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Abstract. Computational tools implementing the semi-analytical finite elements for the linear and stability analysis 
of thin-walled beams are considered. The proposed method presents two-stage discretisation, where the thin-walled 
cross section is approximated by the semi-analytical finite elements at the first stage, while conventional longitudinal 
finite element discretisation is performed at the second stage. The developed computational tools for the processor 
allow assembling of the global linear and geometric stiffness matrices and present them in a form as it is used in 
conventional finite element software. The proposed computational tools for pre- and post-processors enable to perform 
communication between the user and convention finite elements software. Solution examples illustrate the use software 
tools and the quality of the results. 

 
 

1. Indroduction 

Investigation of the mechanical properties of va-
rious structures and their members continues to be a 
subject of a great interest in many fields of enginee-
ring. Different thin-walled structures, which have been 
increasingly used over the past few decades, belong to 
this category. Having a high ratio of stiffness and 
strength to the weight they belong to the most efficient 
load-carrying structural members, which are, however, 
highly susceptible to failure by instability [2, 6, 17, 
18, 21, 33]. Design and analysis of the above struc-
tures require accurate analysis methods and practically 
simple computational tools. 

The finite element method (FEM) [4, 8, 23, 35, 
36] has been recognised for a long time as one of the 
most effective computational technology for analysing 
common structures under arbitrary loading and boun-
dary conditions. The significant advances made in 
finite element (FE) technology are related not only 
with rapid development in computer hardware but also 
with the developments related to modelling strategies 
and programming concepts. The implementation of 
these concepts includes clear separation among 
computational and architectural components, 

standardisation of basic programming operations as a 
set of computational tools, standardisation of the 
interface between tools and a user etc. The tools share 
common date base and may be presented in the form 
of an independent executable modulus or utility 
subroutines. They are aimed at handling some specific 
functions such as date management, finite element 
library, standard mathematical operations, interactive 
procedures, computer graphics etc. 

Description of the standard FE software may be 
found in almost every classical FE textbook [8, 23, 
35] including edited in Lithuania [4, 9-11, 18]. A 
comprehensive review of the earliest FE software 
concepts is presented in [18, 26, 34]. The basic 
concepts are continuously held by the development of 
advanced widely used universal FE codes [1, 15, 24]. 

Advanced FEM codes have got a possibility to 
extend their capabilities due to the common newest 
developments in hardware and software technology. 
Besides computer graphics, the computer algebra 
systems such as VIBRAN [10, 11] developed in 
Lithuania or MATHEMATICA [22] and MATLAB 
[12] have obtained their rights, recently, as specific 
technological tools used for developing of the FE 
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software. These techniques have got the advantage as 
they provide the symbolic mathematical models in the 
form of utility subroutines directly used in the 
software systems [9, 16, 25, 34]. 

Nowadays, not only universal but also specific 
application oriented FE codes are widely used in 
structural engineering [5, 13, 32]. The above software 
contains additional subject-oriented and user-friendly 
computational tools and/or utilities simplifying the use 
of software. There also exist FE codes developed for 
the thin-walled structures [27, 29]. 

Subsequently, this work deals with computational 
tools for the stability analysis of the thin-walled 
beams. The new advanced previously proposed semi-
analytical finite element method (SAFEM) [3, 18, 19, 
30, 31, 36] presents the thin-walled cross section as an 
assemblage of semi-analytical finite elements (SAFE). 

A typical discretisation procedure may be con-
sidered as a standard computational technology comp-
rising a mathematical model of the problem, the SAFE 
approach for thin-walled beams, algorithmic aspects 
of the linear and stability analysis and software 
developed.  

The outline of the paper comprises specific soft-
ware tools extending the possibilities of the standard 
FE analysis. Besides computational efficiency, the 
proposed method and computational tools developed 
give a structural designer the ability to simplify 
analysis and pre- and post-processing procedures 
reflecting mainly the geometry and topology of a thin-
walled cross section. Some examples illustrate the 
usage of the SAFEM and software. 

2. Mathematical models and concept of semi-
analytical finite elements 

2.1. Mathematical models 

The formulation of a stability problem as well as 
corresponding expressions for stresses, strains and 
other aspects are widely discussed in [6, 10, 16, 17, 
19, 21, 24, 29, 31, 32, 34]. A critical condition, at 
which instability of a structure occurs, is obtained 
considering the second variation of the total potential 
energy. 

Formulation of the numerical mathematical 
models to be applied for the structural analysis 
requires the continuous variables to be expressed in 
terms of the algebraic nodal displacements. Finally, 
the linearised mathematical model is expressed as an 
algebraic eigenvalue problem [20]: 

[ ] [ ]( ) 0=λ− UKK       gcr , (1) 

where [ K ] is a linear stiffness matrix, [ Kg ] is a geo-
metric stiffness matrix, eigenvector U is a vector of 
nodal displacements representing buckling mode 
shape, while eigenvalue λcr is a critical load factor 

defined as the ratio of the critical load Fcr with respect 
to a given load parameter of the external loads F: 

FF  crcr λ= . (2) 

The simplest linear static analysis problem, solution 
of which is required for the evaluation of geometric 
stiffness matrix may be expressed in terms of 
displacements and presented as: 

[ ] FUK =   , (3) 

where U is a vector of unknown nodal displacements 
and F is a given vector of nodal forces. 

Evaluation of global models (1) and (3) contain-
ing boundary conditions is performed by assembling 
of local subdomains depending on the approximation 
techniques applied. 

2.2. A concept of semi-analytical finite elements  

A concept of the SAFEM [3, 19, 30, 31] will be 
presented in the following manner. The considered 
beam can be represented as a composition of thin 
walls (slender rectangular plates) interconnected along 
their longitudinal edges (Figure 1). Each of the wall 
segments has got an individual height h, thickness t, 
Young’s E and shear G modulus. The thickness is 
assumed to be very small in comparison with the 
height of the SAFE, thus t << h. 

The beam is described by longitudinal co-ordinate 
Ox and cross-sectional co-ordinates Oy and Oz. For 
the sake of convenience, the global co-ordinates y and 
z are replaced by single perimetric co-ordinate 
p = p(y, z). 

 

Figure 1. Illustration of the thin-walled beam and 
discretisation concept 

The cross section built up of straight segments is 
assumed to be a plane frame assembled by one-
dimensional elements. Such FE, used for description 
of the cross-sectional variation of field variables is 
termed here as a SAFE. The position of single SAFE 
is locally defined by two nodes j and k. 

The fragment of the beam having length L and 
replaced between the two global nodes J and K may 
be considered as a complex conventional FE, while, 
the wall segment, the cross section of which is defined 
by a single SAFE, is termed as a subelement (SE). 
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The proposed semi-analytical discretisation tech-
nique of thin-walled beams is a two-stage procedure 
comprising discretisation of geometry and three-
dimensional displacement field. The main objective of 
the first stage is discretisation of a thin-walled cross-
section. Within individual SAFE denoted by a 
subscript safe one-dimensional approximation of 
displacements u is to be assumed: 

( ) ( )[ ] ( )xppx safesafe Ufu    , = , (4) 

 The semi-analytical finite element  (SAFE) 
cross sectional segment 

The subelement (SE) 
shaped by SAFE 

The finite element (FE) – 
beam segment assembled by SE 

The global structure – 
entire beam assembled of FE 

 

where [ f(p) ] is a cross-sectional approximation mat-
rix and Usafe(x) is a vector of generalised displace-
ments usually attached to the cross-section nodes 
(generatric axis). 

The second stage is applied for longitudinal 
discretisation by using standard FEM procedures. 
Longitudinal variation of generalised displacements 
within the subelement is presented as 

Figure 2. Hierarchy of SAFE discretisation  
of the thin-walled beams 

( ) ( )[ ] sesafe xx UNU     = , (5) 

The three-dimensional strain and stress fields may 
be approximated in a similar way as displacements 
(4)-(5). The strains: 

( ) ( )[ ] ( )[ ] sesafe xppx UΒF       , =ε , (6) where [ N(x) ] is a matrix of displacement shape 
functions well known in the FEM. 

where [ F(p) ] is a cross-sectional while [ B(x) ] is a 
longitudinal strain approximation matrices obtained 
by differentiation of the matrices [ f (p) ] and [ N(x) ], 
respectively. 

Hence, the conventional FE of thin-walled beams 
is presented as a complex one-dimensional FE 
assembling of SE, while the entire beam structure is 
assembled of SE. The hierarchy of discretisation is 
presented in Figure 2. 

Figure 3. A th  
FE (b), model 

 
A thin-w

loading (Figu
illustration o
model prese
dimensional F
a) b) c) d) 

 

in-walled cantilever beam under longitudinal loading: general view (a), global model assembled of one-dimensional
of global node (cross-section) assembled of SAFE (c) and global model assembled of two-dimensional subelements 
alled cantilever beam under longitudinal 
re 3) is presented as an example for 

f discretisation. The global schematic 
nts a structure assembled of one-
E (Figure 3b), which is presented in a 

form used in conventional structural analysis. The 
main differences occur in construction of the global 
nodes (Figure 3c), model of which presents the cross 
section assembled of SAFE. Here, local degrees of 
freedom (DOF) are referred to local nodes. Actually, 
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Assembling relations (11)-(12) should finally 
provide the global models (1)-(3) defined in terms of 
the global characteristics. Actually, it is merely on 
algorithmic double summation procedure running 
through the characteristic matrices of individual SE 
and FE, implementation of which will be presented 
below.  

the global model means a composition of SE (Fi-
gure 3d). 

2.3. Characteristic matrices of subelement 

Formulation of the mathematical model (1) 
requires calculation of the two global characteristic 
matrices [ K ] and [ Kg ] reflecting properties of indivi-
dual finite elements and subelements. As it is obvious 
in the FEM, this standard procedure starts from the 
derivation of characteristic matrices on the lowest 
level. By applying the above approximations (4) and 
(6), the linear stiffness matrix of an individual SAFE 
is presented as follows: 

3. Computation algorithm 
3.1. Principal sequence 

Development of a computational algorithm pre-
sents an important step of modelling resulting in the 
quality of computer implementation of the SAFEM. 
The FEM has advantage, that it is implemented using 
sequential modular approach, according to which the 
computational process at a certain level is subdivided 
into relatively independent standard sub-processes or 
modules. As a result, the FE algorithm shaping the 
software architecture can be designed as a sequence of 
the principal operations reflecting the type of problem-
dependent FE analysis. A typical sequence of the algo-
rithm comprises the operations of linear analysis adap-
ted to more complex problems. The sequence of stan-
dard operations describing the stability analysis 
problem (1) is illustrated in Figure 4. 

( )[ ] ( )[ ] [ ] ( )[ ]∫ −=
A

safe Appx d          1 T FDFK , (7) 

where A is a cross-sectional area of a rectangular 
segment, [ D ] is an elasticity matrix of the continuum. 

Now, the linear stiffness matrix of higher-level 
subelement may be obtained in the same way as: 

[ ] ( )[ ] ( )[ ] ( )[ ]∫=
L

safese xxxx d           T BKBK . (8) 

The same procedures are used for derivation of the 
geometric stiffness matrix. For SAFE 

[ ] ( )[ ] ( )[ ] ( )[ ]∫=
A

ggsafeg Appxp d      ,     T 
 FsFK  (9) 

Initialisation 

Data Input and Checking 

Solution of Linear Analysis Problem 

Computation Procedures 
of the Global Linear Stiffness Matrix 

Computation of Internal Forces 

Computation Procedures 
of the Global Geometric Stiffness Matrix 

Solution of Eigenvalue Problem

Data Output of Results 
 

and for subelement: 

[ ] ( )[ ] ( )[ ] ( )[ ]∫=
L

gsafeggseg xxxx d           
T 

 BKBK .(10) 

Here, [ Fg(p) ] and [ Bg(x) ] are matrices obtained by 
differentiation of shape functions [ f (p) ] and [ N(x) ], 
while [ s(x, p) ] is the matrix composed of longitudinal 
stress components. 

2.4. Assembling technique 

Final computation of the global matrices in ex-
pression (1) has to be performed using the assembling 
procedure. This is a standard FEM procedure mathe-
matically expressed as a congruent transformation. 
The characteristic matrix of the FE may be presented 
in the following form: 

[ ] [ ] [ ] [∑= sesesefe GKGK        T ] , (11) 

where [ Gse ] is the incidence matrix for each SE, 
reflecting topological properties of an individual SE. 

The global characteristic matrix of the entire 
beam structure is calculated in the same manner by 
assembling FE: 

Figure 4. General algorithm of FE stability analysis 

[ ] [ ] [ ] [ ]fefefe GKGK        T ∑= . (12) 

The initialisation phase generates the program 
configuration and initiates the database. Data ma-
naging is aimed to generate and check of initial data 
describing geometry and physical properties of the 
structure, topology of FE system, external loading etc. 
Computation procedures of the global linear stiffness 
matrix of the whole structure comprise generation, 

It is necessary to note that the standard kinematical 
boundary conditions with assumed zero displacement 
are incorporated through the incidence matrices. 
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transformation and assembling operations of the indi-
vidual FE stiffness matrices. This step presents a prob-
lem-dependent part related to the particular problem 
through the characteristic matrices of the particular 
FE. Solution of linear algebraic equations (3) com-
prises standard mathematical operations providing the 
values of the nodal displacements as primary vari-
ables. Computation of the secondary variables in the 
process of the structural analysis allows providing 
calculation of the internal forces and stresses. 

The above operations describe the standard se-
quence of linear analysis and are an obligatory part of 
any FE algorithm, while the next two blocks present 
additional operations of the stability analysis. Com-
putational procedures of the global geometric stiffness 
matrix are the same as for the linear stiffness matrix, 
but in this case, secondary variables are used for 
matrix generation. The next step means the formal 
solution of the standard eigenvalue problem (1). The 
last operations compute the final values of numerical 
results and present them in a graphical format. 

The main differences of the proposed SAFEM lie 
in the computation procedures of the global linear and 
geometric stiffness matrices. 

3.2.  Computation of the global stiffness matrices  

In the conventional FE method computation pro-
cedure of the global stiffness matrices [ K ] as well as 
[ Kg ] is described by expression (12) and presents a 
single loop consisting of four standard steps for each 
of the FE. They are generation of the stiffness matrix 
[ Kfe ] with original and physical properties, formation 
of the incidence matrix [ Gfe ] using logical rules, 
congruent transformation according to expression (12) 
and incorporation into the global stiffness matrix. 

In the proposed SAFE approach the computation 
procedures of global matrices [ K ] and [ Kg ] are 
described by two models (11) and (12) and have got 
two assembling loops, the first of which (here termed 
as external one) manages a standard assembling of FE, 
whereas the second (termed here as internal one) 
assembling loop describes generation of individual 
stiffness matrix for each subelement (Fig. 5). 

The internal loop implements assembling of FE 
stiffness matrix [ Kfe ] by (11) in a standard FEM man-
ner and serves as the base for the conventional as-
sembling (12). The proposed algorithm has advantage, 
that it deals actually with standard operations. 

These procedures are similar for linear and 
geometric stiffness matrices as well as for the external 
load vector. 

3.3. Formation of the incidence matrices 

The topological properties of the thin-walled 
beam structure as a whole are described by the inci-
dence matrices for the FE [ Gfe ] and SE [ Gse ], 
respectively. Since the formation of the conventional 

FE matrices is well known in the literature, let us 
focus on the algorithm of formation of topological 
description of a cross section. 
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Yes 

No

STAR  

Finite Elements    fe = 1, nn 

Generation of Stiffness Matrix of  
Individual SE

Incorporation into Stiffness Matrix of 
Individual FE 

Formation of Topological Matrix of 
Individual SE 

Congruent Transformation of Stiffness 
Matrix of Individual SE 

END

Se < m Se = se + 1 

Subelements    se = 1, m 

Fe < nn Fe = fe + 1

Incorporation into the Global Stiffness 
Matrix 

No

Yes 

 

Figure 5. General algorithm for assembling  
of the global matrix 

The incidence matrix is a Boolean’s matrix 
projecting one vector onto another by means of logical 
transformation. The incidence matrix [ Gse ] of the SE 
shapes the vector of nodal variables of the SE Use into 
the vector of the entire FE: 

[ ] sesefe UGU   = . (13) 

Actually, the vectors Ufe and Use present composition 
of the nodal variables in two global nodes J and K, 
(Figure 1). These vectors may be presented as 

{ }T    feKfeJfe UUU =  and 

{ }T    seKseJse UUU = . 
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The incidence matrix [ Gse ] of the SE may be 
decomposed in the same manner and is presented as a 
block diagonal matrix 

[ ] 







=

seK

seJ
se GO

OG
G   . 

Now it is clear, that instead of dealing with full 
matrices and vectors, it is reasonable to consider a 
single global node. Denoting feKfe U≡U , 

seKse UU ≡  and [ ] [ ]seKse GG   ≡ , consideration new 
topology transformation (13) may be simply replaced 
by consideration of new transformation reflecting 
topology of the entire cross section 

[ ] sesefe UGU  = , (14) 

where seU  and [ ]seG  mean nodal displacements and 

incidence matrix of individual SAFE, while feU  
stands for cross-sectional displacements. 

The description of the topology of a cross section 
is illustrated by using a representative example. The 
typical thin-walled SE defined by two global nodes J 
and K and two local nodes j and k and its DOF are 
presented in Figure 6. The DOF of global node K 
presents DOF of single SAFE incorporated into vector 

seU . This SAFE is applied for discretisation of I-
section (Figure 7). 

The thin-walled SE (Figure 6) is constructed as a 
plate having longitudinal and transverse membrane 
DOF and distortional (bending) DOF [17, 30, 31]. The 
main difficulty in formation of a relatively simple 
assembling procedure is the conformity of the dif-
ferent displacement components approximated by 
different laws. 

 
Figure 6. The subelement and its degrees of freedom 

a) b) c) d) 

 

Figure 7. Discretisation of I-section by semi-analytical finite elements: section geometry (a); 
longitudinal membrane DOF (b); longitudinal and transversal membrane DOF (c); membrane and distortional DOF (d) 

Since longitudinal membrane displacements vary 
linearly along a perimetric co-ordinate, the required C0 
continuity may be simply guaranteed by stacking of 
longitudinal DOF, while the membrane transverse 

displacements being constant in SAFE, remain in-
compatible. 

The distortional transversal displacements are 
approximated by the third-order polynomials and 
require C1 continuity along the edges. The continuity 
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of longitudinal distortional rotations may be simply 
fulfilled by stacking nodal rotations ϕx. Due to a dif-
ferent order of approximation of transverse membrane 
up and distortion un displacements, it is difficult to 
impose a full C1 continuity along the entire connection 
edge of a thin-walled beam. Therefore, a simplified 
linear longitudinal approximation of displacements 
un(x) and rotations ϕp(x) neglecting their derivatives is 
assumed throughout the current investigation. 

For the sake of simplicity, the topology of a cross 
section is described in a hierarchical order. Let us start 
by membrane DOF only. As an example, the simplest 
model of I-section (Fig. 7b) is composed of five SAFE 
relating local nodes 1-2, 2-3, 2-5, 4-5 and 5-6.  

The vector of sectional displacements is now de-
fined by six nodal components as feU  = {Ux1, Ux2, 
Ux3, Ux4, Ux5, Ux6 }T, while displacements vectors of 
individual SAFE as 1U  = {Ux1, Ux2}T, 2U  = {Ux2, 
Ux3}T, 3U  = {Ux2, Ux5}T, 4U  = {Ux4, Ux5}T and 

5U  = {Ux5, Ux6 }T. The incidence matrices of the 
above SAFE now are as follows: 

[ ]

























=  

00
00
00
00
10
01

   1G ;    [ ]

























=  

00
00
00
10
01
00

   2G ;    [ ]

























=  

00
10
00
00
01
00

   3G ; 

[ ]

























=  

00
10
01
00
00
00

   4G ;    [ ]

























=  

10
01
00
00
00
00

   5G . 

Topology of the cross section defined by the 
above matrices may be practically presented as a 
single topological vector, every member of which 
points to the number of the corresponding DOF: 

{ }T 
1   6554523221  =V . 

The above methodology may be simply extended 
to incorporate on additional DOF. In the case of 
transversal DOF, the local orientation of DOF is of 
major importance, the orientation may be defined by 
an algebraic sign. When the direction of the local axis 
p is negative, the number of topological DOF will be 
negative too.  

The next example illustrates I-section with longi-
tudinal and transversal DOF (Fig. 7c): The vector of 
cross-sectional displacements is now defined by nine 
nodal components – six longitudinal and three inde-
pendent transversal components as feU  = {Ux1, Ux2, 
Ux3, Ux4, Ux5, Ux6 , Uy25, Uz2, Uz5 }T, while 
displacements vectors of individual SAFE as 

1U  = {Ux1, Ux2, Uz2}T, 2U  = {Ux2, Ux3, Uz2}T, 

3U  = {Ux2, Ux5, Uy25}T, 4U  = {Ux4, Ux5, Uz5  }T and 

5U  = {Ux5, Ux6, Uz5  }T.  

2 =V

The topological vector of the entire cross section 
may be presented as  

{ 2832821   −−  

}T  96595475 −− . 

For the most general case including distortion 
(Figure 7d), the vector of cross-sectional displace-
ments is now defined by adding 27 nodal distortional 
components feU  = { Ux1, Ux2, Ux3, Ux4, Ux5, Ux6, Uy1, 

Uy25, Uy3, Uy4, Uy6, Uz2, Uz5, ϕx1, ϕx2, ϕx3, ϕx4, ϕx5, ϕx6, 
ϕz1, ϕz3, ϕz4, ϕz6, θx1, θx3, θx4, θx6 }T. 

Finally, the topological vector describing all 55 
DOF of the full matrix is as follows: 

{

} .2723191100           

189136500
1892622171013
540018130
0151295225
2116800159
123200159

           

24201471221   

T 

3

−

−
−−

−
−

−−=V

 

For the automatic generation of the topology 
vector the following algorithm is suggested. All nodes 
of a thin-walled cross section may be classified as 
external or internal ones. The external nodes are, ac-
tually, free-end nodes and contain all six DOF. The 
internal nodes join two or more neighbour SAFE. In 
this case, all longitudinal DOF are general for each 
SAFE, but transversal DOF may be parallel or ortho-
gonal. However, the orthogonal DOF are not connec-
ted. The formation algorithm of the cross-sectional 
topological vector is illustrated in Figure 8. 

4. Software implementation 
4.1. Software concept 

Software implementation is the most important 
phase in the development of computational tools for 
each mathematical analysis problem. This is an 
expensive and time-consuming task requiring both the 
ingenuity of those who carry it out and knowledge of 
strong scientific disciplines.  

Flexibility of computing systems is the major 
feature mandatory for design and implementation of 
the software.  

A flexible software system should be designed 
with an idea that it will be modified and its 
architecture should take into account future changes. 
This is provided by the modularisation concept and 
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software tools. The software tools present independent 
executable modulus or utility subroutines to handle 
specific computational procedures. Most of them are 
internal modulus programmed by a software designer, 

while some of them may be written by a user employ-
ing original internal or independent programming 
languages [14, 23, 24, 34]. 

Cross – 
sectional  

Input Data 

The SAFE   i = 1, n

The SAFE Nodes   j = 1, k 

External Node 

Orthogonal Joint

j < k 

i < n 

j = j +1 

i = i +1 

Added Nodal DOF 
U x U p U n ϕ x 

Eliminated DOF 
ϕ p  and θ x 

Topological Vector Congruent Transformation 

No

Yes

Yes No

Yes

Yes
NoNo 

Added Nodal DOF 
U x U p U n ϕ x ϕ p θ x 

END 

START 

 

Figure 8. The formation algorithm of the cross-sectional topological vector 

A wide variety of the existing finite element 
codes, for example, ANSYS [1], NASTRAN [24] etc., 
are modular software systems. A typical structure of 
the FEM software (Fig. 9) comprises three basic parts: 
pre-processor, processor and post-processor. The 
function of the pre-processor is to prepare the input 
data and arrange them according to a format required 
by the processor, the function of processor is to form 
and solve a particular mathematical model, while the 
function of the post-processor is to compute the output 
results, store or display them in the format required by 
a user. 

Pre-processor

Post-processor

Processor

Pre-processor

Post-processor

Processor

 

Figure 9. A typical structure of the FEM software 

The SAFEM discretisation technique being ap-
plied to stability analysis of thin-walled structures is 
implemented as a software system SATW. The prog-
ram SATW consists of three basic blocks and an 
additional part for generation of SE characteristic mat-
rices. The first block creates a new data file and 
generates SAFE mesh for one-dimensional FE system. 
The next block, using a model of SE from the 

additional part, starts the assembling procedure of 
global characteristic matrices and other standard solu-
tions. The last block of the program presents the nu-
merical results using graphical interface and additional 
text files, which comprise information about deformed 
shape, stress state and about two of the most important 
stability parameters: critical value of the external load 
and critical shape modes. 

Actually, it presents modification of standard 
modular FE software accomplished by introducing of 
new computational tools. The graph of the software 
designed for stability analysis is presented in Fi-
gure 10, where new tools reflecting the most 
important features of the SAFEM are accentuated. 
Below  we discuss the details of the implementation of 
the software tools developed on the basic algorithm, 
which has been presented in the previous section. 

4.2. Software tools for pre-processor 

The topological properties of a thin-walled cross 
section are automatically determined by the presented 
algorithm (Figure 8) of the program SATW. The cross 
section is defined independently from the co-ordinate 
system centre and orientation of axes. The SAFE and 
the nodes are arbitrarily numbered. Initially, the prog-
ram starts with a SAFE and analyses each subnode of 
it. In case of an orthogonal joint, rotation and warping 
of the SAFE are eliminated through all global nodes 
and finite elements. As a result, the topological vector 
is obteined and may be successfully used for 
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congruent transformation (11) of the cross-sectional 
DOF of the linear stiffness and geometric stiffness 
matrices. 
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Figure 10. Graph of the modular software  
for stability analysis by the SAFEM 

4.3. Software tools for processor 

The program SATW is developed on the basic 
idea of the modular software system [8]. Three basic 
modules can be independently used and modified for 
special tasks. There are two differences of the program 
SATW: new characteristic matrices as well as new 
models with additional DOF can be incorporated in all 
blocks; the new algorithm for assembling procedures 
of the linear stiffness matrix and geometric stiffness 
matrix is used. The blocks are written in Fortran [14], 
while an additional part of  the program is 
programmed using the standard package of computer 
algebra MATHEMATICA [22]. 

The symbolic manipulations in expressions (7)-
(10) of mathematical integration and other analytical 
operations are automatically performed and the results 
are presented in a general algebraic form. Symbolic 
expressions of subelement linear stiffness and geo-
metric stiffness matrices are generated by the additio-
nal part of the program and presented as two Fortran-
type independent subroutines. The use of computer 
algebra makes an analytical solver part of SAFEM 
analysis as fast as possible. 

Another specific software tool is assembling tool 
developed for computation of the global matrices by 
assembling of subelements. This tool implements the 

algorithm illustrated in Figure 5 and replaces a con-
ventional assembling procedure. Here, the results of 
previously described software tools are presented. 
Instead of dealing with FE the assembling tool em-
ploys SE subroutines generated by the SE generator. 

Instead of dealing with congruent transformations 
(11)-(12), assembling is implemented as a direct 
summation of FE matrices, where topological in-
formation held by incidence matrix [ Gfe ]  is stored in 
the topological vector.  

Finally, a direct summation of SE matrices is ob-
tained by combining the topology of conventional FE 
and topology of cross section. This information is 
stored in the two topological vectors, namely, in 
conventional FE topology vector obtained in a stan-
dard manner and cross-sectional topology vector 
produced by previously described software tool for 
pre-processor. 

The assembling tool is used initially for compu-
tation of the global [ K ] linear stiffness matrix. After 
computation of stress values as secondary variables, it 
is also used for computation of the geometric stiffness 
matrix [ Kg ]. 

4.4. Software tools for post-processor 

The post-processor block transforms given results 
to text and graphical results of a real mechanical 
problem. The graphical package draws the FE system 
as an assemblage of nodal points connected by lines. 
The linear and non-linear computational results are 
shown by deformed shape of the middle surface of a 
thin-walled beam. This graphical module is used as 
“black box”, managed by the input data and not 
modified. 

5. Numerical examples 

Various examples of I-section beams under 
longitudinal loading have been tested to verify the 
proposed SAFE approach and, finally, suitability of 
the proposed software tools. The instability behaviour 
of thin-walled beams is very sensitive to various boun-
dary conditions and possible imperfections, which 
may provide different buckling modes. In general, the 
classical theory of thin-walled beams [33] assumes an 
undistorted cross section. Analytical solutions deve-
loped on this base and the corresponding FE [6, 21] 
are sufficient for predicting the global buckling. 

In case of predominating distortion and local 
buckling, the shell FE model is a single tool suitable 
for non-linear stability analysis. In our case, it is used 
for verification purpose and is treated here as an exact 
one. The large number of the DOF increases the de-
mand of computer memory and the time costs and is 
the most significant obstacle restricting application of 
this approach. 

The general purpose ANSYS code [1, 23] have 
been used for the sake of comparison. Here, the shell 
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FE is defined by four nodes with six DOF (three 
translation and three rotation) on each edge. 

a) b) c) 

              

 
Figure 11. The beam with constant I-section:  

structure under the axial force (a)  
and its flexible buckling mode (b);  

structure under bending moment (c)  
and its torsion-flexible buckling mode (d) 

In the first example, the cantilever beam with 
constant I-section acting by axial force and bending 
moment is presented for verification of the stability. 
The geometry of the beam is relatively expressed by 
the characteristic cross-sectional parameter h, while 
the entire length of the beam and the thickness of its 
cross-sectional wall are defined as L = 40h and 
t = 0,02h. The properties of a homogeneous elastic 
material are defined by Young’s and shear modulus 
E/G = 2.5. The beam is acted by an axial load and 
bending moments, which are expressed as a com-

bination of longitudinal nodal loads at the flanges F1, 
F2, F3 and F4, F5, F6. The beam is considered as an 
assemblage of the five one-dimensional SAFE defined 
by six nodes (Figure 11). 

On the basis of given results the conclusion have 
been drawn about the agreement of the proposed 
model with the classic analytical theory (Table 1). 

The second example investigates the local stabi-
lity of the column with variable I-section under an 
combined action of an axial force and plane bending 
moment (Figure 12a). The relative height of the cross-
sectional web is expressed by relation a/b = 1 and 
a/b = 2 (constant and variable cross sections), where a 
and b are the height at the ends of the column. 

Table. 1. The results of the constant section solutions 

Characteristics 
FE model 

FE DOF λcr 
Classic Theory   1,00 

Axial Force 
Shell FE 384 2574 0,99 

32 864 0,99 
16 432 0,99 SAFE 
8 216 0,98 

Bending 
Shell FE 384 2574 0,99 

32 864 0,99 
16 432 0,98 SAFE 
8 216 0,97 

d) 

               
 a) b) c) 

Figure 12. The column with variable I-section (a)  
and its local buckling mode (b);  

column’s solution results by shell FE (c) 
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The critical state is obtained by numerical ex-
periments using the SAFE (Figure 12b) and shell FE 
(Figure 12c). The column with variable I-section is 
presented as assemblage of one-dimensional FE with a 
constant cross section. Each node of I-section model 
contains 27 DOF. The first stability modes of the 
tapered column are of a local shape. 

Table 2. The results of the variable section solutions 

Characteristics 
FE model 

FE DOF λcr 
Shell FE 1536 9600 1,00 

32 864 0,94 
16 432 0,93 SAFE 
8 216 0,91 

The numerical results show the good agreement 
between the proposed model and the results obtained 
from the classical theory and solutions by a shell FE 
model (Table 2). Therefore, the proposed models are 
actual in the range of thin cross-sectional walls and fill 
the gap between the theory of thin-walled beams and 
shells. 

6. Conclusions 

On the basis of the investigation results the fol-
lowing main conclusions have been made: 
• The proposed computational tools for the proces-

sor allow assembling of the global linear and 
geometric stiffness matrices by formation and 
assembling of individual SE and present the glo-
bal matrices in the form as they are used in con-
ventional FE software;  

• Application of symbolic manipulations and com-
puter algebra allowed to develop a software tool 
for derivation of explicit expressions of charac-
teristic matrices of SE in the form of FE library 
subroutines; 

• The proposed software tools for pre- and post-
processors enable to perform communication bet-
ween a user and conventional FE software using 
definitions and physical interpretation of the 
SAFEM; 

• Comparison of numerical results obtained by 
using the SAFE and conventional shell FE ana-
lysis proves the efficiency of the proposed SAFE 
and developed software tools as well as suitability 
of them for stability analysis of thin-walled 
beams. 
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