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Abstract. We deal with hardware block interconnection in Systems-on-Chip. The cost of writing the glue code 
grows together with the complexity of such systems. To write such code manually is time consuming. We present a 
method of communication co-processor generation for multi-processor SoCs. The method is based on composition of 
the parameterized library cells. The cells are parameterized using external macro language. The parameterization and 
decomposition of the CC allows decreasing the size of the library, increases code reuse and testability of the 
components without loss of performance and flexibility. We present a VDSL application as a case study for our 
approach. 

 
 

1. Indroduction 
1.1. Context  

The ITRS road-map predicts that by 2004, 70% 
of ASICs will be Systems-on-Chip (SoCs) and include 
at least one embedded instruction-set processor [8]. 
Many applications already in the market include 
several processors with different instruction-sets: 
mobile terminals, set-top boxes, game processors and 
network processors [7, 11, 15]. These mass-market 
products will be integrated on a single chip for pro-
duction cost reasons. It is expected that these applica-
tions will act as the main drivers for the semi-
conductor industry. Most system and semiconductor 
houses develop IP platforms, which allow the integra-
tion of several cores (CPU, DSP, MCU, coprocessors 
and other IP’s) and sophisticated communication 
networks (hierarchical bus, TDMA-based bus, point-
to-point connections and packet-routing switches) on a 
single chip. The trend is to build large designs using 
an on-chip network by interconnection standard com-
ponents.  

SoCs will include many different instructions-set 
processors executing dedicated functions in order to 
increase the flexibility of the whole system. Complex, 
on-chip, HW/SW communications interfaces are 
required to implement these SoCs: multi-core 

architectures may require an application-specific com-
munication network interconnect. When systems are 
integrated on a single chip, the hardware (micropro-
cessor interfaces, bank of registers, memories) and 
software (drivers, operating systems) parts require 
communication protocols, which need to be adapted 
according to the type of core [8].  

This integration requires a large number of 
different HW communication protocols. In order to 
minimize the number of communication components, 
we focus on a solution based on the usage of commu-
nication co-processors (CC’s). Each CC is application-
specific and depends on the component, the com-
munication protocol used, and other design require-
ments. It has to be adapted to each new design and can 
not be used as-is. Due to the variety of requirements 
for CCs (performance, verifiability requirements, 
specific needs of a designer), the implementation may 
require a huge library. Using our approach, we can 
generate a particular CC for a specific application au-
tomatically, thus reducing the complexity of the 
library.  

1.2. Related Work  

In this subsection, we will review and analyze 
approaches for the automatic creation of CCs. CCs 
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and communication networks are necessary to connect 
CPU’s, DSP’s and other IP blocks because of large 
number of different communication protocols. These 
are also called wrappers, communication coprocessors 
and adapters. Their main role is to adapt the com-
ponent to the rest of the system. The manual develop-
ment of such components is discussed in [6], however 
coding is time consuming. Therefore, we need to 
generate these CCs automatically.  

The existing approaches to generate CCs can be 
divided into two groups. The first one relies on gene-
rating custom CCs, the second one relies on com-
posing them from basic cells. Both methods have their 
strengths and weaknesses.  

In generation-based approaches, the CCs are 
created from a formal descriptions using chosen mo-
del. Usually the specification is converted into 2 or 3 
FSMs described in some kind of HDL. The examples 
of such generators are Synopsys Protocol Com-
piler[19], PIG [17], POLARIS [18], ProGram[14]. 
UIC [12] tool generates the customized bus for the 
data transfer. Coral [1] connects Core-Connect com-
pliant IP’s through predefined busses from virtual 
specification. For third-part components, a CC has to 
be written manually. For all the above mentioned ap-
proaches, the interface is generally limited to a single 
communication protocol. This can generate area over-
head when connecting an IP block with its own pre-
defined communication protocol. The generator is ap-
plication-domain dependent. Specification writing can 
be time consuming too, because the language is 
generally specific to communication protocols and 
may use esoteric concepts.  

In library-based approaches, the CCs is created by 
finding and (optionally) composing predefined library 
cells[9, 10, 2, 20]. The user is able to extend the 

library. However, it is hard to cover all possible pro-
tocols without exploding the size of the library. In [20] 
components are connected together using rendez-vous 
(handshake) protocol with CCs from the library. 
COSY [2] system uses layered communication model 
for the HW/SW communication refinement. The dis-
advantage of these approaches is a limited set of the 
protocols supported. Although library-based ap-
proaches provide better flexibility for designers, they 
are harder to maintain. The main problem is that there 
are many possible protocols and it is hard to find the 
proper library component. Components often have to 
be adapted to new protocols, even if they share a 
significant part of the code. Whole component has to 
be validated after each modification again.  

Our approach makes use of a powerful parametri-
zation approach to solve these problems. The co-
processor is assembled from parameterized cells that 
are kept in the library. However, different cells have a 
significant amount of the similar code that is not 
reused between these components.  

1.3. Contribution  

Our contribution is a macro-generation based 
method for generating communication co-processors. 
This method allows us to reduce the number of 
elements required in HW component library without 
loss of flexibility and performance. It can be used 
together with any HW description language.  

The structure of the paper is as follows. Section 2 
presents the design flow. In section 3 we explain the 
co-processor generation flow. In section 4 we present 
an VDSL application as a case study and evaluate the 
results. Then we conclude. 

 

Figure 1. The Architecture of SoC 

2. Design Flow  
2.1. Target Architecture for SoC  

In this subsection we present a generic architec-
ture model for multi-processor SoC’s. We explain the 
purpose of the modules, focusing on communication 
co-processors. This model is used in several ap-
proaches [3, 20, 10].  

The main difference between classical multi-
processor architectures [5] and multiprocessor SoC 
architectures is that the multiprocessor SoC 

architectures have specific application domains while 
the classical architectures have general purposes. In 
multiprocessor SoC architectures application-specific 
optimization of the architecture is necessary, since the 
specific applications have tight design constraints (e.g. 
low area and power consumption and high 
performance). Thus, we have to use various kinds of 
processors (to use a processor specific to the 
application, e.g. usage of a DSP for voice processing). 
The communication networks have to be application-
specific to locally meet the requirements (e.g., circuit 
switch network in multimedia applications), too. The 
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use of the existing components for communication 
networks and processors requires hardware and 
software adaptation. That also needs to be application-
specific.  

Figure 1 shows a generic multi-core SoC archi-
tecture where processors are connected to communi-
cation networks via CCs. In fact, IP blocks and 
processors are separated from the physical communi-
cation network by co-processors. Such a separation is 
necessary to free the processors from communication 
management and it enables parallel execution of com-
putation tasks and several communication protocols.  

2.2. Automated Design Flow  

In this subsection we will discuss a typical auto-
matic design flow of SoCs. We will show the simila-

rities between the tools that use automatic architecture 
refinement.  

Figure 2 presents the generic design flow. The de-
sign flow starts with a high level specification that 
captures the global organization and functionality of 
the application. The functionality of application is 
validated by simulation or formal methods. The 
validated specification is used for generating the code 
for communication co-processors. For this, the com-
munication parameters are extracted from the spe-
cification. Appropriate library cells are instantiated 
using these parameters. The computational blocks are 
refined to match implementation requirements. These 
modifications are beyond the scope of this paper. The 
specification is modified by the tools to reflect the 
changes. The co-processors are connected by channels 
and shared busses. The modified specification is vali-
dated using RTL simulation tools.  

 

Figure 2. Generic design flow 

A high level specification should allow the de-
signer to re-map the design easily into a new 
configuration. This may be done using architecture 
exploration tools such as VCC[3], or some specifi-
cation languages like SystemC[16]. Typically, speci-
fication has very little implementation details. It 
consists of hardware modules that have abstract ports. 
The ports are connected through abstract channels. 
Their implementations are not defined at this level. 
For convenience, we call this specification a virtual 
architecture specification.  

The validated design is refined using mapping 
parameters. Suitable library cells are picked and 
instantiated using these parameters. The co-processors 
and processor architectures are built using these 
instantiated cells. The specification is automatically 
modified to reflect these changes. Then the design is 
validated using RTL simulation tools. 

2.3. The Structure and Generation of 
Communication Coprocessors  

In this subsection, we present a general 
architecture of communication co-processor and 
describe the responsibilities for each component of the 
co-processor.  

Figure 3 shows a generic processor-centric archi-
tecture structure. The CC is organized as a bridge bet-
ween the microprocessor and a communication net-
work that provides several access points. This scheme 
is used in several works in literature (eg. [3, 10]) for 
increasing scalability and flexibility of the systems as 
it allows the separation of the communication network 
from the computational modules. We will use a similar 
scheme.  

The typical processor-centric architecture consists 
of several smaller modules. Firstly, it translates pro-
cessors data to some intermediate protocol. Secondly, 
it provides some additional hardware to adapt the 
processor, like address decoder, interrupt handler, etc. 
Thirdly, it provides several instances of 
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communication-specific hardware, that transforms the 
data from the intermediate protocol to the channel-
specific format. These modules are called channel 
adapters(CAs).  

Most of the processor-centric architecture has to 
be adapted for each kind of processors. As the pro-
cessors can differ greatly, these parts are implemented 
as separate library cells and are insignificantly 
parameterized. The most parameterizable parts of the 
co-processor are CAs. This is because of great simila-
rity between communication protocols used in the 
SoCs today.  

The CA implements (1) the communication pro-
tocol of the virtual-architecture level channel and (2) 
the protocol of the connected communication network 
at the micro-architecture level. For each channel in the 
virtual architecture level specification, several CAs are 
instantiated from the protocol library with the 
architecture parameters (e.g. input/output, master/ 
slave, data type, buffer size, interrupt usage). In this 
paper we focus on CAs parameterization as they have 
to be reusable  

 

 

Figure 3. The processor -centric architecture in different environments 

 
Figure 4. Structural model of the channel adaptor a) Control/Data flow b) Simplified class diagram
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3. Communication Co-Processor Generation  
3.1. The Generic Channel Adapter Structure  

In this subsection, we show a way to decompose a 
CA into smaller functional blocks. This decomposition 
is required to reduce the complexity of hardware 
library.  

Although CAs can vary greatly, there are some 
similarities between them. Firstly, CAs have 2 
interfaces. They read and write to a common storage. 
These interfaces are usually not exactly the same. 
Firstly, the directions are different. Secondly, 
synchronization method is not the same.  

We can decompose each CA into two interfaces, 
connected by a storage block (Fig. 4 a). One interface 
connects CA to a local processors (internal) communi-
cation bus, another interface connect with CAs of 
other modules. Each interface consists of read-write 
synchronization and processing parts. Protocols, 
available for internal communication bus side of CA 
are a subset of the ones used for external communi-
cation. Thus we have to describe only three types of 
blocks in the library (Figure 4b). We have to use an 
external macro language for synthesizable implemen-
tation of the generic CA. 

3.2. Basic Cells  

In this subsection, we present the tasks for each 
type of the cells.We clearly separate the responsibi-
lities of each type of the cells from others. This is 
required for declaring an interface between these 
blocks, which will be discussed later in the next 
subsection.  

The read-write interface is responsible for the 
synchronization, activation and processing task 
calling. The implementation can vary from simple pol-
ling access to different handshake or shared bus spe-
cific protocols. It is a control block and does not pro-
cess data itself.  

The processing block is responsible for incoming 
data preparation for storage or for transforming stored 
data to output format. It can split or join long bit 
vectors, or for example, parity check. The block does 
not produce any new data itself. The execution of this 
block can take from zero to several clock cycles, so 
the block should inform other read-write interfaces 
about its state after each operation.  
The storage block is responsible for storing and 
retrieving the data. It manages the storage buffer itself. 
The block provides some information to other blocks 
about the status of the buffer. It acts as a joining part 
between internal and external interfaces.  

3.3. Parameterizable Structure  

In this subsection, we will present a way cells are 
composed together to obtain a customized CA. We 

will show how macro language can be used for code 
generation.  

A simple example of macro language is shown in 
Figure 5. This example illustrates how the macro lan-
guage can be used for code generation. It consists of 
parts of top-level netlist and storage cell. Top level cell 
passes the parameters to other cells.  

Each block is parameterized using a macro lan-
guage. There are 4 types of parameters : global, 
storage specific and specific to each read write inter-
face and processing block on each side of the CA. The 
separation of these parameters helps to reduce the 
complexity of the components and to separate the 
tasks from each other. The global parameters are used 
to guarantee the coherency of layers.  

Part of top level netlist 
 
DEFINE {OPTS} IMPLEMENT_COMPONENT= 
…. 
IMPLEMENT_RESET{OPTS} 
STORAGE_MPLEMENT_METHODS 
{OPTS[GLOBAL].OPTS[STOR].storage,0} 
…. 
ENDDEFINE 
 
Part of storage implementation 
 
DEFINE {OPT, SUF, NO} 
STORAGE_IMPLEMENTATION = 
DEFINE TP=OP{OPT,”STYPE”} ENDDEFINE 
IF (TP==T_FIFO) DO 
“void_”OP{OPT,[“entity_name”}”::m_storageWrite(t_storage data) {
if (fifo_full!=OP{OPT,”SNEG”}”) return; 
else { 
fifo_empty=”OP{OPT,”SNEG”}”;t_storage_counters ttail=tail; 
data_storage[ ttail]=data; ….” 
ELSE IF (TP=T_REG) DO … 

 

Figure 5. Part of processor architecture described  
in macro language 

We have to define two kinds of interface between 
the blocks for the macro-language and for the target 
language. The first interface consists of names of the 
macro definitions and is used to compose the text 
blocks into complete files. The second one enables the 
communication between these composed blocks.  

This allows higher flexibility of the library, as the 
cells are independent from each other.  

The cells are composed together by top-level 
macro files. The description instantiates 2 read-write 
and processing cells and one storage cell. The result is 
two files for each CA: SystemC module declaration 
and SystemC method implementation.  

The main differences from other library-based ap-
proaches are the following. We use smaller cells to 
build the coprocessor. Thus we need less library cells. 
Theoretically we can generate C=RWI2*Proc2*Stor 
different CA’s with different instances of library cells. 
RWI, Proc, Stor are amounts of instances available 
from read write interface, processing and storage cells, 
respectively. Thus, the library is able to produce much 
more CA’s from the same amount of library cells that 
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in other library-based approaches. It is easy to add 
new component as we have defined an interface cells 
have to provide. We can achieve higher reusability of 
the code, because we have to write only new parts of 
the CA and not to rewrite parts existing in other 
components. 

4. Application  
4.1. Design of VDSL Application  

In this subsection we present a design of a VDSL 
application[13]. We explain application architecture 
and specification. We present the parameters used for 
the refinement of the application.  

Figure 6 gives a graphical representation of the 
virtual architecture model that captures a subset of the 
VDSL modem specification [13]. The virtual architec-
ture represents a system as a hierarchical network of 
modules. Each module consists of an internal behavior 
and ports. The modules communicate with each other 
through channels connected to their ports. Modules 
VM1 and VM2 correspond two CPU’s and module 
VM3 represents the TX-Framer block handled as an 
IP(For the TX-Framer block, only the interface is 
known so it is represented as a black-box).  

 

Figure 6. Virtual architecture description  
of the VDSL modem 

The specification shown in Figure 6 describes 
only virtual architecture of the application. This speci-
fication could be mapped onto different architectures 
depending upon the configuration parameters annota-
ted in modules, ports, and nets.  

For instance, the three point-to-point connections 
(VC1, VC2, and VC3) used in the communication 
between VM1 and VM2 can be mapped onto a bus or 
onto a shared memory if the designer changes the 
configuration parameters placed on these virtual 
channels and/or virtual ports.  

Each module, task, port and net has specific para-
meters annotated in SystemC specification. For 
example, we have chosen to implement the modules 
M1 and M2 as 2 ARM7 CPUs and add this parameter 
to the modules in the top-level specification. The user 
can set task priority and the files that store the 

description of its behaviour. For a port, there are a set 
of attributes to configure the operating system services 
that a task needs, the type of data transmitted, the set 
of addresses needed and other parameters. The net 
parameters are similar to ones of ports.  

Each port has HW and SW specific parameters. 
The SW parameters define how the channel can be 
accessed through the port. This group of parameters 
includes the address of the memory the CA can be 
accessed through, SW driver used, etc. The HW 
parameters define how the channel is implemented in 
HW. For the HW important parameters are the 
protocol CA should communicate, data width of both 
internal and external information, mask parameters for 
transmission of status information and storage type.  

4.2. Macro Generation of Communication Co-
processors  

VDSL application is a good example for showing 
the diversity of CAs. Each module has to communi-
cate with other modules through several kinds of 
protocols. In this subsection, we will show how macro 
generation technique was used for CA generation for 
the VDSL modem application. Lastly, we will present 
parameter sets for two particular channels in the 
design.  

The parameters for CAs can vary greatly. There 
are two main reasons for protocol diversity and library 
size explosion. The first one is that each module can 
require different communication protocols. For 
example, the IP block in VDSL application has some 
predefined communication protocols. And, depending 
on OS implementation, there can be some restrictions 
for other communication protocols. The second one is 
that we have to customize the implementations of CAs 
to meet the constraints of the design. The implemen-
tations of CAs can vary in area, latency, delay and 
quality of service. For example, the designer may 
change the buffer size for each of the protocols to 
explore the possible implementations.  

For example, virtual port VP2 connecting module 
VM1 with module VM2 requires a handshake protocol 
output CA, that operates with 32 bit data. It stores 
intermediate data in FIFO buffer which can keep 16 
data blocks. Thus, the component needs : a read-write 
interface supporting handshake protocol, an 32 bits 
data input and output, FIFO storage buffer with 32 bit 
access and supporting 16 elements. The internal 
interface of CA should provide status information for 
module adapter (to avoid buffer overflow), that is kept 
in the first and second bits of the transmitted data. 
Another example is port VP10 of Module VM2, that 
connects it to the IP block. It is a simple polling output 
register, operating with 32 bit data, used to configure 
the TX Framer. It does not require synchronization, so 
it does not have an acknowledge signal. As it is only a 
register, the storage buffer does not need to provide 
any status information. 
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Figure 7.  Refined architecture of VDSL modem 

4.3. Automatic Refinement of VDSL Application  

In this subsection, we present the results of the 
automatic refinement of VDSL application design.We 
will describe the resulting architecture and show two 
generated CAs.  

The resulting architecture of the VDSL 
application after the refinement is shown in Figure 7. 
We decided to implement modules VM1 and VM2 as 
2 ARM7 CPUs. The matching co-processors are built 
for both processors. An application-specific address 
decoder, an ARM7 processor adapter, a local bus and 
several CAs are generated for each of the commu-
nication co-processors. The netlist is modified to 
reflect the refined architecture. More details about the 
architecture refinement and Co-processor can be found 
in [4].  

In Figure 8 we show the parts of the two 
generated CAs whose parameters are discussed above. 
The first two methods are taken from the port VP10 of 
module VM2 and the last three methods are taken 
from the port VP2 of module VM1. We present only 
storage output functions in this example. Although 
textually the method interface is the same, it can cover 
a large amount of different types and functionality.  

/* Storage access methods for simple register */ 
T_storage channel_output_POOLING::m_storageRead(void) { 
 return data_storage;}; 
/* Storage access methods for FIFO buffer */ 
t_storage channel_output_HNSK::m_storageRead(void) { 
if (fifo_empty !=0) return t_storage(‘Z’);  
else { 

t_fifo_full=0;  
t_storage_counters thead = head;  
t_storage td = data_storage [thead]; 
thead=thead+1; 
if ( thead== tail ) fo_empty=1; 

  

head=thead ; return td ;  
}}; 

 
Figure 8. An example of macro-generated storage access 

methods for two CA 

Table 1 shows the numbers obtained after syn-
thesis of the coprocessors of CPU1 and CPU2 in AMS 
3.20 (0.8 S m) technology. As the first processor has 
less communication channels, its co-processor is 
smaller. These results are good since they account for 

less than 5% of the total system surface and have a 
critical path that corresponds to less than 15% of the 
clock cycle of the 25 MHz ARM7 processor used in 
this case study. 

Table 1. Synthesis results  

Co-processor 
results 

Num. of 
gates 

Area Critical path 
delay(ns) 

CPU1 3284 8168 5.95 
CPU2 3795 5100 6.16 

4.4. Results  

The main advantages of the automatic generation 
are the following. The refined VDSL architecture is 
application-specific. The system generation is fast. It 
takes only several minutes to parse the architecture of 
the application and generate the refined structure on 
Linux PC 500 MHz. The coprocessors are generated 
in several seconds. The generation approach allows 
finding and fixing errors early. A designer is able to 
explore different choices of implementation quickly. 
For example, the designer can pick different processor 
types to implement VM1 and VM2, or change com-
munication protocols and their parameters. The most 
time consuming task is to create specification.  

Comparing with the generative approach, (the 
channels are generated automatically from formal 
specification), this approach provides greater flexibi-
lity. In generative approach, the language provided 
capabilities limit the designer. The designer can hardly 
extend the generator. This is not the case in our 
approach. If a user needs different functionality, he 
can easily add new components or extend the old ones 
without recompiling the environment.  

The library can provide the same functionality 
with fewer components than in other library-based 
approaches. The de-signer’s choices result in imple-
mentation of the features the components require. In 
comparison with [10], the library is easier to maintain, 
as only one generic component is visible to the other 
tools. Other data are passed as the parameters of the 
channel adapter. The integration of new communica-
tion protocols or storage methods is easier. A designer 
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needs to create specific parts of the components only 
and not re-implement the whole component from 
scratch. Additionally, it is much easier to locate the 
errors in the component design while adding new cells 
in the library. 

5. Conclusions  

We have presented a method for creation of para-
meterized channel adapter by decomposing them into 
smaller parts of code, parametrization and composi-
tion of those using external language. This method 
allows effective and scalable implementation of 
component library for generating communication co-
processors for multiprocessor SoC’s. Our approach 
allows easy extension of component library with new 
communication methods, simpler validation of the 
components.  

We are planning to apply this method not only for 
coprocessors, but for memory bridges, too. A formal, 
language related layer validation method would be 
useful to ease the development of new protocols. 

Another possible extension of this work is the 
extension of macro-language itself to ease domain-
specific code generation, implementing interfaces for 
connecting common shared bus solutions (e.g., AMBA 
bus), network-on-chip implementations. 
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