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Abstract. Heuristic algorithms (or simply heuristics) are methods that seek for high quality solutions within a 
reasonable (limited) amount of time without being able to guarantee optimality. They often come out as a result of 
imitation of the real world (physics, nature, biology, etc.). In this paper, we give an overview of some heuristic 
algorithms for combinatorial optimization problems. At the beginning, some definitions related to combinatorial 
optimization, as well as the principle (framework) and basic features of the heuristics for combinatorial problems are 
concerned. Then, several popular heuristic algorithms are discussed, namely: descent local search, simulated annealing, 
tabu search, genetic algorithms, ant algorithms, and iterated local search. The unified paradigms of these heuristics are 
given. Finally, we present some results of comparisons of these algorithms for the well-known combinatorial problem, 
the quadratic assignment problem. 
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Indroduction 

The algorithms for combinatorial optimization 
(CO) problems may roughly be classified into so-
called exact and non-exact approaches. The exact 
techniques (such as branch and bound, branch and cut, 
dynamic programming) aim to produce solutions that 
have proven optimality. Unfortunately, many com-
binatorial optimization problems belong to the class 
NP-hard and can not be solved to optimality within 
polynomially bounded computation time. So, heuristic 
algorithms (or simply heuristics) [47, 53, 56] have to 
be used in order to find near-optimal (locally optimal) 
solutions. Heuristic algorithms seek for high quality 
solutions at a reasonable computational time, but can 
not guarantee that a problem will be solved in terms of 
obtaining the exact solution. (It may not even be 
possible to state how close to optimality a particular 
heuristic solution is.) Heuristic algorithms can also be 
seen as intelligent techniques that are based upon 
human's intuition, which, in turn, often comes out as a 
result of analogies with the processes in the sur-
rounding world (physics, nature, biology, etc.) [47]. 

The approaches we consider are not pure heuris-
tics. They are rather general purpose meta-heuristics 
than "tailored" algorithms. The main categories of 
heuristic approaches, which we are going to overview, 
are as follows: descent local search (LS), simulated 
annealing (SA), tabu search (TS), genetic algorithms 

(GA), ant algorithms (AA), and iterated local search 
(ILS). 

Before starting the next section, we introduce 
some very basic definitions related to the combi-
natorial (discrete) optimization. So, let S={s1, s2, ..., si, 
...} be a set of solutions (a "solution space") of a 
combinatorial optimization problem. For the sake of 
clarity, let us consider the case where the solutions are 
based on permutations of the integers from 1 to n, i.e. 
∀si∈S, si=(si(1), si(2), ..., si(n))∈{1, 2, ..., n}. Here n is 
the problem size. (It is obvious that |S|=n!) 
Furthermore, let f: S→R1 be an objective (cost) 
function; without loss of generality, we assume that f 
seeks a global minimum (i.e. the goal is to seek for 
such a solution s∗∈S that ). In 

addition, a neighbourhood function Ν: S→2

)(minarg sfs
Ss∈

∗ =

}

S is given: 
it attaches for each s∈S a set Ν(s)⊆S − a set of 
neighbouring solutions of s. Each solution s′∈Ν(s) can 
be reached from s by an operation called a move, and 
s is said to move to s′ when such an operation is 
performed (usually, the move follows the objective 
function evaluation which is called a trial). As long as 
we operate upon permutation based solutions, we can 
define the neighbourhood function, Νλ, of order λ 
(1<λ≤n), in the following way: 

),(  , | {)( λρλ ≤′∈′′= ssSsssΝ , where s is a solution 
from S, and ρ(s,s′) is so-called Hamming distance 
between the current solution s and the neighbouring 
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one s′: . If λ=2, one ob-

tains 2-exchange neighbourhood function, which is of-
ten used in combinatorial problems. 
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The remaining part of this paper is organized as 
follows. In Section 1, the basic principles of heuristic 
algorithms are outlined. LS, SA, TS, GA, AA, and ILS 
approaches are discussed in Sections 2, 3, 4, 5, 6, 7, 
respectively. In Section 8, we present some experi-
mental results. Finally, Section 9 completes the paper 
with concluding remarks. 

1. Heuristic algorithms: the principle and 
basic features 

Very briefly, the principle (framework) of the 
heuristic algorithms can be described as follows [56]. 
Start the search from an initial solution, maybe, 
randomly generated. Continue the search process by 
performing (in a sequential way) some transforma-
tions to the solutions, i.e. making moves from 
solutions to solutions taking into account the neigh-
bourhood function. The moves are controlled − more 
precisely, the decisions about moves ("to move, or not 
to move") are taken − depending on the quality of 
solutions (the corresponding values of the objective 
function). If the decision is "positive", then the current 
solution is replaced by the neighbouring one, which 
will be used as a "starting point" for the subsequent 
trials (in addition, the best so far solution is saved in a 
memory); otherwise, the search is continued with the 
current solution. The whole process is continued until 
some termination criterion is satisfied. The best 
solution, saved in the memory (the best locally 
optimal solution), is regarded as the final (resulting) 
solution. 

As we can see, the following basic features are 
pertinent for the heuristic algorithms: 

• memory (pool of solutions);  
• transformations of solutions (neighbourhood 

function); 
• search (exploration) order; 
• decision rule; 
• termination criterion. 
There exist many variants in the choice of these 

features. For example, one can maintain one solution 
(the corresponding algorithms are referred to as 
single-solution algorithms), or several solutions (a 
population of solutions) (these algorithms are referred 
to as population-based algorithms (see Section 5)). 
When designing transformation operators, much more 
variations and modifications are available. For 
instance, let us consider the permutation-based solu-
tions with the neighbourhood function Ν2. In this case, 
a move from the solution s to the solution s′ can 
formally be defined by using a 2-way perturbation 
(transformation) operator pjk: S → S (j,k∈{1, 2, ..., n}, 

j≠k), which exchanges exactly two elements (i.e. ith 
and jth elements) in the current solution. (Notation 

jkpss ⊕=′  means that s′ is obtained from s by 
applying the perturbation pjk.). 2-way perturbations are 
quite good choice for some perturbation-based 
problems. However, more sophisticated perturbations 
are possible. They can be interpreted as "large" moves, 
i.e. moves in higher order neighbourhoods Νλ (λ>2). 
Randomly chosen "large" moves (known as 
mutations) are often used (see Section 7). Moreover, 
the transformations can be applied to more than one 
solution − not only a single solution, for example, in 
genetic algorithms, a special recombination operator is 
applied to the pair of solutions. 

Two main alternatives exist when exploring the 
neighbours of the current solution. Firstly, choose the 
next potential solution in a pure random way. 
Secondly, explore the neighbourhood in a systematic 
manner, for example, in the case of the neighbourhood 
function Ν2, one can maintain a sequence {pjk}, where 
j changes from 1 to n−1, and k − from j+1 to n. 

Regarding the decision rules, two basic directions 
are available; they may be regarded to as deterministic 
direction, and stochastic direction. In the first case, the 
decisions are unambiguously predefined by the current 
value of the objective function; they are ordinarily 
based on greedy strategies (for example, only moves 
to the better neighbouring solutions are performed 
(see Section 2). In the second case, the decisions are 
made according to some probability that depends on 
the difference of the objective function values (see 
Section 3). 

Finally, the different termination criteria of heu-
ristic algorithms can be applied. The common way is 
to use a fixed a priori number of trials, although the 
sophisticated intelligent stopping conditions are 
available. 

2. Descent local search 

Before considering the refined modern heuristics, 
we roughly characterize the classical algorithms, so-
called descent local search heuristics (also known as 
hill climbing) [54]. These algorithms are relatively 
very simple, but effective enough in some cases; they 
may also be thought of as origin of the more 
intelligent optimization techniques. There are two 
types of descent LS: a) a "greedy descent" (GD), and 
b) a "steepest descent" (SD). In both cases, the 
decision − to replace the current solution by the new 
one (i.e. to move to the neighbouring solution), or not 
− is positive if only the new solution is definitely 
better than the current one (that is, the difference in 
the objective function values is negative 
(∆f=f(s′)−f(s)<0, where s′∈Ν(s)) − here, we assume 
that the goal is to minimize the objective function). 
The difference between these LS groups is as follows. 
In the "greedy descent", a move is performed to the 

22 



An Overview of Some Heuristic Algorithms for Combinatorial Optimization Problems 

first better solution from the neighbourhood of the 
current solution. In the "steepest descent" the current 
solution is replaced by the best improving 
neighbouring solution. (The first strategy is entitled as 
a "first improvement", and the second one − as a "best 
improvement".) In both cases, the search process is 
continued until the current solution, s, is locally 
optimal, that is, no better solution exists in the 
neighbourhood (∀s′∈Ν(s): f(s′)≥f(s)). 

Given the neighbourhood Νλ, the solution ob-
tained by SD is regarded to as an optimal (λ-
opt(imal)) solution with respect to this neighbourhood. 
However, the complexity of this algorithm is propor-
tional to O(nλ). Therefore, most of descent LS 
algorithms (as well as other iterative search algo-
rithms) usually operate on lower order neighbour-
hoods, like Ν2 or Ν3. The paradigm of descent local 
search is presented (in an algorithmic language like 
form) in Figure 1. 

 procedure descent_local_search 
   // input: s° − initial solution; output: s − the locally optimal solution // 
   s ← s°; 
   while s not locally optimal do begin // main cycle // 
     choose the solution s′ from the neighbourhood of s, Ν(s), 
     in such a way that f(s′)−f(s)<0; 
     s ← s′ // replace the current solution s by the new one s′ (make a move to a new solution) // 
   end // while // 
 end // procedure // 

Figure 1. Paradigm of descent local search 

The solutions obtained by LS are of poor quality 
in most cases. In order to improve the quality, one can 
use multiple runs (single applications) of the descent 
LS algorithm. In other words, LS is repeated many 
times by applying it to some "starting points" (initial 
solutions), a different "point" each time. The best 
found locally optimal solution is declared as the 
resulting solution. The approach described is the well-
known multi-start (multi-greedy) (MS) technique [42]. 
In the simplest case (also known as random multi-start 
(RMS)), the purely randomly generated solutions play 
a role of "starting points". However, heuristically 
constructed solutions may be used. More elaborated 
strategies are concerned in Section 7. 

3. Simulated annealing 

Simulated annealing originated in statistical 
mechanics. It is based on a Monte Carlo model that 
was used by Metropolis et al., 1953 [46], to simulate 
energy levels in cooling solids. Boltzmann's law was 
used to determine the probability of accepting a 
perturbation resulting in a change ∆E in the energy at 

the current temperature t, i.e. 




≥∆
<∆
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0 ,1

P
E

E
CtE , 

where C is a Boltzmann's constant. Starting from 
1982, many authors [7,12,36,37,38,55] applied 
simulated annealing to solve combinatorial 
optimization problems. 

The principle of SA algorithm is simple [37]: start 
from a random solution. Given a solution s, select a 
neighbouring solution s′ and compute the difference in 
the objective function values, ∆f=f(s′)−f(s). If the 

objective function value is improved (∆f<0), then 
replace the current solution by the new one. If ∆f≥0, 
then accept a move with probability tff ∆e)( −=∆P , 
where t is the current temperature (Boltzmann's 
constant is not required when applying the algorithm 
to combinatorial problems). Regarding the above 
probabilistic acceptance, it is achieved by generating a 
random number in [0,1] and comparing it against the 
threshold tf∆e−  (here, the exponential function plays a 
role of an acceptance function). The procedure is 
repeated until a stopping condition is satisfied, for 
example, a predefined number of trials have been 
performed. As a resulting solution, usually the "best so 
far" (BSF) solution (instead of so-called "where you 
are" (WYA) solution) is returned by the algorithm. 
The paradigm of SA is presented in Figure 2. 

Note that SA algorithm can also be viewed as an 
algorithm that belongs to a broad class of so-called 
threshold algorithms (TAs) (for more details on TAs, 
see, for example, [22]). 

SA algorithms differ each from other mainly with 
respect to a cooling (annealing) schedule, which, in 
turn, is specified by initial and final values of the tem-
perature, as well as an updating function for changing 
the temperature. Perhaps, the most important thing is 
how the initial temperature t0 is determined. If the 
initial value of the temperature is chosen too high, 
then too many bad uphill moves are accepted, while if 
it is too low, then the search will quickly drop into a 
local optimum without possibility to escape form it. 
Thus, an optimum initial temperature must be some-
where between these two extremes. 
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The temperature is not a constant, but changes 
over time according to the updating function. One of 
the popular updating functions (known as Lundy-
Mees schedule [40]) is characterized by the following 
relation: )1(1 kkk ttt β+=+ , where k=0, 1, ...; t0=const; 
β <<   t0. It is easy to relate the coefficient β and the 
number of trials, i.e. the schedule length, L, under 
condition that the initial and final values of the 
temperature (t0, tf) are predefined:  

ff tLtt 0)−t0(=β . 

It should be noted that, in the state-of-the-art SA 
algorithms, the temperature rather oscillates than 

decreases monotonically, i.e. re-annealing − a sequen-
ce of heating and cooling − is considered instead of 
the straightforward annealing (see, for example, [7]). 

In theory, the SA procedure should be continued 
until the final temperature tf is zero, but in practice 
other stopping criteria are applied, for example: a) the 
value of the objective function has not decreased for a 
large number of consecutive trials; b) the number of 
accepted moves has become less than a certain small 
threshold for a large number of consecutive trials; c) a 
predefined number of trials has been executed. 

For a more completed discussion on simulated 
annealing, the reader is referred to [1,2]. 

 procedure simulated_annealing 
   // input: s° − initial solution; output: s∗ − the best solution found // 
   s ← s°; s∗ ← s°; 
   determine the initial temperature t0; t := t0; 
   repeat // main cycle // 
     calculate ∆f = f(s′)−f(s), where s′∈Ν(s); 
     generate uniform random number r from the interval [0,1]; 
     if (∆f<0) or ( r ) then s ← s′; // replace the current solution by the new one // tf /∆e−<

     if f(s)<f(s∗) then s∗ ← s; // save the best so far solution // 
     update the current temperature t 
   until termination criterion is satisfied 
 end // procedure // 

Figure 2. Paradigm of simulated annealing 

4. Tabu search 

Tabu search meta-heuristic was introduced by 
Hansen and Jaumard, 1987 [31], and Glover, 1989, 
1990 [26,27]. Since that time, TS has been proven to 
be among the most powerful intelligent techniques for 
difficult optimization problems (see, for example, 
[4,30,33,57,60,62,63]). Briefly speaking, TS is based 
on the neighbourhood search with local-optima 
avoidance but in a rather deterministic way. The key 
idea of tabu search is to allow climbing moves when 
no improving move (neighbouring solution) exists. 
However, some moves have to be forbidden in order 
to avoid cycling. So, the tabu search starts from an 
initial solution s, maybe, randomly generated in S and 
moves repeatedly from a solution to a neighbouring 
one. At each step of the procedure, a set (subset) ϕ(s) 
of the neighbouring solutions of the current solution s 
is considered and the move that improves most the 
objective function value f is chosen. If there are no 
improving moves, tabu search chooses one that least 
degrades the objective function, i.e. a move is 
performed to the best neighbour s′ in ϕ(s) (even if 
f(s′)> f(s)). 

In order to avoid returning to the local optimal 
solution just visited, the reverse move must be 
forbidden (prohibited). This is done by storing this 

move (or an attribute of the move) into a memory (or 
more precisely short-term-memory) managed like a 
circular list T and called a tabu list. The tabu list keeps 
information on the last h (h = |T|) moves which have 
been done during the search process (the parameter h 
is called a tabu list size). Thus, a move from s to s′ is 
considered as tabu if it (or its attribute) is contained in 
the list T. This way of proceeding hinders the 
algorithm from returning to a solution reached in the 
last h steps. However, it might be worth returning after 
a while to a solution visited previously to search in 
another direction. Consequently, an aspiration 
criterion is introduced to permit the tabu status to be 
dropped under certain favourable circumstances. 
Typically, a tabu move from s to s′ is permitted if 
f(s′)  <  f(s∗), where s∗ is the best solution found so far. 
The resulting decision rule within TS may thus be 
described as follows: replace s by s′, where 
f(s′) < f(s*) or )(minarg

)(
sfs

ss
′′=′

∈′′ ϕ
 and s′ is not tabu. 

The process is stopped as soon as a termination 
criterion is satisfied (for example, a fixed a priori 
number of cycles has been performed). The simplified 
scheme of TS is shown in Figure 3. 
The tabu search algorithms differ mainly with respect 
to the basic ingredients discussed above, i.e. tabu list 
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and aspiration criterion. Other important features 
should be mentioned: a long-term-memory, a target 
analysis, intensification, as well as diversification 
mechanisms. The main forms of the tabu search are: 
deterministic tabu search (strict tabu search, fixed tabu 

search, reactive tabu search), stochastic tabu search 
(probabilistic tabu search, robust tabu search), tabu 
thresholding. See Glover and Laguna, 1997 [28]; 
Hertz et al., 1997 [32], for more details on TS 
technique. 

procedure tabu_search 
   // input: s° − initial solution; output: s∗ − the best solution found // 
   s ← s°; s∗ ← s°; 
   initialize the tabu list T; 
   repeat // main cycle // 
     given neighbourhood function Ν, tabu list T, and aspiration criterion, 
     find the best possible solution s′∈Ν(s); 
     s ← s′; // replace the current solution by the new one // 
     insert the solution s (or its attribute, e.g. the move from s to s′) 
     into the tabu list T; 
     if f(s)<f(s∗) then s∗ ← s; // save the best so far solution // 
     update the tabu list T 
   until termination criterion is satisfied 
 end // procedure // 

Figure 3. Paradigm of tabu search 

5. Genetic algorithms 

The original concepts of genetic algorithms, 
which are based on the biological process of natural 
selection, were developed as far back as 1975 by 
Holland [34]. The power of GAs has been demonst-
rated for many optimization problems, among them, 
continuous optimization [13], graph partitioning [10], 
job-shop problems [64], quadratic assignment problem 
[21,23,49], set covering problem [6], traveling 
salesman problem [45]. 

GA operates with some group (P) (called a 
population) of solutions (s1, s2, ..., si, ...) (called indivi-
duals) from S. (This is quite different from the above 
two approaches, which can be viewed as single-
solution heuristics.) So, each individual (si) is associa-
ted with some fitness corresponding to the objective 
function value (f(si)). In case of minimization 
problem, the less the objective function value, the 
more fit the individual, and the larger is the 
probability that the individual will survive in 
evolution process. Over many generations, best fitting 
individuals tend to predominate, while less fit 
individuals tend to die off. Further, GAs can be 
characterized by the following features: a) a 
mechanism for selecting individuals (corresponding to 
solutions of the optimization problem) from the 
population; b) an operator for creating new indivi-
duals, i.e. offsprings by combining the information 
contained in the previous individuals; c) a procedure 
for generating new solution by random perturbations 
of the single previous solutions; d) a rule for updating 
the population (culling solutions from the current 
population). These features are referred to as selection, 

crossover (recombination), mutation, and culling 
(updating), respectively. 

There exists a great variety in the choice of how 
to select, cross, mutate, and cull the individuals; 
moreover, additional features may be used, for 
example, one can incorporate other local improvement 
algorithm (simulated annealing, tabu search) into GA 
in order to improve solution obtained after crossover − 
these strategies are called hybrid genetic (or memetic) 
algorithms [51]. For details and various modifications 
of GAs, see, for example, [16,29,52]). 

The generalized framework for the genetic algo-
rithms is presented in Figure 4. 

6. Ant algorithms 

Ant algorithms were first proposed by Dorigo and 
co-authors [19] as some system of cooperating agents 
(a multi-agent system) for various optimization prob-
lems. Recent applications of AA cover problems like 
graph colouring [15], job-shop scheduling [14], quad-
ratic assignment problem [25,61], traveling salesman 
problem [20], vehicle routing problem [24]. Ant algo-
rithms were inspired by the observation of real ant 
colonies. While walking from the nest to food sources 
and vice versa, ants deposit on the ground a substance 
called pheromone, forming in this way a pheromone 
trail. The role of this trail is to guide ants toward the 
source of food (or to the nest). It has been shown that 
the quantity of pheromone left by an ant depends on 
the amount of food found, it is also obvious that the 
more the ants which reach the source of food, the 
stronger the pheromone left. Since the shorter paths 
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from the nest to food sources will be travelled at a 
higher rate than longer ones, the amount of 
pheromone will grow faster on the shorter ways (i.e. 
pheromone quantity will be in relation with the path 
length). Thus, when many paths are available (from 
the nest to food sources), a colony of ants may exploit 
the pheromone trails (left by the individual ants) to 
discover the shortest path, i.e. ants are able to optimize 
their path by means of the process described above. 

A similar process can be transposed to com-
binatorial optimization: solutions of a problem can be 
built using a statistics (information) of solutions pre-
viously constructed. This statistics plays the role of the 
pheromone traces and it gives an higher weight to the 
better solutions. Such a model is able to build solu-
tions of better quality than a procedure guided objec-
tive function evaluations only. 

 

 procedure genetic_algorithm 
   // input: P⊆S − population of solutions (possibly, locally optimized); output: s∗ − the best solution found // 
   ; // save the best solution from the initial population // )(minarg sfs

Ps∈

∗ ←

   repeat // main cycle // 
     for counter := 1 to #offsprings do begin 
       select "parents" ; Pss ∈′′′,

       ← crossover(s ′′′ ss ′′′, ); // apply crossover to "parents", get an "offspring" // 
       apply local improvement to s ′′′ ; // this step is optional // 
       P ← P ∪ { }; // insert the (optimized) "offspring" into the population // s ′′′

       if f( )<f(ss ′′′ ∗) then s∗ ← ; // save the best so far solution // s ′′′

       apply mutations to some members of P 
     end; // for // 
     update (cull) the population P 
   until termination criterion is satisfied 
 end // procedure // 

Figure 4. Paradigm of genetic algorithm 

procedure ant_algorithm 
   // input: none; output: s∗ − the best solution found // 
   f∗ := ∞; initialize pheromone trails; 
   repeat // main cycle // 
     for i := 1 to #ants do begin 
       construct a solution si (corresponding to ith ant) by using actual trails 
      (and so-called "visibility"); 
       apply local improvement to si; // this step is optional // 
       if f(si)<f∗ then begin f∗ := f(si); s∗ ← si end // save the best so far solution // 
     end; // for // 
     update pheromone trails 
   until termination criterion is satisfied 
 end // procedure // 

Figure 5. Paradigm of ant algorithm 

The analogies of real ants and combinatorial 
optimization are as follows: (a) the real ants’ search 
area corresponds to the set of solutions of the 
combinatorial optimization problem; (b) the amount of 
food in a source corresponds to the objective function 
value; (c) the pheromone trails correspond to some 
(adaptive) memory. 

Note that, during the construction of a new 
solution, the only information sources for an artificial 
ant are the objective function value and the history of 
a population of ants, i.e. the pheromone trails left by 
other ants (having already built solutions) during a 
certain number of trials. After having built a new 
solution, the artificial ant updates the adaptive 
memory (i.e. the trails) taking into consideration the 
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quality of the solution just built. (A 2-dimensional 
array (the matrix of traces), τ, may be an example of 
the adaptive memory; in this case, the entries τij of τ 
measure the "desirability" of setting, for example, 
s(i)=j.) The above process is repeated in an iterative 
way. The process terminates after some large number 
of cycles has been performed. 

The basic structure of an artificial ant system 
based algorithm − ant algorithm − is sketched in 
Figure 5. 

For a more detailed study on ant algorithms, see, 
for example, [17, 18]. 

7. Iterated local search 

Recently, a "reconstruct and improve" policy 
based approach known as an iterated local search has 
became very popular, although the concept of similar 
approach is more than 15 years old and goes back to 
Baum [5]. The approach called iterated Lin-Kernighan 
[35] has been very successfully applied to the 
traveling salesman problem, and still is one of the best 
heuristics for the TSP. Later, various modifications 
and enhancements of the basic idea have been pro-
posed, among them, large step Markov chains [44], 
combined local search (chained local optimization) 
[43], variable neighbourhood search [50], iterated 
local search [39], "ruin and recreate (R&R)" principle 
based approach [59]. 

The key idea of ILS is to obtain better optimiza-
tion results by a reconstruction (destruction) of an 
existing solution and a following improvement (re-
building) procedure [39]. By applying this type of 
process in an iterative way one seeks for high quality 
solutions. So, in the first phase of the process, one 
reconstructs (mutates) the existing solution; the ratio-
nale is that continuing search from the reconstructed 
solution may allow to escape from a local optimum 
and to try to find better solutions. In the second phase, 

one tries to improve the solution just "ruined" as best 
as one can; hopefully, the new solution is better than 
the solution(s) obtained in the previous phase(s) of the 
improvement. (Usually, the improvement is a more 
sophisticated part of the method.) 

There are a lot of different ways to reconstruct 
and, especially, to improve the solutions. So, we think 
of the ILS approach as a meta-heuristic − not a pure 
heuristic. For example, for the improvement, we can 
use any iterative (local) search concept based algo-
rithm. In the simplest case, a hill-climbing (greedy 
descent or steepest descent) algorithm can be used; 
however, more refined approaches are possible, first 
of all, simulated annealing and tabu search algorithms 
discussed above. 

The advantage of ILS over the well-known ran-
dom multi-start (multi-greedy) approach (that is based 
on multiple starts of local improvements applied to 
randomly generated solutions) is that a better idea is to 
reconstruct (a part of) the current solution instead of 
"blind" generation of new solutions from scratch: 
indeed, the improvement of the (slightly) reconst-
ructed (locally optimum) solution requires only a few 
steps to reach the next locally optimum solution, i.e., a 
new local optimum can be found very quickly − 
usually faster than when starting from a random 
solution. 

The structure (paradigm) of the ILS metaheuristic 
is surprisingly simple. All one needs to do by creating 
the ILS principle based algorithm for a specific 
problem is to design three components (not taking into 
account an initial solution generation): 1) a solution 
improvement (local search) procedure, 2) a solution 
reconstruction (mutation) procedure, and 3) a 
candidate acceptance criterion (the last one is used to 
decide which solution is to be chosen for the 
reconstruction). The paradigm of the ILS is given in 
Figure 6. 

 

 procedure iterated_local_search 
   // input: s° − initial solution; output: s∗ − the best solution found // 
   s• ← local_search(s°); // improve the initial solution // 
   s ← s•; s∗ ← s•; 
   repeat // main cycle // 
     s ← candidate_acceptance(s,s•); // choose the candidate for reconstruction (mutation) // 
     s~ ← reconstruction(s); // reconstruct the current solution s, obtain the solution s~ // 
     s• ← local_search(s~); // improve the reconstructed solution s~, obtain the improved solution s• // 
     if f(s•)<f(s∗) then s∗ ← s• // save the best so far solution // 
   until termination criterion is satisfied 
 end // procedure // 

Figure 6. Paradigm of iterated local search 
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8. Some computational experiments 

In order to evaluate the efficiency of the above 
heuristic algorithms, an experiment has been carried 
out on the one of the hard combinatorial optimization 
problems, the quadratic assignment problem (QAP) 
[8,11,41]. The QAP is formulated as follows. Given 
two matrices A = (aij)n×n and B = (bkl)n×n and the set Π 
of permutations of the integers from 1 to n, find a 

permutation π = (π(1), π(2), ..., π(n))∈Π that mini-

mizes . It has been proved that 

the QAP is NP-hard [58]. Therefore, heuristic algo-
rithms are to be used; they can find high quality 
solutions within reasonable computation times. 
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Table 1. Shorter run results of the comparison of the algorithms. The best results obtained are printed in bold face. CPU times 
per restart are given in seconds. 300 MHz PENTIUM computer was used in the experimentation 

Instance  n BKV 
δ , C1%/Cbkv 

 MS SA TS GA AA ILS 
CPU 
time 

chr25a 25 3796 21.81 0/ 0 35.09 0/ 0 12.43 1/ 1 3.38 2/ 2 18.80 0/ 0 77..8855 1/ 1 0.8 
els19 19 17212548 0.09 10/ 9 3.62 3/ 1 5.42 1/ 1 0 1.26 7/ 7 0 0.4 
esc32a 32 130 7.69 0/ 0 2.00 2/ 2 10.15 0/ 0 0.77 6/ 6 4.46 0/ 0 00..9922 5/ 5 1.2 
kra30a 30 88900 2.22 1/ 1 1.23 2/ 2 1.66 1/ 1 0.59 7/ 5 1.60 2/ 2 00..6666 6/ 5 1.1 
nug30 30 6124 0.92 5/ 0 0.37 10/ 1 0.18 10/ 1 00..0066 10/ 3 0.70 9/ 0 0.05 10/ 4 1.1 
sko42 42 15812 1.09 4/ 0 0.26 10/ 0 0.09 10/ 4 0.06 10/ 4 0.81 8/ 0 0.06 10/ 2 2.5 
ste36a 36 9526 2.83 0/ 0 8.01 0/ 0 1.82 3/ 0 0.43 10/ 2 1.82 3/ 0 00..4444 10/ 1 2.1 
tai60a 60 7208572 3.23 0/ 0 2.07 0/ 0 1.61 0/ 0 11..4400 1/ 0 3.30 0/ 0 1.11 2/ 0 8.0 
tai80b 80 818415043 2.11 1/ 0 1.00 6/ 0 5.48 0/ 0 0.30 9/ 0 1.01 4/ 0 00..5599 8/ 0 27.0 
wil100 100 273038 0.56 10/ 0 0.06 10/ 0 0.23 10/ 0 0.13 10/ 0 0.49 10/ 0 00..1100 10/ 0 60.0 

 
Table 2. Longer run results of the comparison of the algorithms.  The best results obtained are printed in bold face. CPU times 
per restart are given in seconds. 300 MHz PENTIUM computer was used in the experimentation 

Instance  n BKV 
δ , C1%/Cbkv 

 MS SA TS GA AA ILS 
CPU 
time 

chr25a 25 379612.75 0/ 0 30.34 0/ 0 5.58 1/ 1  0 6.19 3/ 3 44..0099 2/ 2 7.0 

els19 19 17212548 0 1.04 7/ 1  0  0  0  0 3.0 

esc32a 32 1304.00 0/ 0 0.15 9/ 9 0.92 4/ 4  0 1.38 5/ 5  0 12.0 

kra30a 30 889000.98 3/ 3  0 0.40 7/ 7  0 0.80 5/ 5 0.13 9/ 9 11.0 

nug30 30 61240.48 10/ 0 0.12 10/ 2 0.01 10/ 8  0 0.27 10/ 2  0 11.0 

sko42 42 15812 0.71 10/ 0 0.16 10/ 1 0.01 10/ 7  0 0.18 10/ 1  0 25.0 

ste36a 36 95261.86 0/ 0 7.68 0/ 0 0.07 10/ 5 0.02 10/ 8 0.23 10/ 1 0.02 10/ 8 20.0 
tai60a 60 72085722.95 0/ 0 1.74 0/ 0 1.21 2/ 0 11..1100 3/ 0 2.49 0/ 0 0.71 9/ 0 70.0 
tai80b 80 8184150431.29 1/ 0 0.59 8/ 0 0.64 8/ 0 0.01 10/ 7 0.45 8/ 0 00..1100 10/ 0  270 
wil100 100 2730380.40 10/ 0 0.02 10/ 0 0.05 10/ 0 0.03 10/ 1 0.20 10/ 0 0.02 10/ 0  600 

 
For the comparison, the following heuristic algo-

rithms were used: 1) multi-start (MS) heuristic (adap-
ted by the authors according to [3]); 2) simulated an-
nealing (SA) algorithm [7]; 3) tabu search (TS) 
algorithm [60], 4) genetic algorithm (GA) [49]; 5) ant 
algorithm (AA) [61], and 6) iterated local search (ILS) 
algorithm [48]. (Note that, in GA and ILS algorithms, 
the tabu search based procedures are used as local 
improvement procedures. In fact, these algorithms 

should be considered as hybrid heuristics.) We tested 
the above algorithms on the well-known QAP 
instances from the QAP instances library QAPLIB [9]. 
The performance measures of the algorithms are: 
a) the average deviation from the best known solution 
− δ  ( %][ )(100 zzz ((−=δ , where z  is the average 
objective function value over 10 restarts (i.e. single 
applications of the algorithm to a given instance), and 
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z(  is the best known value (BKV) of the objective 
function (BKVs are from [9])); b) the number of 
solutions that are within 1% optimality (δ ≤1) (over 
10 restarts) − C1%; c)  the number of the best known 
(pseudo-optimal) values (solutions) found − Cbkv. 

Two variants of runs of algorithms have been per-
formed: shorter runs and longer runs (in the first case, 
the run time was very limited; in the second case, 
much more time was allocated). The results of 
comparisons of the algorithms are presented in Tables 
1 and 2. In addition, we give an illustration of typical 
"trajectories" of the objective function values for 
several of the algorithms examined (see Figure 7). 
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Figure 7. "Trajectories" of SA, TS and GA for the QAP 

9. Concluding remarks 

In this paper, a short overview of some heuristic 
algorithms for combinatorial optimization problems is 
given. The following heuristic methods have been 
concerned: descent local search, simulated annealing, 
tabu search, genetic algorithms, ant algorithms, 
iterated local search. In order to compare these algo-
rithms, some experiments on the difficult combinato-
rial problem, the QAP, have been conducted. The 
results obtained from the experiments on various 
instances of the QAP show that, with respect to the 
performance measures used, the genetic algorithm and 
the iterated local search algorithm outperform all 
remaining heuristic algorithms, including the TS, SA 
and ant algorithms, on most of the QAP instances. In 
turn, the tabu search, simulated annealing and ant 
algorithms produce much more better results than the 
straightforward random multi-start algorithm. Clearly, 
for the sake of more accurate evaluation of the 
algorithms, more thorough and larger study should be 
done; in addition, the algorithms should be tested on 
the other combinatorial optimization problems. Never-
theless, some tendencies can be discovered. The atten-
tion should be paid to the genetic algorithms (especial-
ly, hybrid GAs) and iterated local search policy based 
algorithms. The idea of hybridization should further 
be exploited by investigating new procedures of both 
local improvement (intensification) and reconstruction 
(mutation) of solutions (diversification). The 

promising results could be achieved by applying effec-
tive hybrid genetic (memetic) algorithms, which in-
corporate fast efficient iterative (local) search, for 
example, the limited (iterated) tabu search. 
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