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STRATEGY WITH FUZZY ROTOR RESISTANCE ESTIMATOR  

FOR INDUCTION MOTOR SPEED CONTROL 
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Abstract. In this paper, the speed control of an induction motor using backstepping design with fuzzy rotor 
resistance estimation is proposed. First, the direct field oriented control IM is derived. Then, a backstepping for direct 
field oriented control is proposed to compensate the uncertainties, which occur in the control. Finally, a method of 
estimation of the rotor resistance in the backstepping control f induction motor drive. A model reference adaptive 
scheme is proposed in which the adaptation mechanism is executed using fuzzy logic. The effectiveness of the 
proposed control scheme is verified by numerical simulation. The numerical validation results of the proposed scheme 
have presented good performances compared to the conventional direct-field oriented control. 
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1. Introduction 

Nowadays, like a consequence of the important 
progress in the power electronics and of micro-
computing, the control of the AC electric machines 
known a considerable development and a possibility 
of the real time implantation applications. The Induc-
tion machine (IM) known by its robustness, cost, 
reliability and effectiveness is the subject of several 
researches [1].  However, it is traditionally for a long 
time, used in industrial applications that do not require 
high performances, this because of its high non-
linearity and its high-coupled structure.  On the other 
hand, the direct current (D.C) machine was largely 
used in the field of the variable speed applications, 
where torque and flux are naturally decoupled and can 
be controlled independently by the torque producing 
current and the flux producing current.  Since Blashke 
and Hasse have developed the new technique known 
as vector control [1, 2, 3], the use of the induction 
machine becomes more and more frequent. This 
control strategy can provide the same performance as 
achieved from a separately excited DC machine, and 
is proven to be well adapted to all type of electrical 
drives associated with induction machines[4]. The 
vector control technique combines the slip calculation 
with a rotor-position or speed measurement [5]. The 
calculation of the slip speed in the direct vector cont-
rol involves the rotor time constant, which may vary 
considerably over the operational range of the motor 

mainly due to changes in rotor resistance with tempe-
rature. An error in the slip speed calculation gives an 
error in the rotor flux position, resulting in coupling 
between the flux and torque-producing currents due to 
axis misalignment. This results in a torque response 
with possible overshoot or undershoot and a steady-
state error. Therefore variations in motor parameters, 
particularly rotor resistance, should be tracked as they 
occur. For this reasons, many research have been done 
on automated tuning of induction motor parameters by 
various authors [5, 6, 7, 8]. 

The most widely used controller in the industrial 
applications is the PID-type controllers because of 
their simple structures and good performances in a 
wide range of operating conditions [9]. The PID 
controller’s parameters are selected in an optimal way 
by known methods such as the Zeigler and Nichols, 
poles assignment... etc.  However, the PID controllers 
are simple but cannot always effectively control 
systems with changing parameters or have a strong 
nonlinearity; and may need frequent on-line retuning 
[10]. 

Due to new developments in nonlinear control 
theory, several nonlinear control techniques have been 
introduced in the last two decades. One of the 
nonlinear control methods that has been applied to 
induction motor control is the backstepping design 
[11, 12]. The backstepping is a systematic and 
recursive design methodology for nonlinear feedback 
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control. This approach is based upon a systematic 
procedure for the design of feedback control strategies 
suitable for the design of a large class of feedback 
linearisable nonlinear systems exhibiting constant 
uncertainty, and guarantees global regulation and 
tracking for the class of nonlinear systems transform-
able into the parametric-strict feedback form. The 
backstepping design alleviates some of these 
limitations [11,13]. It offers a choice of design tools to 
accommodate uncertainties and nonlinearities and can 
avoid wasteful cancellations. The idea of backstepping 
design is to select recursively some appropriate 
functions of state variables as pseudo-control inputs 
for lower dimension subsystems of the overall system. 
Each backstepping stage results in a new pseudo-
control design, expressed in terms of the pseudo-
control designs from the preceding design stages. 
When the procedure terminates, a feedback design for 
the true control input results which achieves the origi-
nal design objective by virtue of a final Lyapunov 
function, which is formed by summing up the Lyapu-
nov functions associated with each individual design 
stage [14]. 

In this paper, we apply the backstepping technique 
to design a speed controller for the induction motor 
with fuzzy rotor resistance adaptation. The output of 
the backstepping controller is the current (iqs) required 
to maintain the motor speed close to the reference 
speed. The current (iqs) is forced to follow the control 
current by using current regulators. The direct field-
oriented cnotrol of induction machine is presented in 
Section 2, the backstepping technique for IM control 
is summarized in Section 3. The proposed fuzzy 
estimation of the rotor resistance is derived in Section 
4. Simulation results are reported in Section 5. Section 
6 concludes the paper. 

2. Direct field-oriented control of the IM 

The dynamic model of three-phase, Y-connected 
induction motor can be expressed in the d-q 
synchronously rotating frame as [1, 14, 15]: 
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where σ  is the coefficient of dispersion and is given 
by (2): 

rs

m

LL
L2

1−=σ  (2) 

sL , rL , mL – stator, rotor and mutual inductances; 

sR , rR – stator and rotor resistances; 

eω , rω – electrical and rotor angular frequency; 

slω – slip frequency ( )re ωω − ; 

rτ  – rotor time constant  ( )rr RL ; 
P – pole pairs. 
The main objective of the vector control of induc-

tion motors is, as in DC machines, to independently 
control the torque and the flux; this is done by using a 
d-q rotating reference frame synchronously with the 
rotor flux space vector [2, 3]. In ideally field-oriented 
control, the rotor flux linkage axis is forced to align 
with the d-axes, and it follows that [3, 4, 16]: 

0==
dt

d rq
rq

φ
φ , (3) 

== rrd φφ constant . (4) 

Applying the result of (3) and (4), namely field-
oriented control, the torque equation becomes 
analogous to the DC machine and can be described as 
follows: 
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And the slip frequency can be given as follows: 
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Consequently, the dynamic equations (1) yield: 
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Using (3) and (4) the desired flux in terms of ids 
can be found from: 

r

rm
dr s

L
τ
τ

φ
/1
/

+
= . (8) 

The decoupling control method with compensation 
is to choose inverter output voltages such that [15]: 

( ) *** 1
qssedsdsipds iLii

s
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 += , (9) 

( ) rd
r

m
rdsseqsqsipqs L

L
iLii

s
KKV φωσω ++−






 += *** 1 . (10) 

According to the above analysis, the indirect field-
oriented control (IFOC) [3, 15, 16] of induction motor 
with current-regulated PWM drive system can be 
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reasonably presented by the block diagram shown in 
Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. The speed control of the IM using 
backstepping strategy 

a) Backstepping technique 
Consider the system : 

( ) ( )uxgxfx +=& , ( ) 00 =f ,  (11) 

where nRx∈ is the state and Ru∈ is the control 
input. Let ( )xudes α= , ( ) 00 =a  be a desired feedback 
control law, which, if applied to the system in (11), 
guarantees global boundedness and regulation of ( )tx  
to the equilibrium point 0=x as ∞→t , for all ( )0x  
and ( )xV is a control Lyapunov function, where: 

( ) ( ) ( ) ( )[ ] 0<+
∂

∂ xxgxf
x
xV α , ( ) 0>xV . (12) 

Consider the following cascade system : 

( ) ( )yxgxfx +=& , ( ) 00 =f , (13) 

( ) ( )uxxm ζβζζ ,, +=& , ( ) 00 =h , (14) 
( )xhy = , (15) 

where for the system in (13), a desired feedback 
( )xa and a control Lyapunov function V(x) are known. 

Then, using the nonlinear block backstepping theory 
in [17], the error between the actual and the desired 
input for the system in (13) can be defined as 

α−= yz , and an overall control Lyapunov function 
( )ζ,xV  for the systems in (13) and (14) can be 

defined by augmenting a quadratic term in the error 
variable z  with ( )xV : 

( ) ( ) 2

2
1, zxVxV +=ζ . (16) 

Taking the derivative of both sides gives: 

( ) ( ) zzxVxV &&&
2
1, +=ζ  (17) 

From which solving for ( )ζ,xu , which renders 

( )ζ,xV& negative definite, yields a feedback control 
law for the full system in (13-15). One particular 
choice is (see [17]): 
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b) Application to induction motor  
In this section, we use the backstepping algorithm 

to develop a control law to regulate the speed of the 
induction motor. The speed will converge to its 
desired value from a wide set of initial conditions. 
Step 1: 

We first consider the tracking objective of the 
direct current ( drφ ). A tracking error drdrz φφ −= *

1  is 
defined and the derivative becomes: 

( )drdsm
r

rdr iL
L
R

dt
d

z φ
φ

−⋅⋅−=
*

1&  . (19) 

To initiate backstepping, we choose dsi as our first 
virtual control. If the stabilising function is chosen as: 
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We obtain: 
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Due to the fact that dsi is not a control input, an 

error variable *
2 dsds iiz −=  is defined and we have the 

derivative as follows: 

2112
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Step 2: 
The derivative of the error variable *

2 dsds iiz −=  is: 

( )

.

ˆ1

1

2

2

2

2

*

12

qr
rs

m
r

m

dr

s

r
r

m

m

dr
dsr

r

m
qssedsr

s

ds
s

dr

m

r

r
m

dr
dsdrdsm

r

m

LL
Lw

LL

R
L
L

L
iR

L
LiLwiR

L

V
Ldt

d
L

dt
d

L
iciLLz dr

φ
σ

φ
σ

φ
σ

σ

σ
φτ

φ
τ

φ
φ

τ

⋅
⋅⋅

⋅+⋅
⋅

⋅








+






















−⋅⋅








+⋅⋅⋅−⋅

⋅

−⋅
⋅

+⋅

−









⋅−−⋅+−⋅⋅−=&

(23) 

Viewing drφ  and qrφ as unknown disturbances, we 
apply nonlinear damping [13, 17] to design the control 
function: 

Figure 1. Block diagram of DFOC for an induction motor 
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We define: 
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The insertion of the control function in the dyna-
mics for the error variable 2z gives : 
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Step 3: 
We now search to find the error torque tracking. A 
tracking error for 0≠drφ  is defined as: 









⋅⋅

−=

dr
r

m

e
qs

L
L

P

T
iz

φ

*

3 . (26) 

Then, its derivative is: 
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Viewing drφ and qrφ as unknown disturbances, we 
apply nonlinear damping [13, 17] to design the control 
function: 
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The insertion of the control function in the dyna-
mics for the error variable 3z  then gives: 
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The combined controller is shown in Figure 2 where 
we have: 
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c) Speed control of IM using backsteping 

To control the speed of the induction motor, we 
look to search the error speed tracking. We consider 
that *

qsi  is the control law, so the tracking error is 
defined as: 

Figure 2. Nonlinear field-oriented control of IM using 
Backstepping technique 
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Figure 3. Membership functions for antecedent part 

rrz ωω −= *
0 . (36) 

So, its derivate is given as : 

rrz ωω &&& −= *
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The control law obtained is : 
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4. Fuzzy rotor resistance estimation 

In this section, the fuzzy rotor resistance estima-
tion is proposed. The first challenge in the design of 
this fuzzy logic estimator is to determine its input 
variables. Since the time constant for the variation of 
the rotor resistance is much larger than the time con-
stant of the IM, the rotor resistance estimation process 
can be running under steady-state conditions (no chan-
ges of load torque and reference speed command). 

Because of the variation of rR  and rL , the desired 
field-orientation conditions (Eq. (6) to (8)) can not 
always be maintained and the drive performance can 
be significantly affected. For the normal operation of 
the drive and without considering the effects derived 
from the saturation ( rL ), this rotor resistance can 
change up to 200% over operation. 

In order to study the influence of the rotor 
resistance, a characteristic function F is utilized [5, 6]: 
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This function can also be defined from a modified 
expression of field orientation conditions as follows: 
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In steady state 
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d rdφ

, this equation becomes: 

rdsd
r

m i
L
L

F φ⋅−=0 . (42) 

Note that the function given in Eq. (42) differs 
from F by the effect of change of rR [7]. In fact, the 
rotor resistance used in flux estimator is not actual 
value of rR  unless a rotor resistance adaptation is 
present. The error (F-F0) reflects the rotor resistance 
variation, and can be used as a correction function for 

the adaptation of the rotor resistance in the fuzzy logic 
estimator. 

The proposed estimator based on fuzzy logic 
principle is shown in Figure 5. Functions F0 and F are 
first calculated. The error between F and F0 ( F∆ ) and 
its first time derivative are submitted as inputs to FLE. 
The operation principle of FLE is similar as of a fuzzy 
logic controller (FLC). The membership functions for 
the fuzzy sets corresponding to the error F∆  , its time 
variation and incremental rotor resistance rR∆  are 
defined in Figures 3 and 4. 

Because the data manipulated in the fuzzy 
inference mechanism is based on the fuzzy set theory, 
the associated fuzzy sets involved in the fuzzy control 
rules are defined as follows: 

NB : Negative big NM : Negative 
medium 

NS : Negative small ZE : Zero 
PS : Positive small PM : Positive 

medium 
PB : Positive big  

And their universe of discourses are assigned to be 
between [-1, 1] for the inputs ( F∆ and its time varia-
tion), and [-1,1] for the output variable ( rR∆ ). The in-
cremental rotor resistance rR∆  is continuously added 
to the previously estimated rotor resistance 0rR . 

Since only seven fuzzy subsets, NB, NM, NS, ZE, 
PS, PM and PB, are defined for F∆ , its time variation 
and rR∆ , the fuzzy inference mechanism contains 49 
rules. The resulting fuzzy inference rules for the 
incremental rotor resistance are as follows:  

NB NM NS ZE PS PM PB 
NB NB NB NB NB NB NM ZE 
NM NB NB NB NM NS ZE PS 
NS NB NB NM NS ZE PS PM 
ZE NB NM NS ZE PS PM PB 
PS NM NS ZE PS PM PB PB 
PM NS ZE PS PM PB PB PB 
PB ZE PS PS PB PB PB PB 
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rR∆

Figure 4. Membership functions consequent part 
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Finally, the fuzzy output rR∆ can be calculated by 
the centre of area defuzzification as: 
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where [ ]71 cc L=υ , 1c trough 7c are the centre of 
the membership functions of rR∆  and 

[ ] ∑
=

=
7

1
71

i
iwwwW L  is firing strength vector. 

The simulated value of rR is used in the slip cal-
culation (6) and rotor flux estimator (8) as shown in 
Figure 6 to ensure the correct operation of induction 
motor control. 

 
 
 
 
 
 
 
 
 

5. Results of simulation 

To prove the rightness and effectiveness of the 
proposed control scheme, we apply the designed cont-
roller to the control of the induction motor. The induc-
tion motor is a wound three phase, Y connected, four 
pole, 1.5 kW, 1420min-1 220/380V, 50Hz. The ma-
chine parameters are given in the appendix. The 
configuration of the overall control system is shown in 
Figure 6. It mainly consists of an induction motor, a 
ramp comparison current-controlled pulse width mo-
dulated (PWM) inverter, a slip angular speed esti-
mator, an inverse park, nonlinear filed oriented control 
based on backstepping technique, and an outer speed 
feedback control loop contains on a backstepping 
controller. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Figure 6. Block of the speed control and field oriented control of IM using backstepping technique  
with fuzzy rotor resistance estimator 
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Phase current Ia [A] rdφ  and rqφ [Wb]

Torque [N.m]Rotor speed [rad/sec] 

Figure 7 shows the disturbance rejection of back-
stepping controller when the machine is operated at 
200 [rad/sec] under no load and a nominal load 
disturbance torque (10 N.m) is suddenly applied and 
eliminated at 1.5sec, 2.5sec respectively, followed by 
a reversed reference (-200rad/sec) at 4sec. The 
backstepping controller rejects the load disturbance 
rapidly with a negligible steady state error.  

This controller rejects the load disturbance very 
quickly with no overshoot and with a negligible steady 
state error more than the PI controller which is shown 
clearly in Figures 11 and 12. The PI controller para-
meters are selected in an optimal way using the poles 
placement method. The proportional and the integral 
constant are given as follow: kp = 1.5574, ki = 10.044. 
The constants ic , 3,2,1,0=i  of the backstepping control 
strategy, which indicate the speed of convergence for the 
state variable (rotor speed rw ) are chosen as 180 =c , 

5.51 =c , 5.72 =c , 5.73 =c . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Simulated results of backstepping  
controller for IM 

 
 
 
 
 
 
 
 
 

 
 
 

Figure 8. Simulated results of the comparison between the 
decoupling obtained by PI and backstepping design for IM 

Figures 8 and 9 show a comparison between the 
classical field oriented control using PI controller and 

that based on the backstepping design technique. They 
show clearly that the decoupling control is more 
maintained for the backstepping design than that ob-
tained by a classical PI controllers (current and flux 
regulators). 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Simulated results of the comparison between the 
decoupling obtained by PI and backstepping design for IM 

 
 
 
 
 
 
 
 
 

Figure 10. Zoomed responses of decoupling obtained by PI, 
backstepping control for IM 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Simulated results of the comparison between  
the PI and backstepping design for IM speed control 

In the next simulation, the rotor resistance is sup-
posed to be changed from 100% of its rated value to 
200% linearly (step or ramp change). The responses of 
direct and quadratic rotor flux for the two cases 
(without and with rotor resistance adapting) and for 
step change are shown in Figure 13. It’s observed in 
these figures that when the estimated rotor resistance 
deviates from its real value, the field orientation 
scheme is detuned. Figure 13 shows also the main-
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tained performance of the IM drive using the rotor 
resistance adaptation to track its real value. In this 
case, the field orientation condition can be maintained 
by applying a step change of rotor resistance. It’s 
observed that the detuned problem is removed comp-
letely ( rrd φφ =  and 0=rqφ ). 

 
 
 
 
 
 
 
 
 
 
 

Figure 12. Zoomed responses of speed control obtained  
by PI, backstepping control for IM 

 
 
 
 
 
 
 
 
 

Figure 13. Simulated results of the direct and quadratic flux 
without and with rotor resistance adaptation (step change) 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 14. Rotor resistance tracking for step change 

Figure 15 shows the responses of the direct and 
quadratic rotor flux with and without adaptation, for 
ramp change of rotor resistance. The same remarks 
can be observed for the responses shown in Figure 13. 
Finally, Figures 14 and 16 show the rotor resistance 
tracking for step and ramp change. In both cases, the 
rotor resistance tracking is excellent and the field 
orientation condition is still maintained. We can 
analyze finally the principle of the obtained results for 
rotor resistance adaptation. If the system is under 

noload condition, the torque current becomes zero. 
The calculated function F and F0 are not affected by 
the rotor resistance change. This is shown in Figure 13 
and Figure 15 from 0 sec until 1.5 sec. However, if the 
load is added to the motor, the rotor resistance errors 
will affect the calculated functions. 

 
 
 
 
 
 
 
 
 

Figure 15. Simulated results of the direct and quadratic flux 
without and with rotor resistance adaptation (ramp change) 

 
Figure 16. Rotor resistance tracking for ramp change 

The figures show that the proposed scheme 
achieves good performances as it achieves compen-
sation of the rotor resistance changes. 

6. Conclusion 

In this work, we have presented a backstepping 
technique associated with fuzzy rotor resistance esti-
mation in order to offer a choice of design tools to 
accommodate uncertainties and nonlinearities. This 
study has successfully demonstrated the design of the 
backstepping technique for the speed control of an 
induction motor and the nonlinear field orientation 
control design. The proposed scheme has presented 
satisfactory performances (no overshoot, minimal rise 
time, best disturbance rejection) for parameter va-
riations, time-varying external force disturbances. The 
proposed fuzzy rotor resistance estimator produces a 
correction signal which is added to the rated value of 
the rotor resistance. The simulation results obtained 
have confirmed the excellent flux responses and the 
efficiency of the proposed scheme. Finally, the effec-
tiveness of the PI controller and the nonlinear field 
orientation based on the backstepping strategy has 
been verified through simulation. 
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Appendix 

Induction motor parameters: 

Pn [kW] 1.5 Rs [Ω] 4.85 fn [Hz] 50 
Vn [V] 220 Rr [Ω] 3.805 Jn [kg/m2] 0.031 

η 0.78 Lr [H] 0.274 fc [N.m.s/rd] 0.0014 
Cosϕn 0.8 Ls [H] 0.274 p 2 

ωn[min-1] 1428 Lm [H] 0.258   
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