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Abstract. Parallel GMRES algorithms for solution of convective transport problems on distributed memory com-
puters are investigated in this paper. The space-time FEM stabilised by the GLS formulation is applied as the most 
accurate and stable. The parallel algorithms based on the domain decomposition and iterative GMRES solver are 
implemented in order to reduce long computing time associated with space-time GLS method. The developed data 
structures, the static load balancing and the inter-processor communication algorithms are particularly suited for homo-
geneous distributed memory PC clusters. The benchmark problem of the rotating cone is solved in order to validate 
efficiency of the developed software. The performance of parallel computations, the speed-up and the efficiency is 
measured on several PC clusters as well as on the IBM SP2 supercomputer. 

 
 

1. Indroduction 

Many important problems involve convective 
transport phenomena. Various computational methods 
are developed for discretising the governing equations 
and for efficient solution of convective transport prob-
lems. The software based on the finite element method 
(FEM) [20] has the flexible and universal structure 
allowing to solve complex problems in an integrated 
fashion and making it particularly interesting to the 
designers of advanced technologies as well as to the 
software developers. However, it has always been the 
problem of the FEM codes that larger computational 
times have been associated with them. Parallel com-
puting is thus perceived as a promising avenue for 
future advances in this applied area of science. 

Domain decomposition [2] is the most efficient 
parallelisation technique used for finite element algo-
rithms on distributed memory computers. The basic 
idea of this technique is the partitioning the compu-
tational domain into sub-domains, each being assigned 
to a processor. A non-overlapping domain decomposi-
tion [18] of the grid is generated that adjacent 
processors share nodes on the sub-domain interfaces. 
The sub-domains exchange data with each other 
through their boundaries. Inter-processor communica-
tion is necessary only when the solution on boundary 
elements of a sub-domain is sought. Such computation 
and communication arrangement enables data paralle-
lism to be executed efficiently and is particularly suit-
able for platforms of distributed memory computers. 

The most time consuming parts of FEM software 
are assembling of finite element coefficient matrices 

and solving large systems of linear equations. The do-
main decomposition strategy significantly reduces the 
first time consuming part, because coefficient matrices 
are assembled locally on each processor. Iterative 
Krylov subspace methods are believed to be very fast 
in solving large linear equation systems. The GMRES 
[15] is popular method for parallel iterative solution of 
such systems. The parallel implementation of restarted 
GMRES(m) algorithm and the reduction of global 
communication overhead on distributed memory com-
puters were studied by De Sturler and Van der Vorst 
[17]. Various preconditioners [10, 13, 16, 19] are used 
for improving the convergence of iterative Krylov 
solvers. Despite this there is little theory available to 
guide the design of efficient and parallel precondi-
tioners for the various types of matrices. The diagonal 
[3] and block-diagonal [9] preconditioners based on 
the simple iteration of Jacobi type are believed to be 
the simplest and very well parallelised precondi-
tioners. 

The main purpose of this work is construction of 
parallel algorithms for efficient solution of convective 
transport problems on distributed memory computers. 
The paper is organised as follows. Section 2 outlines 
the mathematical model of convective transport phe-
nomena. Section 3 presents the parallel algorithms for 
distributed memory PC clusters. In section 4, the re-
sults of parallel efficiency analysis are discussed. Con-
clusions are drawn in Section 5. 

69 



A. Kačeniauskas 

2. Mathematical model 

Convective transport problems are governed by 
the hyperbolic partial differential equation: 
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here, ψ is transported variable and uj is the j-th com-
ponent of the velocity vector. Equation (1) together 
with initial conditions and prescribed ψ values on in-
flow boundaries forms the mathematical model of 
investigated problems. 

The standard Galerkin method yields oscillatory 
solutions when it is applied to convection dominant 
problems in conjunction with classical time-stepping 
algorithms. The Galerkin Least Squares Method 
(GLS) [4] belongs to the family of the stabilised 
methods based on adding a stabilisation term to the 
Galerkin method. This stabilisation term is the least 
square form of the residual of the equation (1) eva-
luated elementwise and multiplied by a stabilisation 
parameter. In this work GLS method is used together 
with space-time approach [5, 12], and the temporal 
derivatives are computed using central weighted 
space-time finite elements in every space-time slab. 
The employed implicit numerical schema [7] is un-
conditionally stable. The resulting coefficient matrices 
are unsymmetrical in spite of the symmetry of the 
stabilising term. 

3. Parallel GMRES solver 

Parallel algorithms were implemented in the 
FEMTOOL program [14] created in the Swiss Federal 
Institute of Technology and developed in Vilnius Ge-
diminas Technical University. FEMTOOL is a Finite 
Element Method Toolbox, which allows implementa-
tion of any partial differential equation with minor ex-
penses. Space-time finite element integration in time 
and the high order shape functions generated automa-
tically make FEMTOOL applicable to efficient solu-

tion of convective transport problems. Parallelisation 
of the FEMTOOL is based on the domain decomposi-
tion, which is the most efficient strategy used on 
distributed memory computers. Finite element meshes 
are partitioned into sub-domains by ParMETIS lib-
raries [6]. The multilevel graph partitioning schemes 
and parallel multilevel k-way graph partitioning 
algorithms are employed for creating finite element 
mesh partitions of high quality. Partitions of roughly 
equal size ensure the static load balancing [11] on the 
homogeneous parallel machines. 

Parallel sparse matrix-vector operations need 
information about the degrees of freedom processed 
on neighbouring sub-domains. Every processor creates 
local arrays for communication between neighbouring 
processors. Data structures shown on Figure 1 
illustrate how the processor 1 addresses and stores the 
local data necessary for neighbouring processors 0, 2 
and 3. Local variable nr_of_nb stores the number of 
neighbouring processors (sub-domains) for a conside-
red processor. The array nb2proc(nr_of_nb) contains 
identification numbers of neighbouring processors. 
The variable tot_bnd_var stores a local number of 
degrees of freedom that are also processed on the 
other processors. Only these unknowns are needed for 
inter-processor communication in parallel FEM codes. 
The array nb2var_ptr(nr_of_nb+1) contains the poin-
ters to the array nb2var(tot_bnd_var). These pointers 
are used for convenient access of data belonging to 
any processor. The last cell in array nb2var_ptr is 
used for identifying the end of the array nb2var. The 
main integer array nb2var(tot_bnd_var) defines the 
position of a considered variable in assembled coeffi-
cient matrix or vector of unknowns y(neqtot). The va-
riable neqtot stores the local number of degrees of 
freedom. The necessary data is addressed in the local 
vector y and is sent to the neighbouring processors by 
the MPI subroutines. Parallel matrix-vector operations 
based on the MPI inter-processor communication 
forms the basis of the GMRES solver. 

320nb2proc(nr_of_nb) :

nb2var_ptr(nr_of_nb+1):

nb2var(tot_bnd_var):

y(neqtot) :  
Figure 1. Data structures for inter-processor communication 

The GMRES [15] is a popular method for itera-
tive solution of linear equation systems with non-
symmetric coefficient matrices. The GMRES solver is 
based on the matrix and vector operations, therefore, it 
can be parallelised using the algorithm described 
above. The following GMRES algorithm (Figure 2) 
was implemented in the FEMTOOL software. The 
iterative solver is based on the orthogonal Krylov sub-

spaces {r, Ar, A2r, … , Am-1r} that can be changed to 
preconditioned sub-spaces {r, K-1Ar, (K-1A)2r, … , (K-

1A)m-1r}. The outer loop i starts from the computing 
residual vector r and the first vector of the Krylov sub-
space v1. The inner loop j constructs the orthogonal 
Krylov sub-space {v1, v2, … , vm}. The orthogo-
nalisation is performed by a modified Gram-Smidt 
process in the third loop k. Hessenberg matrix Hi,j is 
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also constructed in the second loop j. The projected 
system matrix Hi,j is transformed by Givens rotations 
J to an upper triangular matrix with the last row equal 
to zero. The sj+1 estimates the norm of residuals 

2
~xAb − , therefore, computations exit the inner loop 

if sj+1 is smaller than the prescribed accuracy ε. When 
the inner loop is completed, the solution of the 
projected system Hy=s is obtained and the solution x 
of the global system of equations is updated. If the 
norm of residuals is not small enough, computations 
are restarted and the next iteration of the outer loop is 
performed. In the outlined algorithm, the outer ite-
rations are limited by a large number n for practical 
reasons. 
do i = 1, 2, … , n 

Kr = b – Ax 

21 / rrv =  

211 res =  

do j = 1, 2, … , m 
Kvj+1 = Avj 

 do k = 1, 2, … , j 
  Hk, j = (vj+1, vk) 
  vj+1 = vj+1 – Hk, j vi 
 edndo 
 

21j ,1 ++ = jj vH  

 vj+1 = vj+1 / Hj+1, j  
 Construction of rotation matrix J 
 Transformation of H and s by J 

 if ( sj+1 < ε ) exit from loop  
enddo 
Solution of Hy = s 

 x = x + v1y1 + … + vmym 

 if ( sj+1 < ε ) exit from loop 
enddo 

Figure 2. GMRES algorithm 

The iteration number of the GMRES solver de-
pends on a preconditioner K. The simple diagonal 
preconditioner [3] is implemented in the software. The 
lack of robustness and universality of the diagonal 
preconditioner is compensated by the trivial parallel 
implementation and the negligible amount of inter-
processor communication. The need for better parallel 
preconditioner which is robust and dramatically re-
duce the number of iterations while not significantly 
degrading scalability and parallel performance is a key 
open problem for the most PDEs applications. The 
most appropriate preconditioning strategies based on 
the approximate Shur complement [1], multilevel 
approaches [10] or overlapped Schwarcz splitting [13] 
requires significant changes in the data structures used 
in the standard FEM software. The local ILUT 
preconditioning [16, 19] combined with non-over-
lapped domain decomposition is implemented and tes-
ted in this work. The sequential version of the ILUT 
preconditioner is very efficient, but the parallel imple-
mentation on the distributed memory computers is 
very complex. Slightly overlapping sub-domains com-
bined with local preconditioning produce large 

increase of the iteration number and huge inter-pro-
cessor communication overhead. This unsuccessful at-
tempt only confirms the fact, that design of universal 
and efficient parallel preconditioner for ill-conditioned 
matrices reveals a great challenge. 

4. Parallel tests and efficiency analysis 

The parallel FEMTOOL software presented in 
this paper is tested on several distributed memory 
architectures. The main tests are performed on 
BEOWULF clusters: PC cluster VILKAS (OS Linux, 
20 Intel Pentium III processors, 1.4GHz, 0.5GB RAM 
for a processor, 1Gbit/s network) and Transtec PC 
cluster (OS Linux, 32 Intel Xeon processors, 2.2GHz, 
0.5GB RAM for a processor, 1Gbit/s network). Nodes 
are interconnected with a hub running 1 Gbit Ethernet. 
The performance achieved on the PC clusters is 
compared with that of obtained on IBM SP2 super-
computer (OS AIX, 4 processors, 120MHz, 128MB 
RAM for a processor, 360Mbit/s network). The paral-
lel performance of the developed code is judged by 
measurements of speed-up Sp and the efficiency Ep: 

p
p t

t
S 1= , 

p
S

E p
p = ,  (2) 

here, t1 is the program execution time for a single 
processor; tp is the wall clock time for a given job to 
execute on p processors. Parallel efficiency is mea-
sured by fixing the problem size and increasing the 
number of processors used. In practice, perfect effi-
ciency is not naturally attained because of an inherent 
serial part of the algorithm, parallel communication 
overhead and load imbalance. 

The rotating cone problem is chosen as the bench-
mark problem widely used to illustrate the effective-
ness of the algorithms in case of convection domi-
nated flows. The 2D square solution domain [-0.5; 
0.5]x[-0.5; 0.5] is discretised by different structural 
finite element meshes of 10000, 40000, 90000 and 
160000 finite elements (10201, 40401, 90601 and 
160801 degrees of freedom, respectively). 

 
Figure 3. The rotating cone after 2π period of time 

and finite element mesh 

The concentration cone of radius 0.15 is posi-
tioned at (-0.25; 0.0). The concentration maximum 
equals 1.0 in the centre of the cone and decreases to 
zero as a sinusoidal curve. The velocity field u=-y, v=x 
corresponds to a rotational flow. The problem is 
numerically difficult to solve not only because of the 
pure advection but also because of the numerical 
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diffusion attributed to the Cartesian grid discretising 
the rotational flow field.  
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Figure 4. The comparison of the speed-up obtained on  

the PC cluster VILKAS, on the Transtec PC cluster and on  
the IBM SP2 supercomputer 

The accuracy and the efficiency of the developed 
implementation of the space-time GLS method 
significantly outperform those of other investigated 
methods [7]. A position of the rotating cone after 2π 
period of time is shown in Figure 3. 

The results of parallel efficiency analysis are il-
lustrated in Figures 4-5. The speed-up obtained on the 
PC clusters is compared with that of measured on the 
IBM SP2 supercomputer in Figure 4. The speed-up is 
close to linear on all computers, when the number of 
processors is small. The resulting curves obtained on 
the IBM SP2 are very close to each other, because of 
perfect management of parallel processors on this 
distributed memory architecture. The PC processors 
are newer and faster, therefore, program execution 
time is significantly shorter on the PC clusters. The 
reduction of the efficiency owing to communication 
overhead is obtained for a larger number of processors 
(Figure 5). The communication cost is quite small for 
relatively large problems (meshes of 90000 and 
160000 elements), where a large number of finite ele-
ments are used per processor. In case of the bench-
mark problem with 160000 finite elements, even the 
super-linear speed-up is obtained. It is caused by 
occurred advantageous cashing and by the lack of 
RAM on a single PC. The processors of Transtec PC 
cluster are faster, but the speed of the network is the 
same as that of the cluster VILKAS. This is the reason 
why Transtec PC cluster solves the small problem of 
10000 elements with lower efficiency. The imple-
mented domain decomposition strategy and parallel 
GMRES solver are well designed for solving convec-
tive transport problems [8], because of the long time 
necessary for assembling GLS finite element coeffi-
cient matrices. The implemented domain decomposi-
tion performs this time consuming task without any 
inter-processor communication. 
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5. Conclusions 

In this paper, parallel GMRES solution of con-
vective transport problems on distributed memory 
computers has been investigated. The space-time FEM 
conception has allowed evident increase in accuracy, 
but it has required additional computing resources. 
The introduced parallel algorithms have significantly 
reduced the computing time. The universal domain 
decomposition strategy has been successfully applied 
to solve convection transport problems on distributed 
memory PC clusters. The static load balancing on the 
homogeneous parallel machines has been ensured by 
mesh partitioning code METIS incorporated in the 
pre-processor of the software. The iterative GMRES 
solver has been successfully parallelised developing 
the data structures and the communication algorithm 
particularly suited for distributed memory computers. 
The solution of the benchmark problem and perfor-
med efficiency analysis has illustrated high efficiency 
of the parallel algorithms. This has occurred due to the 
long time necessary for assembling GLS finite 
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Figure 5. Performance tests on the Transtec PC cluster 
and on the PC cluster VILKAS:  

(a) the run time, (b) the speed-up, (c) the efficiency 
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element coefficient matrices. The implemented do-
main decomposition has perfectly parallelised this part 
of computations without any inter-processor commu-
nications. The solution of linear equation systems re-
quires extensive communications among processors, 
which automatically decrease the desirable speed-up. 
The favourable time ratio of assembling finite element 
coefficient matrices to solving linear equation systems 
has allowed the achieving of the best efficiency on the 
distributed memory BEOWULF clusters. 
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