
ISSN 1392 – 124X INFORMACINĖS TECHNOLOGIJOS IR VALDYMAS, 2004, Nr.1(30)

THE REQUIREMENTS OF BUSINESS RULES MANAGING

Liudas Motiejūnas, Rimantas Butleris
Department of Information Systems, Kaunas University of Technology

Studentų St. 50, 3031 Kaunas, Lithuania

Abstract. Business rules approach is quite new and oriented at software systems in which the rules are separated,
logically and physically, from other aspects of the system. There are several problems arising while managing business
rules. In this paper some current software practice is discussed. The fact model and OCL (Object Constraint Language)
for business rules collecting are analysed. Events that activate business rules and steps of managing them are discussed.
A schema for execution of the business rules is presented.

1. Indroduction

Business rules are precise statements that de-
scribe, constrain and control the structure, operations
and the strategy of a business. They can be found
everywhere in a raw, unstructured form. The business
rules are the most changing part of the business. We
can describe a business rule as "a statement that de-
fines or constrains some aspect of the business. It is
intended to assert business structure or to control or
influence the behavior of the business" [1].

Traditionally, business rules have been buried in
the code of an application program, embedded in data-
base structures, and coded as DBMS (Data Base
Management System) triggers and stored procedures.
In such case it is difficult to implement new changes
in enterprises policy and to adjust the program code to
real life needs. To manage these problems, we need a
business rules system. Business rules systems can be
defined as such applications that contain dynamic
business rules and require [2]:
• The ability to quickly change rules without modi-

fying application code;
• A mechanism for executing rules that integrates

easily into application architectures;
• A high-level business rule language that can be

understood by business administrators and/or
users of the application;

• Tools like rule editors that support the definition
and maintenance of business rules.

2. Current software practice

Nowadays there are several products that are
implemented for managing business rules. Further we
will discuss two of them. The first one is Blaze

Advisor [3]. Blaze Advisor is the leader in the rules
management technology, an industry-proven process
for designing, running, and maintaining e-business
applications [4].

Blaze Advisor consists from the following
components [3-5]:
1. Blaze Advisor Builder – a development environ-

ment for creating business rules from scratch. It is
aimed primarily at power users/developers and
provides low-level programming utilities and
graphical browsers for writing, editing, viewing,
and testing rules.

2. Blaze Advisor Innovator – a rule management
and maintenance tool for business users. Users
create and modify rules through a centrally de-
fined set of menus and controls. The “Work-
bench” provides a number of Web-based inter-
faces for structuring rules in accordance with
business policies, such as allowed values and con-
straints. An XML-based repository provides the
underlying storage facility for all rule components
and changes. The source versions of rules are
stored and indexed in a standard flat file structure.

3. Blaze Advisor Rule Engine – a scalable proces-
sing engine that determines and executes the
whole control flow of rules created with Blaze
Advisor Builder. The engine works in concert
with Blaze Advisor Rule Server (Figure 1) to ac-
cess and run the appropriate rules needed by ap-
plications. Rule processing can also be triggered
by external events.

4. Blaze Advisor Rule Server – a dedicated rule ser-
ver for enterprisewide deployment. The server
supports rule execution, session management,
scheduling, and dynamic load balancing. The

57

L. Motiejūnas, R. Bulteris

Deployment Manager component handles all the
underlying connections to databases.

Blaze Advisor architecture is shown in Figure 1
[6]:

Rule

Development
 Enterprise Object

Model
e-Business

Applications
Rule Deployment

Figure 1. Blaze Advisor architecture

Another product is Infrex [7]. It is implemented in
a way different than that of Blaze Advisor.

Infrex is designed as an embeddable rule engine
(rather than a stand-alone engine) and integrates into
applications written in C/C++/Java/C#. Infrex offers a
variety of products to meet different needs. These are
[5, 7]:
• Rule Editor: The Infrex rule editor allows the

specification of rules using classes and variables
of the application. Various types of editors are
provided to make the rule definition simple and
easy to use. The rule language supports high level
operators that ease rule definition.

• Rule Translator: Infrex tools process the INI
(Interface) and RB (Rulebase) files to generate
C/C++/Java/C# code. This code is compiled and
linked with the application to create an execut-
able. The executable has the rules to be called at
run-time, through the engine.

• Rule Interpreter: Rules can be interpreted by
linking the application with the Infrex Interpreter
library 'one-time' to create the application execut-
able. This executable has the ability to read a
rulebase file at run-time and execute the rules.

• Rule Extractor: The Rule Extractor is a tool for
extracting rules stored in database tables into the
format specified by Infrex. This allows applica-
tions to store rules in specific customized formats
and extract them based on conversion specifica-
tions. Additionally, Decision Tables, Decision

Trees or Graphs are some of the popular formats
supported. The Rule Extractor converts tables into
a rulebase file by scanning tables and extracting
rules through a script language.

• APIGEN: Infrex facilitates dynamic linking of
translated rules with an application through a
utility called APIGEN. This allows rules to be
changed without the need for the application to be
re-linked and recreated. This is supported on the
UNIX platforms by the rule translator, which
compiles the rule base into a "shared object" file.
A DLL (Dynamic Link Library) of the translated
rules can be created on Windows-based systems.
When used along with the Rule translator,
APIGEN generates all wrapper functions needed
to call the rulebase functions contained in the
shared object.

• Rule Debugger: The Rule debugger facilitates
debugging of the rules in a Rulebase file.

• Rule Tracer: The tracer keeps a log of the rules
that are fired during runtime.

• Condition Evaluator: Allows forming of rule
conditions at run time and dynamically evaluates
them.
The links between Infrex components are shown

in Figure 2 [8]. These links show how Infrex compo-
nents are linked between each other.

:
:

:
:

:
:

Advisor Rule Server and
Rule Engine Advisor

Builder
Application1

Personalized
Application 1

Deploymen
t Manager

Rule

Execution
Engine

Advisor
Innovator

Workbench
(policy

management)

Database
Personalized
Application 2

Application 2
Rule Maintenance

Template 1

Personalized
Application r

Advisor Innovator
saugykla Application n

Rule Maintenance
Template m

58

The Requirements of Business Rules Managing

Specialized
Rule Editor

Rules
Interpreter

Library

Application Files
User

Compile

User Rule Editor Data Base Application

Dynamic link
with APIGEN

Rule
Extractor RuleBase

C, C++, Java,
C# code

DLL/OS
of RuleBase

Compile Rule Translator

Figure 2. Links between Infrex components

As we can see, business rules systems can be
developed in different ways. More usual is the first
way, where the business rules engine manages busi-
ness rules directly from the rules repository, without
translating them into rulebase files. Both of these pro-
ducts have tools that help the user to define rules in a
proper form and syntax. However, these tools can not
verify the logic of business rules. No matter which
type of system is chosen, first of all the business rules
have to be extracted from the enterprise’s business
policy and these rules must be logical and consistent.
Further we will discuss several suggestions for
invoking and managing business rules.

3. Business rules consistency

At first we need to ensure the consistency of busi-
ness rules (rules must be concerted and do not conflict
with each other) for correct performance of the busi-
ness rules system. Business rules must define overall
business policy of an organization. Business professio-
nals have to be involved in business rules definition
process. Because rules are built on facts, facts are built
on terms [9], in a very beginning of developing of the
system it is useful to create a fact model. The fact
model represents the basic vocabulary for expressing
its rules. A term is a basic word or phrase in English or
other natural language that workers recognize and
share in business. Terms are always nouns or qualified
nouns. Facts are given using simple, declarative sen-
tences that relate appropriate terms [9]. In such way
original knowledge will be registered and understand-
able for all people that participate in developing of the
system. The fact model is similar to the data model,
but it isn't the same. According to the fact model it is
possible to develop the data model and later compose

business rules that present knowledge about the orga-
nization kept in the fact model.

For more precise definition of an organization
model in the design phase additionally Object Const-
raint language (OCL) can be used. This language
defines constraints for objects. These constraints later
can be treated as business rules. Constraints bring us
several advantages [10].
1. Constraints add to the visual models information

about model elements and their relationships.
Therefore, they are an excellent form of docu-
mentation. Constraints must be kept close to the
model. Versioning of the constraints should be in
accordance with the versioning of the model(s) to
which they apply.

2. Different people can not interpret constraints dif-
ferent. They are unambiguous and make more
precise the model or system to which they apply.

3. Models are used to communicate among users,
modelers, programmers, and other people. Flawed
communication is responsible for the failure of
many software projects. Most models are accom-
panied by a natural language explanation to help
the receiving party understand the model. But
readers often must rely on their own interpre-
tation. Using OCL constraints, the modeler can
unambiguously communicate his intent to other
parties.
Constraints that are made for objects, similarly as

business rules, are expressed in a declarative manner.
In a declarative language, constraints have no side
effects; that is, the state of a system does not change
because of evaluation of an expression [10]. There are
three advantages to this interpretation.

59

L. Motiejūnas, R. Bulteris

1. The modeler need not decide how the violation of
a constraint should be handled. Actions that
handle violation of a constraint are taken in the
business rules engine. This approach results in a
clean separation between specification and imple-
mentation.

2. Constraints should be stable within their domains;
that is, they should not change much over time.
The actions that need to be undertaken when the
constraints are not met change more often or can

be different from one application to another with-
in the same domain.

3. When constraints are checked with the aim to per-
form an action on them, the check must be regar-
ded as one atomic action.
When we have developed full fact and data mo-

dels and defined constraints for objects, we can speci-
fy business rules, which will be consistent and con-
certed (Figure 3).

Figure 3. Business rules derivation

4. Calling business rules

Because business rules are kept in the business
rules repository separate from the program code, they
are declarative and implicate no control logic, they
have to be called and executed by a special component
– business rules engine. Every rule rejects, produces
or projects some type of actions or data [9]. Also each
rule is associated with particular data. Until the user
does not take any action, business rules are not called
from the business rules repository. But when some
action occurs the business rules engine must verify
business rules and evaluate that action. Generally, the
business rules engine starts working on the three basic

events – INSERT, DELETE and UPDATE. Business
rules that respond these events are similar to data base
triggers, however they are kept separately from the
database. Either way when the user makes an attempt
to insert, delete or update data, the business rules
engine must fire business rules that are associated with
data that the user wants to change. It is like a
monitoring process – business rules engine is inactive
and comes to action only when some changes in data
are noticed. Business rules of this type must be fired at
least on two separate events [9]. Let us say we have
classes shown in Figure 4 [10].

Figure 4. Class model

Figure 5. Terms and facts for Electric Guitar rule

There is a rule for these classes: Electric guitar
must have metal strings. This rule can be represented
by terms and facts like it is shown in Figure 5.

Such a notation of a rule is quite understandable,
but sometimes there can be a need to define rules in a
more formal way. In such case we can use Object
Constraints Language, which is more understandable
for programmers:

Guitar
Type = #electric implies strings –>

forAll (type = #metal)
The first event when this rule has to be evaluated

is visual – as a new Guitar record is created (event
INSERT), metal Guitarstrings have to be assigned to
it. If a type of the string is not metal, then the business
rule is violated and an error message has to be

Business
rules

Data
model

Fact
model

Collection of business rules

Derivation of modeling
construct referred to by

business rules

Verification of business rules

Guitar
Type: {electric, classic} strings

0..*0..1 GuitarStrings
type: {plastic, metal}

Must have Electric Guitar Metal Strings

60

The Requirements of Business Rules Managing

supplied to the user. But there is another event when
the business rule can be violated – as someone tries to
edit (event UPDATE) the Guitar record. In such way
the business rule has to be evaluated on two events to

ensure the consistency of the systems data. A general
schema of the business rule, which is called on
INSERT, DELETE and UPDATE events, is shown in
Figure 6.

Fire rule

Figure 6. Rule fireing on INSERT, DELETE and UPDATE events

Event 1

Event 2 Rule mandatory
fireing :

:
:
: optional

fireing Event N

EVENT
(Select,

Calculate, etc.)

Fire rule Data Rule

Figure 7. Rule firing on specific events

As we can see from Figure 6, each rule must be
fired at least at two events, but of course there can be
more events that can violate the rule.

But there can be other kinds of business rules in a
system. That means, business rules are fired in other
situations, not only when the user attempts to change
data. This kind of rules is not associated with the data
control; they can create data themselves. As an
example, business rules of SELECT or CALCULA-
TION type could be pointed out. The result of such
business rules is derivative data that can be stored in a
file, shown on the screen or printed in a report. These
rules usually are called by specific events, which can
depend on user's actions (button click) or simply on
the timer (the last day of the month). Business rules of
this type do not have to be fired at least on two events,
because they do not ensure the consistency of data,
they can create data themselves (Figure 7).

5. Execution of the business rules

As it was mentioned above, business rules can be
of two general types – those, which secure the integ-
rity of data and those, which are not directly asso-
ciated with the data control and can create derivative
data. Rules of the first type can be violated and must
be fired when the user attempts to change data. Then
the business rules engine has to take appropriate
actions and to ensure the consistency and the integrity
of the data. Actions are as follows:
1. When an appropriate event DELETE or UPDATE

occurs, then the business rules engine makes a
copy of data (if event INSERT has occurred a co-
py of the data is not made) that the user tries to

change (it can be a single field, a record or some
other data structure).

2. Data changes that were indicated by the user are
performed (for example, the user has updated one
field in a record).

3. The business rules engine fires the rule that is
associated with that field and performs a test, re-
striction or the same action as it is defined in that
rule.

4. Depending on whether the rule was violated or
not, the following actions are initiated:
a) If conditions described in the rule were

satisfied, then the actions defined by the user
are accepted (in this case the updated field is
accepted) and no message is shown.

b) If conditions described in the rule were
violated, then the actions defined by the user
are rejected, initial data, using a copy that
was made in step 1, are restored and an error
message is shown to the user.

These are the actions that have to be performed
by the business rules engine to verify one single rule.
But in a large organization there are hundreds and
thousands of business rules and often the same data
restrict several different rules. In such case, the
business rules engine has to verify all the rules that are
associated with the data the user wants to change.
The action sequence diagram for managing single or
multiple rules is shown in Figure 8.

Business rules of the second type are managed
much more simply. Because they create new data by
data kept in the database or perform selection of data
and are not related to the data control, managing them

61

L. Motiejūnas, R. Bulteris

62

does not require a lot of actions. When some specific
action is performed or appropriate circumstances oc-
cur, then the business rule is simply fired (as it is
shown in Figure 6) and actions described in the busi-
ness rule are performed. However, rules of the first

and the second type can be associated with the same
data. For that reason, we can use specific labels to
indicate the type a rule belongs to and there will be no
a reason to perform rules of the second type, when the
data are changed.

 Event

Is event
relevant to

data control?

 Create initial data copy

 User defined action

 Fire rule

 Perform test described by rule

 Successful test

Yes

 Accept action

 Is there more BR?

Figure 8. Action sequence diagram for managing business rules

No

Yes

Yes No

Is this event
INSERT?

Event
INSERT

Event
DELETE, UPDATE

Data

No
Restore initial data

Error message

The Requirements of Business Rules Managing

6. Example of the rule execution

For example, let us consider the object specified
in Figure 9 and a single rule for it.

Figure 9. Company object

Rule: Number of employees in a company must
higher than 20.

The formal expression of the rule in OCL is as
follows:

Company
Self.NumberOfEmployees > 20

Let us say that the user attempts to insert a new
company. Actions that have to be performed are
shown in Figure 10.

Company
Name:string
Address:string
NumberOfEmployees:integer

Event INSERT

Figure 10. Example of the rule execution

7. Conclusion

In this paper, the main requirements for business
rules collecting are presented. We need to ensure the
consistency of the business rules for correct func-
tioning of the business rules system. Business rules
must define overall business policy of an organization.
Also they must be concerted and do not conflict with
each other. For this reason we can use the fact model
and the OCL language.

Business rules can be of the following two major
types: those, which are related to the data control and
those, which are related to specific events. Events that
activate business rules were discussed. There are three
main events that activate business rules of the first
type – INSERT, UPDATE and DELETE. Business ru-
les that react to these events must be fired at least on
two of these events. These business rules control data.
Other business rules can create or derive data them-
selves and they are fired on specific events.

If the rule was related to the data, the business
rules engine has to make a copy of the data (if event
INSERT has occurred a copy of the data is not made),
perform data changes and fire the rule. If the rule was
violated, then the action is rejected and initial data are
restored. In the other case data changes are accepted.

If the rule is activated on specific events, it is
simply fired and actions described in the business rule
are performed. Usually, one rule activates another one
or several different rules that control the same data.
For that purpose the action sequence diagram for
managing single or multiple rules was presented.

On the basis of this article the next step is to
create a business rules storage model and to develop
an architecture of the business rules engine to manage
them.

No

Yes

Insert new Company record

Fire rule

Test Cuompany.NumberOfEmployees > 20

Reject action Successful test

Number of
Employees is

invalid
New Record has been inserted

63

L. Motiejūnas, R. Bulteris

References
 [1] Guide Business Rules Project, Final Report, 95/11.

http://www.businessrulesgroup.org/brgactv.htm.
 [2] Business Rules. Powering Business and e-Business.

White Paper. http://www.ilog.com/products/rules/
wp_businessrules.pdf.

 [3] Developing Real-World Java Applications with Blaze
Advisor. Technical White Paper. http://www.blazesoft.
com/brwhitepapers/advisor_java_apps.pdf.

 [4] Detailed Solution report. Blaze Advisor. http://www.
blazesoft.com/support_training/tech_support.html.

 [5] L. Motiejūnas, R. Butleris. Veiklos taisyklių manipu-
liavimo mechanizmų analizė. Informacinės Technolo-
gijos 2003. Kaunas, Technologija, 2003, XIV-82 -
XIV-90.

 [6] The Power of Rules Driven Processing.
http://www.blazesoft.com/International/UK/
white_papers/index.html.

 [7] Infrex – where business rules. http://www.tcs.com/
0_products/infrex/index.htm.

 [8] Infrex. The business rules engine. Technical overview.
http://www.tcs.com/0_products/infrex/downloads/
Infrex_Brochure.pdf.

 [9] R. G. Rosss. Principles of the Business Rule
Approach. Addison-Wesley, 2003.

[10] J. B. Warmer, K. Anneke. The object constraint lan-
guage: precise modeling with UML. Addison-Wesley,
2000.

64

http://www.blazesoft.com//brwhitepapers/advisor_java_apps.pdf
http://www.blazesoft.com//brwhitepapers/advisor_java_apps.pdf
http://productfinder.infoworld.com/infoworld/ActivityServlet?ksAction=optInReq&solId=47582&trkpg=solsummary_solname
http://productfinder.infoworld.com/infoworld/ActivityServlet?ksAction=optInReq&solId=47582&trkpg=solsummary_solname
http://www.blazesoft.com/International/UK/white_papers/index.html
http://www.blazesoft.com/International/UK/white_papers/index.html
http://www.tcs.com/0_products/infrex/index.htm
http://www.tcs.com/0_products/infrex/index.htm

