smith predictor is used for time delay compensation.  

(+20% error in time delay estimation, K1=23; K2=420) 
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