
ISSN 1392 – 124X INFORMACINĖS TECHNOLOGIJOS IR VALDYMAS, 2004, Nr.1(30)

COMMUNICATION CO-PROCESSOR DESIGN BY COMPOSITION
OF PARAMETERIZED CELLS

Giedrius Majauskas, Vytautas Štuikys
Kaunas University of Technology

Studentų st. 50-324, LT – 3031, Kaunas, Lithuania

Damien Lyonnard, Wander O. Cesàrio, Yannick Paviot, Ahmed A. Jerraya
TIMA, France

Lovic Gauthier
Kyushu, Japan

Abstract. We deal with hardware block interconnection in Systems-on-Chip. The cost of writing the glue code
grows together with the complexity of such systems. To write such code manually is time consuming. We present a
method of communication co-processor generation for multi-processor SoCs. The method is based on composition of
the parameterized library cells. The cells are parameterized using external macro language. The parameterization and
decomposition of the CC allows decreasing the size of the library, increases code reuse and testability of the
components without loss of performance and flexibility. We present a VDSL application as a case study for our
approach.

1. Indroduction
1.1. Context

The ITRS road-map predicts that by 2004, 70%
of ASICs will be Systems-on-Chip (SoCs) and include
at least one embedded instruction-set processor [8].
Many applications already in the market include
several processors with different instruction-sets:
mobile terminals, set-top boxes, game processors and
network processors [7, 11, 15]. These mass-market
products will be integrated on a single chip for pro-
duction cost reasons. It is expected that these applica-
tions will act as the main drivers for the semi-
conductor industry. Most system and semiconductor
houses develop IP platforms, which allow the integra-
tion of several cores (CPU, DSP, MCU, coprocessors
and other IP’s) and sophisticated communication
networks (hierarchical bus, TDMA-based bus, point-
to-point connections and packet-routing switches) on a
single chip. The trend is to build large designs using
an on-chip network by interconnection standard com-
ponents.

SoCs will include many different instructions-set
processors executing dedicated functions in order to
increase the flexibility of the whole system. Complex,
on-chip, HW/SW communications interfaces are
required to implement these SoCs: multi-core

architectures may require an application-specific com-
munication network interconnect. When systems are
integrated on a single chip, the hardware (micropro-
cessor interfaces, bank of registers, memories) and
software (drivers, operating systems) parts require
communication protocols, which need to be adapted
according to the type of core [8].

This integration requires a large number of
different HW communication protocols. In order to
minimize the number of communication components,
we focus on a solution based on the usage of commu-
nication co-processors (CC’s). Each CC is application-
specific and depends on the component, the com-
munication protocol used, and other design require-
ments. It has to be adapted to each new design and can
not be used as-is. Due to the variety of requirements
for CCs (performance, verifiability requirements,
specific needs of a designer), the implementation may
require a huge library. Using our approach, we can
generate a particular CC for a specific application au-
tomatically, thus reducing the complexity of the
library.

1.2. Related Work

In this subsection, we will review and analyze
approaches for the automatic creation of CCs. CCs

13

G. Majauskas, D. Lyonnard, W.O. Cesàrio, Y. Paviot, L. Gauthier, A.A. Jerraya, V. Štuikys

and communication networks are necessary to connect
CPU’s, DSP’s and other IP blocks because of large
number of different communication protocols. These
are also called wrappers, communication coprocessors
and adapters. Their main role is to adapt the com-
ponent to the rest of the system. The manual develop-
ment of such components is discussed in [6], however
coding is time consuming. Therefore, we need to
generate these CCs automatically.

The existing approaches to generate CCs can be
divided into two groups. The first one relies on gene-
rating custom CCs, the second one relies on com-
posing them from basic cells. Both methods have their
strengths and weaknesses.

In generation-based approaches, the CCs are
created from a formal descriptions using chosen mo-
del. Usually the specification is converted into 2 or 3
FSMs described in some kind of HDL. The examples
of such generators are Synopsys Protocol Com-
piler[19], PIG [17], POLARIS [18], ProGram[14].
UIC [12] tool generates the customized bus for the
data transfer. Coral [1] connects Core-Connect com-
pliant IP’s through predefined busses from virtual
specification. For third-part components, a CC has to
be written manually. For all the above mentioned ap-
proaches, the interface is generally limited to a single
communication protocol. This can generate area over-
head when connecting an IP block with its own pre-
defined communication protocol. The generator is ap-
plication-domain dependent. Specification writing can
be time consuming too, because the language is
generally specific to communication protocols and
may use esoteric concepts.

In library-based approaches, the CCs is created by
finding and (optionally) composing predefined library
cells[9, 10, 2, 20]. The user is able to extend the

library. However, it is hard to cover all possible pro-
tocols without exploding the size of the library. In [20]
components are connected together using rendez-vous
(handshake) protocol with CCs from the library.
COSY [2] system uses layered communication model
for the HW/SW communication refinement. The dis-
advantage of these approaches is a limited set of the
protocols supported. Although library-based ap-
proaches provide better flexibility for designers, they
are harder to maintain. The main problem is that there
are many possible protocols and it is hard to find the
proper library component. Components often have to
be adapted to new protocols, even if they share a
significant part of the code. Whole component has to
be validated after each modification again.

Our approach makes use of a powerful parametri-
zation approach to solve these problems. The co-
processor is assembled from parameterized cells that
are kept in the library. However, different cells have a
significant amount of the similar code that is not
reused between these components.

1.3. Contribution

Our contribution is a macro-generation based
method for generating communication co-processors.
This method allows us to reduce the number of
elements required in HW component library without
loss of flexibility and performance. It can be used
together with any HW description language.

The structure of the paper is as follows. Section 2
presents the design flow. In section 3 we explain the
co-processor generation flow. In section 4 we present
an VDSL application as a case study and evaluate the
results. Then we conclude.

Figure 1. The Architecture of SoC

2. Design Flow
2.1. Target Architecture for SoC

In this subsection we present a generic architec-
ture model for multi-processor SoC’s. We explain the
purpose of the modules, focusing on communication
co-processors. This model is used in several ap-
proaches [3, 20, 10].

The main difference between classical multi-
processor architectures [5] and multiprocessor SoC
architectures is that the multiprocessor SoC

architectures have specific application domains while
the classical architectures have general purposes. In
multiprocessor SoC architectures application-specific
optimization of the architecture is necessary, since the
specific applications have tight design constraints (e.g.
low area and power consumption and high
performance). Thus, we have to use various kinds of
processors (to use a processor specific to the
application, e.g. usage of a DSP for voice processing).
The communication networks have to be application-
specific to locally meet the requirements (e.g., circuit
switch network in multimedia applications), too. The

14

Communication Co-processor Design by Composition of Parameterized Cells

15

use of the existing components for communication
networks and processors requires hardware and
software adaptation. That also needs to be application-
specific.

Figure 1 shows a generic multi-core SoC archi-
tecture where processors are connected to communi-
cation networks via CCs. In fact, IP blocks and
processors are separated from the physical communi-
cation network by co-processors. Such a separation is
necessary to free the processors from communication
management and it enables parallel execution of com-
putation tasks and several communication protocols.

2.2. Automated Design Flow

In this subsection we will discuss a typical auto-
matic design flow of SoCs. We will show the simila-

rities between the tools that use automatic architecture
refinement.

Figure 2 presents the generic design flow. The de-
sign flow starts with a high level specification that
captures the global organization and functionality of
the application. The functionality of application is
validated by simulation or formal methods. The
validated specification is used for generating the code
for communication co-processors. For this, the com-
munication parameters are extracted from the spe-
cification. Appropriate library cells are instantiated
using these parameters. The computational blocks are
refined to match implementation requirements. These
modifications are beyond the scope of this paper. The
specification is modified by the tools to reflect the
changes. The co-processors are connected by channels
and shared busses. The modified specification is vali-
dated using RTL simulation tools.

Figure 2. Generic design flow

A high level specification should allow the de-
signer to re-map the design easily into a new
configuration. This may be done using architecture
exploration tools such as VCC[3], or some specifi-
cation languages like SystemC[16]. Typically, speci-
fication has very little implementation details. It
consists of hardware modules that have abstract ports.
The ports are connected through abstract channels.
Their implementations are not defined at this level.
For convenience, we call this specification a virtual
architecture specification.

The validated design is refined using mapping
parameters. Suitable library cells are picked and
instantiated using these parameters. The co-processors
and processor architectures are built using these
instantiated cells. The specification is automatically
modified to reflect these changes. Then the design is
validated using RTL simulation tools.

2.3. The Structure and Generation of
Communication Coprocessors

In this subsection, we present a general
architecture of communication co-processor and
describe the responsibilities for each component of the
co-processor.

Figure 3 shows a generic processor-centric archi-
tecture structure. The CC is organized as a bridge bet-
ween the microprocessor and a communication net-
work that provides several access points. This scheme
is used in several works in literature (eg. [3, 10]) for
increasing scalability and flexibility of the systems as
it allows the separation of the communication network
from the computational modules. We will use a similar
scheme.

The typical processor-centric architecture consists
of several smaller modules. Firstly, it translates pro-
cessors data to some intermediate protocol. Secondly,
it provides some additional hardware to adapt the
processor, like address decoder, interrupt handler, etc.
Thirdly, it provides several instances of

G. Majauskas, D. Lyonnard, W.O. Cesàrio, Y. Paviot, L. Gauthier, A.A. Jerraya, V. Štuikys

16

communication-specific hardware, that transforms the
data from the intermediate protocol to the channel-
specific format. These modules are called channel
adapters(CAs).

Most of the processor-centric architecture has to
be adapted for each kind of processors. As the pro-
cessors can differ greatly, these parts are implemented
as separate library cells and are insignificantly
parameterized. The most parameterizable parts of the
co-processor are CAs. This is because of great simila-
rity between communication protocols used in the
SoCs today.

The CA implements (1) the communication pro-
tocol of the virtual-architecture level channel and (2)
the protocol of the connected communication network
at the micro-architecture level. For each channel in the
virtual architecture level specification, several CAs are
instantiated from the protocol library with the
architecture parameters (e.g. input/output, master/
slave, data type, buffer size, interrupt usage). In this
paper we focus on CAs parameterization as they have
to be reusable

Figure 3. The processor -centric architecture in different environments

Figure 4. Structural model of the channel adaptor a) Control/Data flow b) Simplified class diagram

Communication Co-processor Design by Composition of Parameterized Cells

3. Communication Co-Processor Generation
3.1. The Generic Channel Adapter Structure

In this subsection, we show a way to decompose a
CA into smaller functional blocks. This decomposition
is required to reduce the complexity of hardware
library.

Although CAs can vary greatly, there are some
similarities between them. Firstly, CAs have 2
interfaces. They read and write to a common storage.
These interfaces are usually not exactly the same.
Firstly, the directions are different. Secondly,
synchronization method is not the same.

We can decompose each CA into two interfaces,
connected by a storage block (Fig. 4 a). One interface
connects CA to a local processors (internal) communi-
cation bus, another interface connect with CAs of
other modules. Each interface consists of read-write
synchronization and processing parts. Protocols,
available for internal communication bus side of CA
are a subset of the ones used for external communi-
cation. Thus we have to describe only three types of
blocks in the library (Figure 4b). We have to use an
external macro language for synthesizable implemen-
tation of the generic CA.

3.2. Basic Cells

In this subsection, we present the tasks for each
type of the cells.We clearly separate the responsibi-
lities of each type of the cells from others. This is
required for declaring an interface between these
blocks, which will be discussed later in the next
subsection.

The read-write interface is responsible for the
synchronization, activation and processing task
calling. The implementation can vary from simple pol-
ling access to different handshake or shared bus spe-
cific protocols. It is a control block and does not pro-
cess data itself.

The processing block is responsible for incoming
data preparation for storage or for transforming stored
data to output format. It can split or join long bit
vectors, or for example, parity check. The block does
not produce any new data itself. The execution of this
block can take from zero to several clock cycles, so
the block should inform other read-write interfaces
about its state after each operation.
The storage block is responsible for storing and
retrieving the data. It manages the storage buffer itself.
The block provides some information to other blocks
about the status of the buffer. It acts as a joining part
between internal and external interfaces.

3.3. Parameterizable Structure

In this subsection, we will present a way cells are
composed together to obtain a customized CA. We

will show how macro language can be used for code
generation.

A simple example of macro language is shown in
Figure 5. This example illustrates how the macro lan-
guage can be used for code generation. It consists of
parts of top-level netlist and storage cell. Top level cell
passes the parameters to other cells.

Each block is parameterized using a macro lan-
guage. There are 4 types of parameters : global,
storage specific and specific to each read write inter-
face and processing block on each side of the CA. The
separation of these parameters helps to reduce the
complexity of the components and to separate the
tasks from each other. The global parameters are used
to guarantee the coherency of layers.

Part of top level netlist

DEFINE {OPTS} IMPLEMENT_COMPONENT=
….
IMPLEMENT_RESET{OPTS}
STORAGE_MPLEMENT_METHODS
{OPTS[GLOBAL].OPTS[STOR].storage,0}
….
ENDDEFINE

Part of storage implementation

DEFINE {OPT, SUF, NO}
STORAGE_IMPLEMENTATION =
DEFINE TP=OP{OPT,”STYPE”} ENDDEFINE
IF (TP==T_FIFO) DO
“void_”OP{OPT,[“entity_name”}”::m_storageWrite(t_storage data) {
if (fifo_full!=OP{OPT,”SNEG”}”) return;
else {
fifo_empty=”OP{OPT,”SNEG”}”;t_storage_counters ttail=tail;
data_storage[ttail]=data; ….”
ELSE IF (TP=T_REG) DO …

Figure 5. Part of processor architecture described
in macro language

We have to define two kinds of interface between
the blocks for the macro-language and for the target
language. The first interface consists of names of the
macro definitions and is used to compose the text
blocks into complete files. The second one enables the
communication between these composed blocks.

This allows higher flexibility of the library, as the
cells are independent from each other.

The cells are composed together by top-level
macro files. The description instantiates 2 read-write
and processing cells and one storage cell. The result is
two files for each CA: SystemC module declaration
and SystemC method implementation.

The main differences from other library-based ap-
proaches are the following. We use smaller cells to
build the coprocessor. Thus we need less library cells.
Theoretically we can generate C=RWI2*Proc2*Stor
different CA’s with different instances of library cells.
RWI, Proc, Stor are amounts of instances available
from read write interface, processing and storage cells,
respectively. Thus, the library is able to produce much
more CA’s from the same amount of library cells that

17

G. Majauskas, D. Lyonnard, W.O. Cesàrio, Y. Paviot, L. Gauthier, A.A. Jerraya, V. Štuikys

in other library-based approaches. It is easy to add
new component as we have defined an interface cells
have to provide. We can achieve higher reusability of
the code, because we have to write only new parts of
the CA and not to rewrite parts existing in other
components.

4. Application
4.1. Design of VDSL Application

In this subsection we present a design of a VDSL
application[13]. We explain application architecture
and specification. We present the parameters used for
the refinement of the application.

Figure 6 gives a graphical representation of the
virtual architecture model that captures a subset of the
VDSL modem specification [13]. The virtual architec-
ture represents a system as a hierarchical network of
modules. Each module consists of an internal behavior
and ports. The modules communicate with each other
through channels connected to their ports. Modules
VM1 and VM2 correspond two CPU’s and module
VM3 represents the TX-Framer block handled as an
IP(For the TX-Framer block, only the interface is
known so it is represented as a black-box).

Figure 6. Virtual architecture description
of the VDSL modem

The specification shown in Figure 6 describes
only virtual architecture of the application. This speci-
fication could be mapped onto different architectures
depending upon the configuration parameters annota-
ted in modules, ports, and nets.

For instance, the three point-to-point connections
(VC1, VC2, and VC3) used in the communication
between VM1 and VM2 can be mapped onto a bus or
onto a shared memory if the designer changes the
configuration parameters placed on these virtual
channels and/or virtual ports.

Each module, task, port and net has specific para-
meters annotated in SystemC specification. For
example, we have chosen to implement the modules
M1 and M2 as 2 ARM7 CPUs and add this parameter
to the modules in the top-level specification. The user
can set task priority and the files that store the

description of its behaviour. For a port, there are a set
of attributes to configure the operating system services
that a task needs, the type of data transmitted, the set
of addresses needed and other parameters. The net
parameters are similar to ones of ports.

Each port has HW and SW specific parameters.
The SW parameters define how the channel can be
accessed through the port. This group of parameters
includes the address of the memory the CA can be
accessed through, SW driver used, etc. The HW
parameters define how the channel is implemented in
HW. For the HW important parameters are the
protocol CA should communicate, data width of both
internal and external information, mask parameters for
transmission of status information and storage type.

4.2. Macro Generation of Communication Co-
processors

VDSL application is a good example for showing
the diversity of CAs. Each module has to communi-
cate with other modules through several kinds of
protocols. In this subsection, we will show how macro
generation technique was used for CA generation for
the VDSL modem application. Lastly, we will present
parameter sets for two particular channels in the
design.

The parameters for CAs can vary greatly. There
are two main reasons for protocol diversity and library
size explosion. The first one is that each module can
require different communication protocols. For
example, the IP block in VDSL application has some
predefined communication protocols. And, depending
on OS implementation, there can be some restrictions
for other communication protocols. The second one is
that we have to customize the implementations of CAs
to meet the constraints of the design. The implemen-
tations of CAs can vary in area, latency, delay and
quality of service. For example, the designer may
change the buffer size for each of the protocols to
explore the possible implementations.

For example, virtual port VP2 connecting module
VM1 with module VM2 requires a handshake protocol
output CA, that operates with 32 bit data. It stores
intermediate data in FIFO buffer which can keep 16
data blocks. Thus, the component needs : a read-write
interface supporting handshake protocol, an 32 bits
data input and output, FIFO storage buffer with 32 bit
access and supporting 16 elements. The internal
interface of CA should provide status information for
module adapter (to avoid buffer overflow), that is kept
in the first and second bits of the transmitted data.
Another example is port VP10 of Module VM2, that
connects it to the IP block. It is a simple polling output
register, operating with 32 bit data, used to configure
the TX Framer. It does not require synchronization, so
it does not have an acknowledge signal. As it is only a
register, the storage buffer does not need to provide
any status information.

18

Communication Co-processor Design by Composition of Parameterized Cells

Figure 7. Refined architecture of VDSL modem

4.3. Automatic Refinement of VDSL Application

In this subsection, we present the results of the
automatic refinement of VDSL application design.We
will describe the resulting architecture and show two
generated CAs.

The resulting architecture of the VDSL
application after the refinement is shown in Figure 7.
We decided to implement modules VM1 and VM2 as
2 ARM7 CPUs. The matching co-processors are built
for both processors. An application-specific address
decoder, an ARM7 processor adapter, a local bus and
several CAs are generated for each of the commu-
nication co-processors. The netlist is modified to
reflect the refined architecture. More details about the
architecture refinement and Co-processor can be found
in [4].

In Figure 8 we show the parts of the two
generated CAs whose parameters are discussed above.
The first two methods are taken from the port VP10 of
module VM2 and the last three methods are taken
from the port VP2 of module VM1. We present only
storage output functions in this example. Although
textually the method interface is the same, it can cover
a large amount of different types and functionality.

/* Storage access methods for simple register */
T_storage channel_output_POOLING::m_storageRead(void) {
 return data_storage;};
/* Storage access methods for FIFO buffer */
t_storage channel_output_HNSK::m_storageRead(void) {
if (fifo_empty !=0) return t_storage(‘Z’);
else {

t_fifo_full=0;
t_storage_counters thead = head;
t_storage td = data_storage [thead];
thead=thead+1;
if (thead== tail) fo_empty=1;

head=thead ; return td ;
}};

Figure 8. An example of macro-generated storage access

methods for two CA

Table 1 shows the numbers obtained after syn-
thesis of the coprocessors of CPU1 and CPU2 in AMS
3.20 (0.8 S m) technology. As the first processor has
less communication channels, its co-processor is
smaller. These results are good since they account for

less than 5% of the total system surface and have a
critical path that corresponds to less than 15% of the
clock cycle of the 25 MHz ARM7 processor used in
this case study.

Table 1. Synthesis results

Co-processor
results

Num. of
gates

Area Critical path
delay(ns)

CPU1 3284 8168 5.95
CPU2 3795 5100 6.16

4.4. Results

The main advantages of the automatic generation
are the following. The refined VDSL architecture is
application-specific. The system generation is fast. It
takes only several minutes to parse the architecture of
the application and generate the refined structure on
Linux PC 500 MHz. The coprocessors are generated
in several seconds. The generation approach allows
finding and fixing errors early. A designer is able to
explore different choices of implementation quickly.
For example, the designer can pick different processor
types to implement VM1 and VM2, or change com-
munication protocols and their parameters. The most
time consuming task is to create specification.

Comparing with the generative approach, (the
channels are generated automatically from formal
specification), this approach provides greater flexibi-
lity. In generative approach, the language provided
capabilities limit the designer. The designer can hardly
extend the generator. This is not the case in our
approach. If a user needs different functionality, he
can easily add new components or extend the old ones
without recompiling the environment.

The library can provide the same functionality
with fewer components than in other library-based
approaches. The de-signer’s choices result in imple-
mentation of the features the components require. In
comparison with [10], the library is easier to maintain,
as only one generic component is visible to the other
tools. Other data are passed as the parameters of the
channel adapter. The integration of new communica-
tion protocols or storage methods is easier. A designer

19

G. Majauskas, D. Lyonnard, W.O. Cesàrio, Y. Paviot, L. Gauthier, A.A. Jerraya, V. Štuikys

needs to create specific parts of the components only
and not re-implement the whole component from
scratch. Additionally, it is much easier to locate the
errors in the component design while adding new cells
in the library.

5. Conclusions

We have presented a method for creation of para-
meterized channel adapter by decomposing them into
smaller parts of code, parametrization and composi-
tion of those using external language. This method
allows effective and scalable implementation of
component library for generating communication co-
processors for multiprocessor SoC’s. Our approach
allows easy extension of component library with new
communication methods, simpler validation of the
components.

We are planning to apply this method not only for
coprocessors, but for memory bridges, too. A formal,
language related layer validation method would be
useful to ease the development of new protocols.

Another possible extension of this work is the
extension of macro-language itself to ease domain-
specific code generation, implementing interfaces for
connecting common shared bus solutions (e.g., AMBA
bus), network-on-chip implementations.

References
 [1] R.A. Bergamaschi, W.R. Lee. Designing Systems-

on-Chip Using Cores. In Proc. of 37th DAC, June
2000.

 [2] J.-Y. Brunel, W.M. Kruijzer, H.J.H.N. Kenter, F.
Peron, L. Pasquier, E.A. de Kock, W.J.M. Smits.
COSY Communication IP’s. In Proc. of 37th DAC,
June 2000.

 [3] Cadence Design Systems. Inc. VCC: Virtual Compo-
nent Codesign,
http://www.cadence.com/producs/vcc/html.

 [4] W.O. Cesario, A. Baghdadi, L. Gauthier, D. Lyon-
nard, G. Nicolescu, Y. Paviot, S. Yoo, A.A. Jerraya,
M. Diaz-Nava. Component-Based Design Approach
for Multicore SoCs. In Proc. to DAC’02, June 2002.

 [5] D. Culler, J.P. Singh, A. Gupta. Parallel Computer
Architecture. A Hardware/Software Approach. Mor-
gan Kaufmann Publishers, Aug. 1998.

 [6] A. Gerstlauer, R. Domer, J. Peng, D.D. Gajski.
System Design: A Practical Guide With SpecC.
Kluwer Academic Publishers, 2001.

 [7] IBM, inc. 28.4G Packet Routing Switch. Networking
Technology Datasheets, available at http://www.chips.
ibm.com/product/coreconnect/docs/crcon wp.pdf.

 [8] International Technology Roadmap for Semiconduc-
tors. http://public.itrs.net/Files/2001ITRS/Home.htm,
2001.

 [9] P.V. Knudsen, J. Madsen. Integrating communi-
cating protocol selection with partitioning in hard-
ware/software codesign. In ISSS, 1998.

[10] D. Lyonnard, S. Yoo, A. Baghdadi, A.A. Jerraya.
Automatic Generation of Application-Specific Archi-
tectures for Heterogeneneous Multiprocessors Sys-
tems-on-Chip. In Proc. to 38th design automation
post-conference, Las Vegas, 2001.

[11] A. Nagari, A. Mecchia, E. Viani, S. Pernici, P.
Confalonieri, Nicollini G., and et al. A 2.7v 11.8
mW Baseband ADC with 72 db Dynamic Range for
GSM Applications. In 21st annual Custom Integrated
Circuits Conference, 1999.

[12] S. Narrayan, D.D. Gajski. Synthesis of System-Level
Bus Interfaces. In Proc. of EDAC, 1994.

[13] M.D. Nava, G.S. Okvist. The Zipper prototype: A
Complete and Flexible VDSL Multi-carrier Solution.
ST Journal special issue xDSL, Sept. 2001.

[14] J. Oberg. ProGram: A Grammar-Based Method for
Specification and Hardware Synthesis of Communica-
tion Protocols. PhD thesis, Departmen of Electronics,
Electronics System Design, Royall Institute of
Technology, 7 May 1999.

[15] Oka and Suzuoki. Designing and programming the
emotion engine. IEEE Micro, 19(6):20–28, Nov. 1999.

[16] Open SystemC Initiative. http://www.systemc.org.
[17] R. Passerone, J.A. Rowson. Automatic synthesis of

interfaces between incompatible protocols. In Proc. of
35th DAC, June 1998.

[18] J. Smith, G. De Micheli. Automated Composition of
Hardware Components. In Proc. of 35th DAC, 1998.

[19] Synopsys web page. http://www.synopsys.com.
[20] S. Vercauteren, B. Lin, H.D. Man. Constructing

Application-Specific Heterogeneous Embedded Archi-
tectures from Custom HW/SW Applications. In Proc.
of DAC96, June 1996.

20

