
ISSN 1392 – 124X INFORMACINĖS TECHNOLOGIJOS IR VALDYMAS, 2004, Nr.1(30)

AN OVERVIEW OF SOME HEURISTIC ALGORITHMS FOR
COMBINATORIAL OPTIMIZATION PROBLEMS

Alfonsas Misevičius1, Tomas Blažauskas2, Jonas Blonskis1, Jonas Smolinskas1

Kaunas University of Technology, Department of Practical Informatics1, Department of Software Engineering2,
Studentų St. 50, LT−3031 Kaunas, Lithuania

Abstract. Heuristic algorithms (or simply heuristics) are methods that seek for high quality solutions within a
reasonable (limited) amount of time without being able to guarantee optimality. They often come out as a result of
imitation of the real world (physics, nature, biology, etc.). In this paper, we give an overview of some heuristic
algorithms for combinatorial optimization problems. At the beginning, some definitions related to combinatorial
optimization, as well as the principle (framework) and basic features of the heuristics for combinatorial problems are
concerned. Then, several popular heuristic algorithms are discussed, namely: descent local search, simulated annealing,
tabu search, genetic algorithms, ant algorithms, and iterated local search. The unified paradigms of these heuristics are
given. Finally, we present some results of comparisons of these algorithms for the well-known combinatorial problem,
the quadratic assignment problem.

Keywords: heuristic algorithms, descent local search, simulated annealing, tabu search, genetic algorithms, ant
algorithms, iterated local search, combinatorial optimization, quadratic assignment problem.

Indroduction

The algorithms for combinatorial optimization
(CO) problems may roughly be classified into so-
called exact and non-exact approaches. The exact
techniques (such as branch and bound, branch and cut,
dynamic programming) aim to produce solutions that
have proven optimality. Unfortunately, many com-
binatorial optimization problems belong to the class
NP-hard and can not be solved to optimality within
polynomially bounded computation time. So, heuristic
algorithms (or simply heuristics) [47, 53, 56] have to
be used in order to find near-optimal (locally optimal)
solutions. Heuristic algorithms seek for high quality
solutions at a reasonable computational time, but can
not guarantee that a problem will be solved in terms of
obtaining the exact solution. (It may not even be
possible to state how close to optimality a particular
heuristic solution is.) Heuristic algorithms can also be
seen as intelligent techniques that are based upon
human's intuition, which, in turn, often comes out as a
result of analogies with the processes in the sur-
rounding world (physics, nature, biology, etc.) [47].

The approaches we consider are not pure heuris-
tics. They are rather general purpose meta-heuristics
than "tailored" algorithms. The main categories of
heuristic approaches, which we are going to overview,
are as follows: descent local search (LS), simulated
annealing (SA), tabu search (TS), genetic algorithms

(GA), ant algorithms (AA), and iterated local search
(ILS).

Before starting the next section, we introduce
some very basic definitions related to the combi-
natorial (discrete) optimization. So, let S={s1, s2, ..., si,
...} be a set of solutions (a "solution space") of a
combinatorial optimization problem. For the sake of
clarity, let us consider the case where the solutions are
based on permutations of the integers from 1 to n, i.e.
∀si∈S, si=(si(1), si(2), ..., si(n))∈{1, 2, ..., n}. Here n is
the problem size. (It is obvious that |S|=n!)
Furthermore, let f: S→R1 be an objective (cost)
function; without loss of generality, we assume that f
seeks a global minimum (i.e. the goal is to seek for
such a solution s∗∈S that). In

addition, a neighbourhood function Ν: S→2

)(minarg sfs
Ss∈

∗ =

}

S is given:
it attaches for each s∈S a set Ν(s)⊆S − a set of
neighbouring solutions of s. Each solution s′∈Ν(s) can
be reached from s by an operation called a move, and
s is said to move to s′ when such an operation is
performed (usually, the move follows the objective
function evaluation which is called a trial). As long as
we operate upon permutation based solutions, we can
define the neighbourhood function, Νλ, of order λ
(1<λ≤n), in the following way:

),(, | {)(λρλ ≤′∈′′= ssSsssΝ , where s is a solution
from S, and ρ(s,s′) is so-called Hamming distance
between the current solution s and the neighbouring

21

A. Misevičius, T. Blažauskas, J. Blonskis, J. Smolinskas

one s′: . If λ=2, one ob-

tains 2-exchange neighbourhood function, which is of-
ten used in combinatorial problems.

∑
=

′−=′
n

i
isisss

1
|)()(|sgn),(ρ

The remaining part of this paper is organized as
follows. In Section 1, the basic principles of heuristic
algorithms are outlined. LS, SA, TS, GA, AA, and ILS
approaches are discussed in Sections 2, 3, 4, 5, 6, 7,
respectively. In Section 8, we present some experi-
mental results. Finally, Section 9 completes the paper
with concluding remarks.

1. Heuristic algorithms: the principle and
basic features

Very briefly, the principle (framework) of the
heuristic algorithms can be described as follows [56].
Start the search from an initial solution, maybe,
randomly generated. Continue the search process by
performing (in a sequential way) some transforma-
tions to the solutions, i.e. making moves from
solutions to solutions taking into account the neigh-
bourhood function. The moves are controlled − more
precisely, the decisions about moves ("to move, or not
to move") are taken − depending on the quality of
solutions (the corresponding values of the objective
function). If the decision is "positive", then the current
solution is replaced by the neighbouring one, which
will be used as a "starting point" for the subsequent
trials (in addition, the best so far solution is saved in a
memory); otherwise, the search is continued with the
current solution. The whole process is continued until
some termination criterion is satisfied. The best
solution, saved in the memory (the best locally
optimal solution), is regarded as the final (resulting)
solution.

As we can see, the following basic features are
pertinent for the heuristic algorithms:

• memory (pool of solutions);
• transformations of solutions (neighbourhood

function);
• search (exploration) order;
• decision rule;
• termination criterion.
There exist many variants in the choice of these

features. For example, one can maintain one solution
(the corresponding algorithms are referred to as
single-solution algorithms), or several solutions (a
population of solutions) (these algorithms are referred
to as population-based algorithms (see Section 5)).
When designing transformation operators, much more
variations and modifications are available. For
instance, let us consider the permutation-based solu-
tions with the neighbourhood function Ν2. In this case,
a move from the solution s to the solution s′ can
formally be defined by using a 2-way perturbation
(transformation) operator pjk: S → S (j,k∈{1, 2, ..., n},

j≠k), which exchanges exactly two elements (i.e. ith
and jth elements) in the current solution. (Notation

jkpss ⊕=′ means that s′ is obtained from s by
applying the perturbation pjk.). 2-way perturbations are
quite good choice for some perturbation-based
problems. However, more sophisticated perturbations
are possible. They can be interpreted as "large" moves,
i.e. moves in higher order neighbourhoods Νλ (λ>2).
Randomly chosen "large" moves (known as
mutations) are often used (see Section 7). Moreover,
the transformations can be applied to more than one
solution − not only a single solution, for example, in
genetic algorithms, a special recombination operator is
applied to the pair of solutions.

Two main alternatives exist when exploring the
neighbours of the current solution. Firstly, choose the
next potential solution in a pure random way.
Secondly, explore the neighbourhood in a systematic
manner, for example, in the case of the neighbourhood
function Ν2, one can maintain a sequence {pjk}, where
j changes from 1 to n−1, and k − from j+1 to n.

Regarding the decision rules, two basic directions
are available; they may be regarded to as deterministic
direction, and stochastic direction. In the first case, the
decisions are unambiguously predefined by the current
value of the objective function; they are ordinarily
based on greedy strategies (for example, only moves
to the better neighbouring solutions are performed
(see Section 2). In the second case, the decisions are
made according to some probability that depends on
the difference of the objective function values (see
Section 3).

Finally, the different termination criteria of heu-
ristic algorithms can be applied. The common way is
to use a fixed a priori number of trials, although the
sophisticated intelligent stopping conditions are
available.

2. Descent local search

Before considering the refined modern heuristics,
we roughly characterize the classical algorithms, so-
called descent local search heuristics (also known as
hill climbing) [54]. These algorithms are relatively
very simple, but effective enough in some cases; they
may also be thought of as origin of the more
intelligent optimization techniques. There are two
types of descent LS: a) a "greedy descent" (GD), and
b) a "steepest descent" (SD). In both cases, the
decision − to replace the current solution by the new
one (i.e. to move to the neighbouring solution), or not
− is positive if only the new solution is definitely
better than the current one (that is, the difference in
the objective function values is negative
(∆f=f(s′)−f(s)<0, where s′∈Ν(s)) − here, we assume
that the goal is to minimize the objective function).
The difference between these LS groups is as follows.
In the "greedy descent", a move is performed to the

22

An Overview of Some Heuristic Algorithms for Combinatorial Optimization Problems

first better solution from the neighbourhood of the
current solution. In the "steepest descent" the current
solution is replaced by the best improving
neighbouring solution. (The first strategy is entitled as
a "first improvement", and the second one − as a "best
improvement".) In both cases, the search process is
continued until the current solution, s, is locally
optimal, that is, no better solution exists in the
neighbourhood (∀s′∈Ν(s): f(s′)≥f(s)).

Given the neighbourhood Νλ, the solution ob-
tained by SD is regarded to as an optimal (λ-
opt(imal)) solution with respect to this neighbourhood.
However, the complexity of this algorithm is propor-
tional to O(nλ). Therefore, most of descent LS
algorithms (as well as other iterative search algo-
rithms) usually operate on lower order neighbour-
hoods, like Ν2 or Ν3. The paradigm of descent local
search is presented (in an algorithmic language like
form) in Figure 1.

 procedure descent_local_search
 // input: s° − initial solution; output: s − the locally optimal solution //
 s ← s°;
 while s not locally optimal do begin // main cycle //
 choose the solution s′ from the neighbourhood of s, Ν(s),
 in such a way that f(s′)−f(s)<0;
 s ← s′ // replace the current solution s by the new one s′ (make a move to a new solution) //
 end // while //
 end // procedure //

Figure 1. Paradigm of descent local search

The solutions obtained by LS are of poor quality
in most cases. In order to improve the quality, one can
use multiple runs (single applications) of the descent
LS algorithm. In other words, LS is repeated many
times by applying it to some "starting points" (initial
solutions), a different "point" each time. The best
found locally optimal solution is declared as the
resulting solution. The approach described is the well-
known multi-start (multi-greedy) (MS) technique [42].
In the simplest case (also known as random multi-start
(RMS)), the purely randomly generated solutions play
a role of "starting points". However, heuristically
constructed solutions may be used. More elaborated
strategies are concerned in Section 7.

3. Simulated annealing

Simulated annealing originated in statistical
mechanics. It is based on a Monte Carlo model that
was used by Metropolis et al., 1953 [46], to simulate
energy levels in cooling solids. Boltzmann's law was
used to determine the probability of accepting a
perturbation resulting in a change ∆E in the energy at

the current temperature t, i.e.

≥∆
<∆

= ∆− 0 ,e
0 ,1

P
E

E
CtE ,

where C is a Boltzmann's constant. Starting from
1982, many authors [7,12,36,37,38,55] applied
simulated annealing to solve combinatorial
optimization problems.

The principle of SA algorithm is simple [37]: start
from a random solution. Given a solution s, select a
neighbouring solution s′ and compute the difference in
the objective function values, ∆f=f(s′)−f(s). If the

objective function value is improved (∆f<0), then
replace the current solution by the new one. If ∆f≥0,
then accept a move with probability tff ∆e)(−=∆P ,
where t is the current temperature (Boltzmann's
constant is not required when applying the algorithm
to combinatorial problems). Regarding the above
probabilistic acceptance, it is achieved by generating a
random number in [0,1] and comparing it against the
threshold tf∆e− (here, the exponential function plays a
role of an acceptance function). The procedure is
repeated until a stopping condition is satisfied, for
example, a predefined number of trials have been
performed. As a resulting solution, usually the "best so
far" (BSF) solution (instead of so-called "where you
are" (WYA) solution) is returned by the algorithm.
The paradigm of SA is presented in Figure 2.

Note that SA algorithm can also be viewed as an
algorithm that belongs to a broad class of so-called
threshold algorithms (TAs) (for more details on TAs,
see, for example, [22]).

SA algorithms differ each from other mainly with
respect to a cooling (annealing) schedule, which, in
turn, is specified by initial and final values of the tem-
perature, as well as an updating function for changing
the temperature. Perhaps, the most important thing is
how the initial temperature t0 is determined. If the
initial value of the temperature is chosen too high,
then too many bad uphill moves are accepted, while if
it is too low, then the search will quickly drop into a
local optimum without possibility to escape form it.
Thus, an optimum initial temperature must be some-
where between these two extremes.

23

A. Misevičius, T. Blažauskas, J. Blonskis, J. Smolinskas

The temperature is not a constant, but changes
over time according to the updating function. One of
the popular updating functions (known as Lundy-
Mees schedule [40]) is characterized by the following
relation:)1(1 kkk ttt β+=+ , where k=0, 1, ...; t0=const;
β << t0. It is easy to relate the coefficient β and the
number of trials, i.e. the schedule length, L, under
condition that the initial and final values of the
temperature (t0, tf) are predefined:

ff tLtt 0)−t0(=β .

It should be noted that, in the state-of-the-art SA
algorithms, the temperature rather oscillates than

decreases monotonically, i.e. re-annealing − a sequen-
ce of heating and cooling − is considered instead of
the straightforward annealing (see, for example, [7]).

In theory, the SA procedure should be continued
until the final temperature tf is zero, but in practice
other stopping criteria are applied, for example: a) the
value of the objective function has not decreased for a
large number of consecutive trials; b) the number of
accepted moves has become less than a certain small
threshold for a large number of consecutive trials; c) a
predefined number of trials has been executed.

For a more completed discussion on simulated
annealing, the reader is referred to [1,2].

 procedure simulated_annealing
 // input: s° − initial solution; output: s∗ − the best solution found //
 s ← s°; s∗ ← s°;
 determine the initial temperature t0; t := t0;
 repeat // main cycle //
 calculate ∆f = f(s′)−f(s), where s′∈Ν(s);
 generate uniform random number r from the interval [0,1];
 if (∆f<0) or (r) then s ← s′; // replace the current solution by the new one // tf /∆e−<

 if f(s)<f(s∗) then s∗ ← s; // save the best so far solution //
 update the current temperature t
 until termination criterion is satisfied
 end // procedure //

Figure 2. Paradigm of simulated annealing

4. Tabu search

Tabu search meta-heuristic was introduced by
Hansen and Jaumard, 1987 [31], and Glover, 1989,
1990 [26,27]. Since that time, TS has been proven to
be among the most powerful intelligent techniques for
difficult optimization problems (see, for example,
[4,30,33,57,60,62,63]). Briefly speaking, TS is based
on the neighbourhood search with local-optima
avoidance but in a rather deterministic way. The key
idea of tabu search is to allow climbing moves when
no improving move (neighbouring solution) exists.
However, some moves have to be forbidden in order
to avoid cycling. So, the tabu search starts from an
initial solution s, maybe, randomly generated in S and
moves repeatedly from a solution to a neighbouring
one. At each step of the procedure, a set (subset) ϕ(s)
of the neighbouring solutions of the current solution s
is considered and the move that improves most the
objective function value f is chosen. If there are no
improving moves, tabu search chooses one that least
degrades the objective function, i.e. a move is
performed to the best neighbour s′ in ϕ(s) (even if
f(s′)> f(s)).

In order to avoid returning to the local optimal
solution just visited, the reverse move must be
forbidden (prohibited). This is done by storing this

move (or an attribute of the move) into a memory (or
more precisely short-term-memory) managed like a
circular list T and called a tabu list. The tabu list keeps
information on the last h (h = |T|) moves which have
been done during the search process (the parameter h
is called a tabu list size). Thus, a move from s to s′ is
considered as tabu if it (or its attribute) is contained in
the list T. This way of proceeding hinders the
algorithm from returning to a solution reached in the
last h steps. However, it might be worth returning after
a while to a solution visited previously to search in
another direction. Consequently, an aspiration
criterion is introduced to permit the tabu status to be
dropped under certain favourable circumstances.
Typically, a tabu move from s to s′ is permitted if
f(s′) < f(s∗), where s∗ is the best solution found so far.
The resulting decision rule within TS may thus be
described as follows: replace s by s′, where
f(s′) < f(s*) or)(minarg

)(
sfs

ss
′′=′

∈′′ ϕ
 and s′ is not tabu.

The process is stopped as soon as a termination
criterion is satisfied (for example, a fixed a priori
number of cycles has been performed). The simplified
scheme of TS is shown in Figure 3.
The tabu search algorithms differ mainly with respect
to the basic ingredients discussed above, i.e. tabu list

24

An Overview of Some Heuristic Algorithms for Combinatorial Optimization Problems

and aspiration criterion. Other important features
should be mentioned: a long-term-memory, a target
analysis, intensification, as well as diversification
mechanisms. The main forms of the tabu search are:
deterministic tabu search (strict tabu search, fixed tabu

search, reactive tabu search), stochastic tabu search
(probabilistic tabu search, robust tabu search), tabu
thresholding. See Glover and Laguna, 1997 [28];
Hertz et al., 1997 [32], for more details on TS
technique.

procedure tabu_search
 // input: s° − initial solution; output: s∗ − the best solution found //
 s ← s°; s∗ ← s°;
 initialize the tabu list T;
 repeat // main cycle //
 given neighbourhood function Ν, tabu list T, and aspiration criterion,
 find the best possible solution s′∈Ν(s);
 s ← s′; // replace the current solution by the new one //
 insert the solution s (or its attribute, e.g. the move from s to s′)
 into the tabu list T;
 if f(s)<f(s∗) then s∗ ← s; // save the best so far solution //
 update the tabu list T
 until termination criterion is satisfied
 end // procedure //

Figure 3. Paradigm of tabu search

5. Genetic algorithms

The original concepts of genetic algorithms,
which are based on the biological process of natural
selection, were developed as far back as 1975 by
Holland [34]. The power of GAs has been demonst-
rated for many optimization problems, among them,
continuous optimization [13], graph partitioning [10],
job-shop problems [64], quadratic assignment problem
[21,23,49], set covering problem [6], traveling
salesman problem [45].

GA operates with some group (P) (called a
population) of solutions (s1, s2, ..., si, ...) (called indivi-
duals) from S. (This is quite different from the above
two approaches, which can be viewed as single-
solution heuristics.) So, each individual (si) is associa-
ted with some fitness corresponding to the objective
function value (f(si)). In case of minimization
problem, the less the objective function value, the
more fit the individual, and the larger is the
probability that the individual will survive in
evolution process. Over many generations, best fitting
individuals tend to predominate, while less fit
individuals tend to die off. Further, GAs can be
characterized by the following features: a) a
mechanism for selecting individuals (corresponding to
solutions of the optimization problem) from the
population; b) an operator for creating new indivi-
duals, i.e. offsprings by combining the information
contained in the previous individuals; c) a procedure
for generating new solution by random perturbations
of the single previous solutions; d) a rule for updating
the population (culling solutions from the current
population). These features are referred to as selection,

crossover (recombination), mutation, and culling
(updating), respectively.

There exists a great variety in the choice of how
to select, cross, mutate, and cull the individuals;
moreover, additional features may be used, for
example, one can incorporate other local improvement
algorithm (simulated annealing, tabu search) into GA
in order to improve solution obtained after crossover −
these strategies are called hybrid genetic (or memetic)
algorithms [51]. For details and various modifications
of GAs, see, for example, [16,29,52]).

The generalized framework for the genetic algo-
rithms is presented in Figure 4.

6. Ant algorithms

Ant algorithms were first proposed by Dorigo and
co-authors [19] as some system of cooperating agents
(a multi-agent system) for various optimization prob-
lems. Recent applications of AA cover problems like
graph colouring [15], job-shop scheduling [14], quad-
ratic assignment problem [25,61], traveling salesman
problem [20], vehicle routing problem [24]. Ant algo-
rithms were inspired by the observation of real ant
colonies. While walking from the nest to food sources
and vice versa, ants deposit on the ground a substance
called pheromone, forming in this way a pheromone
trail. The role of this trail is to guide ants toward the
source of food (or to the nest). It has been shown that
the quantity of pheromone left by an ant depends on
the amount of food found, it is also obvious that the
more the ants which reach the source of food, the
stronger the pheromone left. Since the shorter paths

25

A. Misevičius, T. Blažauskas, J. Blonskis, J. Smolinskas

from the nest to food sources will be travelled at a
higher rate than longer ones, the amount of
pheromone will grow faster on the shorter ways (i.e.
pheromone quantity will be in relation with the path
length). Thus, when many paths are available (from
the nest to food sources), a colony of ants may exploit
the pheromone trails (left by the individual ants) to
discover the shortest path, i.e. ants are able to optimize
their path by means of the process described above.

A similar process can be transposed to com-
binatorial optimization: solutions of a problem can be
built using a statistics (information) of solutions pre-
viously constructed. This statistics plays the role of the
pheromone traces and it gives an higher weight to the
better solutions. Such a model is able to build solu-
tions of better quality than a procedure guided objec-
tive function evaluations only.

 procedure genetic_algorithm
 // input: P⊆S − population of solutions (possibly, locally optimized); output: s∗ − the best solution found //
 ; // save the best solution from the initial population //)(minarg sfs

Ps∈

∗ ←

 repeat // main cycle //
 for counter := 1 to #offsprings do begin
 select "parents" ; Pss ∈′′′,

 ← crossover(s ′′′ ss ′′′,); // apply crossover to "parents", get an "offspring" //
 apply local improvement to s ′′′ ; // this step is optional //
 P ← P ∪ { }; // insert the (optimized) "offspring" into the population // s ′′′

 if f()<f(ss ′′′ ∗) then s∗ ← ; // save the best so far solution // s ′′′

 apply mutations to some members of P
 end; // for //
 update (cull) the population P
 until termination criterion is satisfied
 end // procedure //

Figure 4. Paradigm of genetic algorithm

procedure ant_algorithm
 // input: none; output: s∗ − the best solution found //
 f∗ := ∞; initialize pheromone trails;
 repeat // main cycle //
 for i := 1 to #ants do begin
 construct a solution si (corresponding to ith ant) by using actual trails
 (and so-called "visibility");
 apply local improvement to si; // this step is optional //
 if f(si)<f∗ then begin f∗ := f(si); s∗ ← si end // save the best so far solution //
 end; // for //
 update pheromone trails
 until termination criterion is satisfied
 end // procedure //

Figure 5. Paradigm of ant algorithm

The analogies of real ants and combinatorial
optimization are as follows: (a) the real ants’ search
area corresponds to the set of solutions of the
combinatorial optimization problem; (b) the amount of
food in a source corresponds to the objective function
value; (c) the pheromone trails correspond to some
(adaptive) memory.

Note that, during the construction of a new
solution, the only information sources for an artificial
ant are the objective function value and the history of
a population of ants, i.e. the pheromone trails left by
other ants (having already built solutions) during a
certain number of trials. After having built a new
solution, the artificial ant updates the adaptive
memory (i.e. the trails) taking into consideration the

26

An Overview of Some Heuristic Algorithms for Combinatorial Optimization Problems

quality of the solution just built. (A 2-dimensional
array (the matrix of traces), τ, may be an example of
the adaptive memory; in this case, the entries τij of τ
measure the "desirability" of setting, for example,
s(i)=j.) The above process is repeated in an iterative
way. The process terminates after some large number
of cycles has been performed.

The basic structure of an artificial ant system
based algorithm − ant algorithm − is sketched in
Figure 5.

For a more detailed study on ant algorithms, see,
for example, [17, 18].

7. Iterated local search

Recently, a "reconstruct and improve" policy
based approach known as an iterated local search has
became very popular, although the concept of similar
approach is more than 15 years old and goes back to
Baum [5]. The approach called iterated Lin-Kernighan
[35] has been very successfully applied to the
traveling salesman problem, and still is one of the best
heuristics for the TSP. Later, various modifications
and enhancements of the basic idea have been pro-
posed, among them, large step Markov chains [44],
combined local search (chained local optimization)
[43], variable neighbourhood search [50], iterated
local search [39], "ruin and recreate (R&R)" principle
based approach [59].

The key idea of ILS is to obtain better optimiza-
tion results by a reconstruction (destruction) of an
existing solution and a following improvement (re-
building) procedure [39]. By applying this type of
process in an iterative way one seeks for high quality
solutions. So, in the first phase of the process, one
reconstructs (mutates) the existing solution; the ratio-
nale is that continuing search from the reconstructed
solution may allow to escape from a local optimum
and to try to find better solutions. In the second phase,

one tries to improve the solution just "ruined" as best
as one can; hopefully, the new solution is better than
the solution(s) obtained in the previous phase(s) of the
improvement. (Usually, the improvement is a more
sophisticated part of the method.)

There are a lot of different ways to reconstruct
and, especially, to improve the solutions. So, we think
of the ILS approach as a meta-heuristic − not a pure
heuristic. For example, for the improvement, we can
use any iterative (local) search concept based algo-
rithm. In the simplest case, a hill-climbing (greedy
descent or steepest descent) algorithm can be used;
however, more refined approaches are possible, first
of all, simulated annealing and tabu search algorithms
discussed above.

The advantage of ILS over the well-known ran-
dom multi-start (multi-greedy) approach (that is based
on multiple starts of local improvements applied to
randomly generated solutions) is that a better idea is to
reconstruct (a part of) the current solution instead of
"blind" generation of new solutions from scratch:
indeed, the improvement of the (slightly) reconst-
ructed (locally optimum) solution requires only a few
steps to reach the next locally optimum solution, i.e., a
new local optimum can be found very quickly −
usually faster than when starting from a random
solution.

The structure (paradigm) of the ILS metaheuristic
is surprisingly simple. All one needs to do by creating
the ILS principle based algorithm for a specific
problem is to design three components (not taking into
account an initial solution generation): 1) a solution
improvement (local search) procedure, 2) a solution
reconstruction (mutation) procedure, and 3) a
candidate acceptance criterion (the last one is used to
decide which solution is to be chosen for the
reconstruction). The paradigm of the ILS is given in
Figure 6.

 procedure iterated_local_search
 // input: s° − initial solution; output: s∗ − the best solution found //
 s• ← local_search(s°); // improve the initial solution //
 s ← s•; s∗ ← s•;
 repeat // main cycle //
 s ← candidate_acceptance(s,s•); // choose the candidate for reconstruction (mutation) //
 s~ ← reconstruction(s); // reconstruct the current solution s, obtain the solution s~ //
 s• ← local_search(s~); // improve the reconstructed solution s~, obtain the improved solution s• //
 if f(s•)<f(s∗) then s∗ ← s• // save the best so far solution //
 until termination criterion is satisfied
 end // procedure //

Figure 6. Paradigm of iterated local search

27

A. Misevičius, T. Blažauskas, J. Blonskis, J. Smolinskas

8. Some computational experiments

In order to evaluate the efficiency of the above
heuristic algorithms, an experiment has been carried
out on the one of the hard combinatorial optimization
problems, the quadratic assignment problem (QAP)
[8,11,41]. The QAP is formulated as follows. Given
two matrices A = (aij)n×n and B = (bkl)n×n and the set Π
of permutations of the integers from 1 to n, find a

permutation π = (π(1), π(2), ..., π(n))∈Π that mini-

mizes . It has been proved that

the QAP is NP-hard [58]. Therefore, heuristic algo-
rithms are to be used; they can find high quality
solutions within reasonable computation times.

∑∑
= =

=
n

i

n

j
jiijbaz

1 1
)()()(πππ

Table 1. Shorter run results of the comparison of the algorithms. The best results obtained are printed in bold face. CPU times
per restart are given in seconds. 300 MHz PENTIUM computer was used in the experimentation

Instance n BKV
δ , C1%/Cbkv

 MS SA TS GA AA ILS
CPU
time

chr25a 25 3796 21.81 0/ 0 35.09 0/ 0 12.43 1/ 1 3.38 2/ 2 18.80 0/ 0 77..8855 1/ 1 0.8
els19 19 17212548 0.09 10/ 9 3.62 3/ 1 5.42 1/ 1 0 1.26 7/ 7 0 0.4
esc32a 32 130 7.69 0/ 0 2.00 2/ 2 10.15 0/ 0 0.77 6/ 6 4.46 0/ 0 00..9922 5/ 5 1.2
kra30a 30 88900 2.22 1/ 1 1.23 2/ 2 1.66 1/ 1 0.59 7/ 5 1.60 2/ 2 00..6666 6/ 5 1.1
nug30 30 6124 0.92 5/ 0 0.37 10/ 1 0.18 10/ 1 00..0066 10/ 3 0.70 9/ 0 0.05 10/ 4 1.1
sko42 42 15812 1.09 4/ 0 0.26 10/ 0 0.09 10/ 4 0.06 10/ 4 0.81 8/ 0 0.06 10/ 2 2.5
ste36a 36 9526 2.83 0/ 0 8.01 0/ 0 1.82 3/ 0 0.43 10/ 2 1.82 3/ 0 00..4444 10/ 1 2.1
tai60a 60 7208572 3.23 0/ 0 2.07 0/ 0 1.61 0/ 0 11..4400 1/ 0 3.30 0/ 0 1.11 2/ 0 8.0
tai80b 80 818415043 2.11 1/ 0 1.00 6/ 0 5.48 0/ 0 0.30 9/ 0 1.01 4/ 0 00..5599 8/ 0 27.0
wil100 100 273038 0.56 10/ 0 0.06 10/ 0 0.23 10/ 0 0.13 10/ 0 0.49 10/ 0 00..1100 10/ 0 60.0

Table 2. Longer run results of the comparison of the algorithms. The best results obtained are printed in bold face. CPU times
per restart are given in seconds. 300 MHz PENTIUM computer was used in the experimentation

Instance n BKV
δ , C1%/Cbkv

 MS SA TS GA AA ILS
CPU
time

chr25a 25 379612.75 0/ 0 30.34 0/ 0 5.58 1/ 1 0 6.19 3/ 3 44..0099 2/ 2 7.0

els19 19 17212548 0 1.04 7/ 1 0 0 0 0 3.0

esc32a 32 1304.00 0/ 0 0.15 9/ 9 0.92 4/ 4 0 1.38 5/ 5 0 12.0

kra30a 30 889000.98 3/ 3 0 0.40 7/ 7 0 0.80 5/ 5 0.13 9/ 9 11.0

nug30 30 61240.48 10/ 0 0.12 10/ 2 0.01 10/ 8 0 0.27 10/ 2 0 11.0

sko42 42 15812 0.71 10/ 0 0.16 10/ 1 0.01 10/ 7 0 0.18 10/ 1 0 25.0

ste36a 36 95261.86 0/ 0 7.68 0/ 0 0.07 10/ 5 0.02 10/ 8 0.23 10/ 1 0.02 10/ 8 20.0
tai60a 60 72085722.95 0/ 0 1.74 0/ 0 1.21 2/ 0 11..1100 3/ 0 2.49 0/ 0 0.71 9/ 0 70.0
tai80b 80 8184150431.29 1/ 0 0.59 8/ 0 0.64 8/ 0 0.01 10/ 7 0.45 8/ 0 00..1100 10/ 0 270
wil100 100 2730380.40 10/ 0 0.02 10/ 0 0.05 10/ 0 0.03 10/ 1 0.20 10/ 0 0.02 10/ 0 600

For the comparison, the following heuristic algo-

rithms were used: 1) multi-start (MS) heuristic (adap-
ted by the authors according to [3]); 2) simulated an-
nealing (SA) algorithm [7]; 3) tabu search (TS)
algorithm [60], 4) genetic algorithm (GA) [49]; 5) ant
algorithm (AA) [61], and 6) iterated local search (ILS)
algorithm [48]. (Note that, in GA and ILS algorithms,
the tabu search based procedures are used as local
improvement procedures. In fact, these algorithms

should be considered as hybrid heuristics.) We tested
the above algorithms on the well-known QAP
instances from the QAP instances library QAPLIB [9].
The performance measures of the algorithms are:
a) the average deviation from the best known solution
− δ (%][)(100 zzz ((−=δ , where z is the average
objective function value over 10 restarts (i.e. single
applications of the algorithm to a given instance), and

28

An Overview of Some Heuristic Algorithms for Combinatorial Optimization Problems

z(is the best known value (BKV) of the objective
function (BKVs are from [9])); b) the number of
solutions that are within 1% optimality (δ ≤1) (over
10 restarts) − C1%; c) the number of the best known
(pseudo-optimal) values (solutions) found − Cbkv.

Two variants of runs of algorithms have been per-
formed: shorter runs and longer runs (in the first case,
the run time was very limited; in the second case,
much more time was allocated). The results of
comparisons of the algorithms are presented in Tables
1 and 2. In addition, we give an illustration of typical
"trajectories" of the objective function values for
several of the algorithms examined (see Figure 7).

48750

48875

49000

49125

49250

49375

49500

49625

0 1000 2000 3000 4000
iterations

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
es

SA

TS

GA

Figure 7. "Trajectories" of SA, TS and GA for the QAP

9. Concluding remarks

In this paper, a short overview of some heuristic
algorithms for combinatorial optimization problems is
given. The following heuristic methods have been
concerned: descent local search, simulated annealing,
tabu search, genetic algorithms, ant algorithms,
iterated local search. In order to compare these algo-
rithms, some experiments on the difficult combinato-
rial problem, the QAP, have been conducted. The
results obtained from the experiments on various
instances of the QAP show that, with respect to the
performance measures used, the genetic algorithm and
the iterated local search algorithm outperform all
remaining heuristic algorithms, including the TS, SA
and ant algorithms, on most of the QAP instances. In
turn, the tabu search, simulated annealing and ant
algorithms produce much more better results than the
straightforward random multi-start algorithm. Clearly,
for the sake of more accurate evaluation of the
algorithms, more thorough and larger study should be
done; in addition, the algorithms should be tested on
the other combinatorial optimization problems. Never-
theless, some tendencies can be discovered. The atten-
tion should be paid to the genetic algorithms (especial-
ly, hybrid GAs) and iterated local search policy based
algorithms. The idea of hybridization should further
be exploited by investigating new procedures of both
local improvement (intensification) and reconstruction
(mutation) of solutions (diversification). The

promising results could be achieved by applying effec-
tive hybrid genetic (memetic) algorithms, which in-
corporate fast efficient iterative (local) search, for
example, the limited (iterated) tabu search.

References
 [1] E.H.L. Aarts, J.H.M. Korst. Simulated Annealing

and Boltzmann Machines. Wiley, Chichester, 1989.
 [2] E.H.L. Aarts, J.H.M. Korst, P.J.M. van Laarhoven.

Simulated annealing. In E.H.L.Aarts, J.K.Lenstra
(eds.), Local Search in Combinatorial Optimization,
Wiley, Chichester, 1997, 91–120.

 [3] G.C. Armour, E.S. Buffa. A heuristic algorithm and
simulation approach to relative location of facilities.
Management Science, 1963, Vol.9, 294–304.

 [4] R.Battiti, G.Tecchiolli. The reactive tabu search.
ORSA Journal on Computing, 1994, Vol.6, 126−140.

 [5] E.B. Baum. Towards practical "neural" computation
for combinatorial optimization problems. In J.S.Den-
ker (ed.) Neural networks for computing, American
Institute of Physics, New York, 1986, 53–58.

 [6] J.E. Beasley, P.C. Chu. A genetic algorithm for the
set covering problem. European Journal of
Operational Research, 1996, Vol.94, 392–404.

 [7] A. Bölte, U.W Thonemann. Optimizing simulated
annealing schedules with genetic programming. Euro-
pean Journal of Operational Research, 1996, Vol.92,
402−416.

 [8] R.E. Burkard, E. Çela, P.M. Pardalos, L. Pitsoulis.
The quadratic assignment problem. In D.Z.Du, P.M.
Pardalos, (eds.), Handbook of Combinatorial
Optimization, Vol.3, Kluwer, Dordrecht, 1998,
241−337.

 [9] R.E. Burkard, S. Karisch, F. Rendl. QAPLIB – a
quadratic assignment problem library. Journal of
Global Optimization, 1997, Vol.10, 391−403.

[10] T.N. Bui, B.R. Moon. Genetic algorithm and graph
partitioning. IEEE Transactions on Computers, 1996,
Vol.45, 841–855.

[11] E.Çela. The Quadratic Assignment Problem: Theory
and Algorithms. Kluwer, Dordrecht, 1998.

[12] V. Cerný. A thermodynamical approach to the tra-
veling salesman problem: an efficient simulation algo-
rithm. Tech. Report, Comenius University, Bratislava,
CSSR, 1982.

[13] R.Chelouah, P.Siarry. A continuous genetic algo-
rithm designed for the global optimization of multi-
modal functions. Journal of Heuristics, 2000, Vol.6,
191–213.

[14] A.Colorni, M.Dorigo, V.Maniezzo, M.Trubian. Ant
system for job-shop scheduling. Belgian Journal of
Operations Research, Statistics and Computer
Science, 1994, Vol.34, 39−53.

[15] D. Costa, A. Hertz. Ants can colour graphs. Journal
of the Operational Research Society, 1997, Vol.48,
295−305.

[16] L. Davis. Handbook of Genetic Algorithms. Van
Nostrand, New York, 1991.

[17] M. Dorigo, G. Di Caro. The ant colony optimization
metaheuristic. In D.Corne, M.Dorigo, F.Glover (eds.),

29

A. Misevičius, T. Blažauskas, J. Blonskis, J. Smolinskas

New Ideas in Optimization, McGraw-Hill, New York,
1999, 11–32.

[18] M. Dorigo, G. Di Caro, L.M. Gambardella. Ant
algorithms for discrete optimization. Artificial Life,
1999, Vol.5, 137–172.

[19] M. Dorigo, V. Maniezzo, A. Colorni. Positive feed-
back as a search strategy. Tech. Report 91-016, Dipar-
timento di Elettronica, Politecnico di Milano, Italy,
1991.

[20] M. Dorigo, V. Maniezzo, A. Colorni. The ant sys-
tem: optimization by a colony of cooperating agents.
IEEE Transactions on Systems, Man, and Cybernetics
− Part B, 1996, Vol.26, 29−41.

[21] Z. Drezner. A new genetic algorithm for the quadratic
assignment problem. INFORMS Journal on Com-
puting, 2003, in press.

[22] G. Dueck, T. Scheuer. Threshold accepting: a general
purpose optimization algorithm appearing superior to
simulated annealing. Journal of Computational
Physics, 1990, Vol.90, 161–175.

[23] C. Fleurent, J.A. Ferland. Genetic hybrids for the
quadratic assignment problem. In P.M.Pardalos, H.
Wolkowicz (eds.), Quadratic Assignment and Related
Problems. DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, Vol.16, AMS, Pro-
vidence, 1994, 173−188.

[24] L.M. Gambardella, E. Taillard, G. Agazzi. MACS-
VRPTW: A Multiple Ant Colony System for Vehicle
Routing Problems with Time Windows. In D.Corne,
M.Dorigo, F.Glover (eds.), New Ideas in Optimiza-
tion, McGraw-Hill, London, 1999, 63–76.

[25] L.M. Gambardella, E. Taillard, M. Dorigo. Ant
colonies for the quadratic assignment problem.
Journal of the Operational Research Society, 1999,
Vol.50, 167−176.

[26] F. Glover. Tabu search: part I. ORSA Journal on
Computing, 1989, Vol.1, 190−206.

[27] F. Glover. Tabu search: part II. ORSA Journal on
Computing, 1990, Vol.2, 4−32.

[28] F. Glover, M. Laguna. Tabu Search. Kluwer, Dord-
recht, 1997.

[29] D.E. Goldberg. Genetic Algorithms in Search, Opti-
mization and Machine Learning. Addison-Wesley,
Reading, 1989.

[30] S. Hanafi, A. Freville. An efficient tabu search ap-
proach for the 0-1 multidimensional knapsack prob-
lem. European Journal of Operational Research,
1998, Vol.106, 93−100.

[31] P. Hansen, B. Jaumard. Algorithms for the maxi-
mum satisfiability problem. RUTCOR Search Report
43–87, Rutgers University, USA, 1987.

[32] A. Hertz, E. Taillard, D. de Werra. Tabu search. In
E.Aarts, J.K.Lenstra (eds.), Local Search in Combina-
torial Optimization, Wiley, Chichester, 1997,
121−136.

[33] A. Hertz, D. de Werra. Using tabu search techniques
for graph coloring. Computing, 1987, Vol.39,
345−351.

[34] J.H. Holland. Adaptation in Natural and Artificial
Systems. University of Michigan Press, Ann Arbor,
1975.

[35] D.S. Johnson. Local optimization and the traveling
salesman problem. In Proceedings of the 17th Inter-
national Colloquium on Automata, Languages and
Programming. Lecture Notes in Computer Science,
Vol.443, Springer, Berlin, 1990, 446–461.

[36] E.K. Karasakal, M. Köksalan. A simulated annea-
ling approach to bicriteria scheduling problems on a
single machine. Journal of Heuristics, 2000, Vol.6,
311–327.

[37] S. Kirkpatrick, C.D. Gelatt, Jr., M.P. Vecchi. Opti-
mization by simulated annealing. Science, 1983,
Vol.220, 671–680.

[38] M. Kolonko. Some new results on simulated annea-
ling applied to the job shop scheduling problem. Euro-
pean Journal of Operational Research, 1999, Vol.113,
123−136.

[39] H.R. Lourenco, O. Martin, T. Stützle. Iterated local
search. In F.Glover, G.Kochenberger (eds.), Hand-
book of Metaheuristics, Kluwer, Norwell, 2002,
321−353.

[40] M. Lundy, A. Mess. Convergence of an annealing
algorithm. Mathematical Programming, 1986, Vol.34,
111–124.

[41] F. Malucelli. Quadratic assignment problems: solution
methods and applications. PhD Thesis, University of
Pisa, Italy, 1993.

[42] R. Marti. Multi-start methods. In F.Glover, G.Ko-
chenberger (eds.), Handbook of Metaheuristics, Klu-
wer, Norwell, 2002, 355−368.

[43] O. Martin, S.W. Otto. Combining simulated annea-
ling with local search heuristics. Annals of Operations
Research, 1996, Vol.63, 57–75.

[44] O. Martin, S.W. Otto, E.W. Felten. Large-step Mar-
kov chains for the traveling salesman problem. Comp-
lex Systems, 1991, Vol.5, 299–326.

[45] P. Merz, B. Freisleben. Genetic local search for the
TSP: new results. Proceedings of the 1997 IEEE
International Conference on Evolutionary Computa-
tion, 1997, 159–164.

[46] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A.
Teller, E. Teller. Equation of state calculation by fast
computing machines. Journal of Chemical Physics,
1953, Vol.21, 1087–1092.

[47] Z. Michalewicz, D.B. Fogel. How to Solve It: Modern
Heuristics. Springer, Berlin-Heidelberg, 2000.

[48] A. Misevicius. Ruin and recreate principle based
approach for the quadratic assignment problem.
Lecture Notes in Computer Science: Genetic and Evo-
lutionary Computation − GECCO-2003, Proceedings,
Part I, E.Cantú-Paz et al. (eds.), Springer, Berlin-
Heidelberg, 2003, Vol.2723, 598–609.

[49] A. Misevicius. Genetic algorithm hybridized with ruin
and recreate procedure: application to the quadratic
assignment problem. Knowledge-Based Systems, 2003,
Vol.16, 261−268.

[50] N. Mladenović, P. Hansen. Variable neighbourhood
search. Computers & Operations Research, 1997,
Vol.24, 1097−1100.

[51] P. Moscato. Memetic algorithms: a short introduction.
In D.Corne, M.Dorigo, F.Glover (eds.), New Ideas in
Optimization, McGraw-Hill, London, 1999, 219–234.

30

An Overview of Some Heuristic Algorithms for Combinatorial Optimization Problems

31

[52] H. Mühlenbein. Genetic algorithms. In E.H.L.Aarts,
J.K.Lenstra (eds.), Local Search in Combinatorial
Optimization, Wiley, Chichester, 1997, 137–171.

[53] I.H. Osman, J.P. Kelly. Meta-heuristics: an overview.
In I.H.Osman, J.P.Kelly (eds.), Meta-Heuristics:
Theory and Applications, Kluwer, Norwell, 1996, 1–
21.

[54] C.H. Papadimitriou, K. Steiglitz. Combinatorial Op-
timization: Algorithms and Complexity. Prentice-
Hall, Englwood Cliffs, 1982.

[55] M. Randall, G. McMahon, S. Sugden. A simulated
annealing approach to communication network design.
Working Paper, School of Information Technology,
Bond University, UK, 1999.

[56] C.R. Reeves. Modern heuristic techniques. In V.J.
Rayward-Smith, I.H.Osman, C.R.Reeves, G.D.Smith
(eds.). Modern Heuristic Search Methods, Wiley,
Chichester, 1996, 1–25.

[57] E. Rolland, H. Pirkul, F. Glover. Tabu search for
graph partitioning. Annals of Operations Reserch,
1996, Vol.63, 209−232.

[58] S. Sahni, T. Gonzalez. P-complete approximation
problems. Journal of ACM, 1976, Vol.23, 555−565.

[59] G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt,
G. Dueck. Record breaking optimization results using
the ruin and recreate principle. Journal of Computa-
tional Physics, 2000, Vol.159, 139–171.

[60] E. Taillard. Robust taboo search for the QAP. Paral-
lel Computing, 1991, Vol.17, 443−455.

[61] E. Taillard. FANT: fast ant system. Tech. Report
IDSIA-46-98, Lugano, Switzerland, 1998.

[62] P. Thomas, S. Salhi. A tabu search heuristic for the
resource constrained project scheduling problem.
Journal of Heuristics, 1998, Vol.4, 123−139.

[63] S. Voss. Dynamic tabu search strategies for the tra-
veling purchaser problem. Annals of Operations
Research, 1996, Vol.63, 253−275.

[64] T. Yamada, R. Nakano. A genetic algorithm applic-
able to large-scale job-shop problems. In R.Männer,
B.Manderick (eds.), Parallel Problem Solving from
Nature 2, North-Holland, Amsterdam, 1992, 281–290.

