
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2006, Vol.35, No.3

EDUCATIONAL PORTAL DEVELOPMENT MODEL FOR
IMPLEMENTING DESIGN FOR CHANGE

Vytautas Štuikys, Robertas Damaševičius, Marijus Montvilas,
Virginija Limanauskienė, Giedrius Ziberkas

Software Engineering Department, Kaunas University of Technology
Studentų St. 50, LT−51368 Kaunas, Lithuania

Abstract. We analyze the development of educational (EDU) web portals from the perspective of meta-design.
Here, we focus on the technical issues of meta-design only and consider design-for-change. Our contribution is a
variability model based on the variability analysis, generic portal development processes, sub-processes and their
relationships. We analyze the interface design problem in the context of the EDU Portal development and consider the
implementation of the proposed model using meta-programming.

Keywords: Design for change, portal development, meta-modelling, meta-programming, variability model.

1. Introduction

For a long time the ability of end-users to
effectively influence the IT development process was
largely limited, despite of the innovative design
methodologies such as user-centred design [1] or
participatory design [2], where the needs and
limitations of the IT end-user are given extensive
attention at each stage of the design process. However,
recently the situation is changing dramatically,
especially in the end-user development for non-critical
applications such as home appliances and learning-
oriented ones. This change can be explained by: (1)
higher degree of IT maturity and IT penetration into
home environments, (2) higher motivation of end-
users to be involved in system customization and
adaptation, (3) complexity growth of IT systems and
inability of designers and analysts to completely
foresee and formulate requirements for future systems,
(4) rapid growth of the end-user development
community [3], (5) arrival of new design paradigms
such as meta-design [4, 5].

Meta-design is actually a vision and strategy for
the future end-user oriented IT development, in which
design, learning, IT-based knowledge, and
collaboration becomes a part of every day’s working
practice. The underlying concept of meta-design is
about (1) how a system and its environment should be
designed by experts, and (2) which way the end-user
should be involved in the process that future changes
and system evolution could be practically performed
by efforts of the end-user. Although this new paradigm
is not well understood yet and many issues are still
open, it proposes great promises to seamlessly extend

the system life cycle model from the development
stage to the maintenance and evolution stage.

Meta-design should be especially useful in the
domain of eLearning, where the interaction between
experts, developers and end-users, and evolution of
the teaching content plays an essential role in the
development of educational (EDU) Portals [6, 7].

Our aim is to analyze the EDU Portal development
process from the perspective of meta-design. In
general, it includes two aspects: design for change and
social-economic aspects [5]. In this paper, we focus on
design for change and consider technical problems of
meta-design only. Our contribution is a variability
model based on the generic portal development
processes, sub-processes and their relationships. We
analyze the proposed model, the user interface design
problems and implementation of the proposed model
using meta-programming [8].

2. A framework of design for change:
assumptions, context and principles

Design for change can be considered at different
time and from different positions. Here we consider
design for change in the framework of component-
based design. We assume also that the architecture of a
system is stable and only components of a system can
be changed. For example, when white-box reuse is
applied in system development, it includes the
following stages at design time: to find appropriate
SW components, to analyze and understand them, to
modify or change them and to apply the modified
components in a new context [9, p. 418]. The other

222

Educational Portal Development Model for Implementing Design for Change

example is maintenance and evolution of legacy sys-
tems at use time, when changes are managed accor-
ding to very strict activities and procedures, such as
the impact analysis prior to changes are actually per-
formed [10].

Meta-design is aiming to plan, evaluate and incor-
porate at some extent the possible changes at design
time in order to ease their implementation at use time
based on the evolutionary model [4]. The latter deals
with design processes and models enabling involve-
ment of the end-users into the design process that
he/she could become a meta-designer [5] and be able
to perform changes at system evolution stage. As the
issue of meta-design should be the creation of solution
spaces [5] instead of specific solutions, which usually
takes place in a traditional SW development, it is
important to focus here on two topics: (1) variability
analysis [11] in the given domain, (2) interface design
and modelling [12].

Meta-design includes two major activities: meta-
modelling and meta-programming. Meta-modelling
[22] aims to derive an explicit description of how a
domain-specific model is built. Meta-programming [8]
aims to derive a generic solution (component, prog-
ram, system) based on the results of meta-modelling
and variability analysis.

The need for variability analysis can be motivated
by the fact that designers increasingly spend their time
for creating many similar IT systems (program fami-
lies [13] or product lines [14]) with many variations. A
systematic variability analysis and variability model
can help designers (1) to identify and isolate commo-
nalties in the domain, (2) to achieve higher design
reuse and ease of change, (3) to predict the results of
system’s evolution, and (4) to identify opportunities
for automating the creation of family members
(instances).

For example, designers may develop IT systems
using standardized, abstract interfaces to each sub-
system (SW component, device, etc.), and encapsulate
domain variability into separate modules accessed
though the interface. In this case, the commonality is
represented by the interface, and the variability – by
the code. The other way is to develop common system
building blocks, which communicate using different
interfaces or wrappers [15], constructed (or generated
automatically) on demand. In this case, the commona-
lity is represented by the component, and the variabi-
lity – by the interface.

The result of variability analysis is a variability
model. For devising and implementing the variability
model, we apply the following principles.

A. Emphasis On Program Change Ontology And
Specificity Of The Application Domain, Development
Methodology And Existing Standards

Principle A is about the analysis of ontology of S-,
P- and E-programs and their external and internal

environments within the framework of maintenance
and evolution [16].

An S-program addresses a completely defined
problem and provides an exact specification and
correct solution. If however the environment of the
problem changes, the result is a completely new
problem that must be specified anew.

A P-program is based on a practical abstraction of
the problem it addresses. The P-program’s abstraction
can be modified to reflect the changing requirements.

An E-program is embedded in the real world and
changes as the world does.

Here, we focus on P-programs, because the EDU
Portals belong to this category and, furthermore, it is a
non-critical application.

B. Separation Of Concerns

Principle B is about the way of how a general
design problem can be simplified and dealt with. We
apply separation of concerns at different stages of the
IT development process for separating: (1) the non-
technical aspects of change from the technical ones at
analysis stage, although they are overlapped and
intertwined; (2) analysis from implementation; (3)
problem context from model building, etc.

C. Selection/Adaptation Of The Appropriate Analysis
Method

Principle C is about selection and adaptation of a
systematic method for analysis. We have adopted the
well-known method FODA (Feature-Oriented Do-
main Analysis) [17] and consider it within the so-
called twin life cycle model that connects design for
reuse and design with reuse [18].

D. Emphasis on Variability Analysis For Both Non-
Technical And Technical Aspects

Principle D is about capturing, analysis and repre-
sentation of variability in the domain. Here we focus
on the technical aspects only. We consider Portal
development as a domain of generic design processes,
and sub-processes as sub-domains. By generic pro-
cesses, we mean Content Management, Knowledge
Management, User Relationship Management, Col-
laboration and Security-based ones, which in [19] are
called “the key elements” of a Portal. We seek to
obtain variability within the sub-processes of the
generic processes as it will be explained in detail later.

E. Analysis Of The Approaches For Implementing The
Variability Model To Support Design For Change

Principle E is about implementation technologies.
We restrict ourselves in using meta-programming [8]
and pattern-based (or skeleton-based) [20] approaches
in implementing the proposed variability model.

223

V. Štuikys, R. Damaševičius, M. Montvilas, V. Limanauskienė, G. Ziberkas

Table 1. Stages And Processes Of Variability Model 3. Description of the variability model
Model
stage Processes

Stage 1: Analysis of EDU Portal environments and their
key architectural elements

Stage 2: Analysis of a generic 3-tiered architecture of
EDU Portals

Stage 3: Definition of generic processes and sub-
processes and their analysis

Stage 4: Building variability tables and obtaining
parameter values through variability analysis

Stage 5: Obtaining parameter dependency relations and
building relationship graphs

Stage 6: Obtaining components and their variants
through application-level analysis

Stage 7: Selection of approaches for implementing
variability of the components

Here, we represent the process of creating the
model and model per se using Y-Chart [21], where two
higher branches represent the problem domain and the
solution domain.

System design is about implementing a solution to
a given problem. It starts with a formulation of a
problem and ends with its solution. To formulate a
problem, we must, first, to analyze a problem domain.
Problem domain concerns, basically, represent the
concerns as seen from the end-user’s perspective and
focus on the functionality of an IT system as the client
expects it. The analysis of the solution domain is a
different matter. Solution domain concerns represent
the concerns as defined by the solution techniques and
focus on the implementation of a system from the
designer's perspective: mapping problem domain onto
solution domain using application development
methods and models.

An example of the variability analysis is presented
in Table 2 as a result of the usage of the proposed
model. The underlying concepts are processes and
sub-processes in our model. Here, we take the
processes defined in [19]. The sub-processes of Con-
tent management processes are generation, assimila-
tion, personalization, and presentation. These sub-
processes can be applied for implementing a number
of different criteria such as (1) Presentation language
(English, German, local). (2) Type of content (textual,
graphical, audio, video, etc.). (3) User-oriented access
levels (Administrator, Publisher, Reader, etc.). (4)
Device type (Desktop PC, PDA, mobile phone, etc.).

In this context, by the problem domain, we mean
the EDU Portal development. By the solution domain,
we mean the adopted FODA method. We consider the
creation of the proposed variability model as a result
of mapping the solution domain onto the problem
domain (see Figure 1).

Solution Domain:
Adopted FODA&
meta-modelling

Problem
Domain: EDU

Portal

Mapping
process

EDU Portal
Implementation

The introduction of the process concept in our mo-
del is much more than just renaming terms used in
[19]. By defining attributes (such as parameter values)
of a process, we can model the system behaviour. By
obtaining relationships between processes (sub-pro-
cesses), we can understand the system’s structure.

Table 2. Results Of The Variability Analysis For The
Content Management Process

Figure 1. Representation of the model using Y-Chart

Sub-processes Criterion Parameter
values

Solutions for
implementation

Generation Presentati
on
language

EN, DE,
FR, RU,
LT, …

Separation of
presentation
logic and page
content

Assimilation Type of
content

Text,
Picture,
Audio,
Video, …

Hierarchical
parameteri-
sation model

Personali-
zation

User Admini-
strator,
Publisher,
Reader

Modes and
security levels

Presentation Device
type

Desktop,
PDA,
mobile
phone

User interface
model

Before mapping, we categorize the EDU Portal
development process in the whole as consisting of 7
stages (see Table 1). Stages 1 and 2 deal with analysis,
stages 3-5 – with mapping, and stages 6-7 – with im-
plementation of the variability model, respectively.

Now, we consider the problem domain that is EDU
Portal development. Because of the ever-increasing IT
capabilities and continuous complexity growth of user
requirements, we need to analyse and structure the
given domain. We define the process as meta-
modelling [22].

We consider the variability analysis of the domain
(facts, knowledge) as a main task of meta-modelling.
The issue of domain analysis and meta-modelling is a
set of parameters, their values and relationships across
parameter values. We represent the problem domain as
a fixed set of parameters, which have well-defined
values, and the solution domain as a set of design
processes and sub-processes.

Different processes and sub-processes are related
(see an example in Figure 2). The relationship is not

224

Educational Portal Development Model for Implementing Design for Change

static and can be changed depending upon the target
system and end-user’s requirements. In order to obtain
a relationship, first we need to introduce some para-
meters and obtain their values though in-deep analysis

and meta-modelling and create a variability document
for expressing variability (a small part of it is shown
in Table 2).

Figure 2. EDU Portal – related processes, sub-processes and “dynamic” relationships

4. Analysis of user interface problem in edu
portal development

Thus, interface designers are required to provide
many different variants of interfaces for the same
service or system. Designing user interfaces for a web
service that must target many different types of de-
vices, platforms, types of interfaces and user groups is
a tedious and time consuming work. The designers
have several alternatives:

Interface modelling is an important problem in
meta-design of web systems. Here, we have two prob-
lems: (1) modelling of interfaces between components
and services, and (2) modelling of an interface bet-
ween a system and an end-user, i.e., user interface.
Here, the issues related with the user interface design
in the context of design for change are considered
only.

(1) Design of an application-specific interface for
each specific IT system and its customization for a
specific user group. The disadvantage of this approach
is that a designer has to be accustomed with many
types of systems, devices and interfaces across the
domain. Furthermore, there is an unnecessary repeti-
tion in implementing the same interface again and
again. Creating multiple versions of interfaces for
different devices increases development and mainte-
nance costs and complicates the configuration ma-
nagement.

Currently, the main issue in user interface mo-
delling [23] is the development of more human and
intelligent forms of interfaces such as audio/speech
interfaces, touch screens, handwriting interfaces, fa-
cial expression and gesture reading interfaces, special
interfaces for disabled users, etc., in the context of
Ambient Intelligence [24] environment in which
people are surrounded with networks of embedded
intelligent devices that provide ubiquitous informa-
tion, communication, services and entertainment. The
emphasis is given to the mobility of the end-user (or
nomad [25]), wireless access to remote information
and intelligent user interfaces [26].

(2) Design of an interface for only one application
and its adaptation for other applications. This ap-
proach can lead to the interfaces that are awkward to
use or even not functional. Furthermore, it is hard to
keep with consistency of a user interface when
moving from one platform to another.

Design of user interfaces has many technological
challenges such as (1) diversity of devices, services
and applications; (2) text input facilities; (3) screen
size and resolution; (4) number of colours to properly
display interface content; (5) different image, video
and audio compression formats; (6) navigation, e.g.,
mouse-based, pen-based, etc.; (7) layout; etc.

(3) Design of a high-level interface specification
(model), which is open to changes and upgrading, and
its refinement for each target device and user group
based on the end-user’s requirements. This approach,
which basically deals with meta-design of interface, is
the most promising in terms of addressing the design
complexity problem and the end-users’ needs.

225

V. Štuikys, R. Damaševičius, M. Montvilas, V. Limanauskienė, G. Ziberkas

However, it requires the development of the standard
user interface specification methods, interface
prototyping, design and validation tools.

Meta-design of user interfaces requires introduc-
tion of high-level abstract interface models. These
models include high-level specification of the tasks
that users need to perform, data models that capture
the structure and relationships of the information that
applications manipulate, specifications of the presen-
tation and dialogue, user models etc, and automatical-
ly generate some parts or the complete user interface.
Different types of models have been used in different
systems including task models, dialogue models, user
models, domain models, and application models [27],
for example:

(1) Platform model describes IT systems that may
run a user interface including features and constraints
for each platform. It enables designers to generate a
set of user-interfaces, one for each platform that is
desired. The platform model can be sensitive to
changing conditions of use at run-time.

(2) Presentation model describes visual appearance
of user interface such as hierarchy of windows. Each
window is modelled abstractly as a platform-indepen-
dent interaction object.

(3) Task model is a structured representation of the
tasks that a user may want to perform.

All these models represent the user interface at a
higher level of abstraction than what is possible with a
more concrete representation and requires thorough
meta-modelling. The models can be implemented
either automatically or semi-automatically to generate
the user interfaces for a target system.

As we can see, the interface modelling of a web
system already uses many of the principles of meta-
design, such as thorough domain analysis, separation

of concerns, complex modelling and meta-modelling
of domain concepts and domain code generation.
However, the concept of change is not sufficiently
represented. We claim that the meta-design of user
interfaces must include development of the user
interface models that are adaptable, evolutionary and
open to change. For this, each interface model must
include its variability model that provides a
framework for (semi-)automatic interface reuse and
evolution.

5. Case study: Development of the EDU
Portal

To illustrate the concepts presented here, we have
implemented the above-described model by develo-
ping the experimental system for the generation of the
eLearning-oriented Portal, partially described in [28].

The solution domain meta-model (see Figure 3)
consists of two parts as follows: (1) Meta-program,
which is developed using the meta-programming tech-
niques. (2) EDU Portal, which consists of two parts:
eLearning Content Management system (LCMS) and
eLearning Management System (LMS).

Meta-program is the program generator for our
problem domain implemented using the variability
model described in Table 1. It represents variability in
the domain (actually a family of the domain program
instances) using the parameterisation mechanisms at a
higher (meta) level of abstraction. To develop Meta-
program, we need to map the problem domain
parameters established via variability analysis (see
Table 2) into the parameter space of EDU Portal. The
component presented in Figure 3 has been imple-
mented using relationships depicted by bold lines in
Figure 2.

Meta- LMS and

Parameter Specification for
generating

Variability
Analysis

EDU
Portal Repository specification

(DB tables, XML, etc.)

Verification

Classification
and description

Specification for
representation (HTML, XSL

PHP Scripts, etc.)

Specification for generating
LCMS (XML/XSL, PHP, etc.)

Figure 3. Detailed view of the solution domain meta-model

The skeleton of the target system (EDU Portal) is
generated automatically from the Meta-program. It
represents two aspects: (a) structuring and represen-

tation of the domain and (b) linking the domain struc-
ture with domain content.

From the usage viewpoint, the main features of the
developed system are: capabilities for structuring and

226

Educational Portal Development Model for Implementing Design for Change

227

representation, flexibility for design for change, and
fully automatic generation of web pages. From the
design for change viewpoint, the main feature is
explicit separation of concerns, especially separation
of domain structure from its content.

6. Evaluation and discussion

The IT-based learning community is, perhaps, one
of the largest end-user communities in the world now.
Various kinds of eLearning environments are centred
on Portals with the involvement of end-users. As
various studies show, EDU Portals are not so much
different in structural and functional aspects from the
commercial ones. Thus, the principle solutions can be
and are actually based on the generic portal architec-
ture and the generic processes within the architecture.
But the end-user requirements for implementing the
processes, the Portal content and environments vary
extremely. Because of the architectural complexity,
rapid evolution of the Internet technologies and
dynamism (social, pedagogical, technical) within the
learning community per se, the design for change
paradigm in Portal development seems to be the most
perspective and attractive technical solution for
creating the environments for Knowledge-Based
Society.

We have considered only some technical aspects of
design for change in the context of meta-design and
formulated the Portal development as a task in which
the domain analysis for variability is the main focus.
We have suggested a variability model and discussed a
wide context of the processes in order to be able to
discover the model and implement it. This context
includes Portal Domain Analysis, Component-Based
Design, and Reuse. The most crucial part of the
proposed model is obtaining the relationships between
different aspects of generic sub-processes.

The variability document is a roadmap for suppor-
ting the meta-designer in designing for future changes.
As different aspects (parameters) of the sub-processes
are overlapped and scattered, it is practically im-
possible to build a unified and precisely described the
relationship document. Thus there is a great variability
within the relationships, too. We call them the dyna-
mic mappings. What aspects should be selected for
inclusion into variability document, mostly depend on
designer’s view, stated requirements, choice, expe-
rience, strategy, given resources, etc.

The variability document systematizes the proces-
ses and allows foreseeing different variants for com-
ponents, thus bringing a perspective for meta-design.
As the domain is not mature enough, we have sugges-
ted focusing on most crucial aspects, such as interface
variability, in Portal development.

The other side of the problem is model’s imple-
mentation. The meta-programming technique seems
suit well from the perspective of meta-design as it
brings a generative technology easy to implement at

use time. The “hard implementation” of variability, of
course, is possible too but for the narrow spectrum of
parameter values only. The generative technology is
superior for large-scale variability as it takes place in
meta-design.

7. Conclusions

We have formulated the design for change problem
in the context of meta-design as a problem, which
focuses on variability analysis in the given domain.
For the educational portal design domain, we have
proposed a variability model based on the generic
processes and sub-processes known in the Portal
developments. Processes and sub-processes describe
functionality of the system to be built.

The most crucial part of the model is relationships
between the sub-processes, which we obtain through
analysis and meta-modelling. The relationships give
understanding of the structure of the system.

The variability document, even not full and pre-
cise, systematizes the development process, brings
parameter values for sub-processes and allows fore-
seeing different variants for components, thus bringing
a perspective for meta-design. The generative techno-
logy using meta-programming is superior for large-
scale variability as it takes place in meta-design.

References
 [1] A. Sutcliffe. User-centred design for multimedia

applications, Multimedia Computing and Systems,
IEEE International Conference on GUI, Vol.1, 1999,
pp. 116-123.

 [2] A.H. Namioka, C. Rao. Introduction to participatory
design. D. Wixon and J. Ramey (Eds.), Field Methods
Casebook for Software Design, NY: Wiley, 1996, 283-
299.

 [3] A. Sutcliffe, N. Mehandjiev. End-user development,
Communications of the ACM, Sept. 2004, 47(9), 31-
32.

 [4] G. Fisher, E. Giaccardi. Y. Ye, A.G. Sutcliffe, N.
Mehandjiev, Meta-design: A manifesto for end-user
development. Communications of the ACM, September
2004, 47(9), 33-37.

 [5] G. Fisher, E. Giaccardi. Meta-Design: A Framework
for the Future End-User Development. H. Liereman,
F. Paterno, V. Wulf, (Eds.). End User Development –
Empowering People to Flexibly Employ Advanced
Information and Communication Technology, Kluwer
Academic Publishers, 2005.

 [6] J. Reinhardt, H.F. Friedrich, J. Wedekind, B. Gai-
ser, S. Panke. e-teaching. org: Qualifying academic
teachers for the next decade. A pragmatic approach. J.
Cook (Ed.), Blue skies and pragmatism: Learning
technologies for the next decade, Devon, UK: Univer-
sity of Exeter, 2004, 36-53.

 [7] L. Nakayama, R. Vicari, H. Coelho. An Information
Retrieving Service for Distance Learning. IPSI
Transactions on Internet Research, 1 (1), 2005, 49-56.

V. Štuikys, R. Damaševičius, M. Montvilas, V. Limanauskienė, G. Ziberkas

228

 [8] V. Štuikys, R. Damaševičius. Metaprogramming
Techniques for Designing Embedded Components for
Ambient Intelligence. T. Basten, M. Geilen, H. de
Groot (eds.), Ambient Intelligence: Impact on Em-
bedded System Design, Kluwer Academic Publishers,
Boston, 2003, 229-250.

 [9] W.C. Lim. Managing Software Reuse. Prentice Hall,
1998.

[10] T. M. Pigoski. Software Maintenance, Guide to the
Software Engineering Body of Knowledge. IEEE-
Trial Version 1.00-May 2001.

[11] J. Coplien, D. Hoffman, D. Weiss. Commonality and
Variability in Software Engineering. IEEE Software
15(6), 1998, 37-45.

[12] M. Van Harmelen. Object Modelling and User Inter-
face Design: Designing Interactive Systems. Addison
Wesley Professional, 2001.

[13] D.L. Parnas. On the Design and Development of
Program Families. IEEE Transactions on Software
Engineering, SE-5(2), 1976, 1-9.

[14] D. Weiss, R. Lai. Software Product Line Engineering.
Addison-Wesley Longman, 1999.

[15] M. Mecella, B. Pernici. Designing wrapper compo-
nents for e-services in integrating heterogeneous sys-
tems. VLDB Journal 10(1), 2001, 2-15.

[16] S.L. Pfleeger. The Nature of System Change. IEEE
Software, May/June, 87-91.

[17] K.-C. Kang. Feature-Oriented Domain Analysis for
Software Reuse. Proc. of Joint Conference on Soft-
ware Engineering (JCSE'93), November 17-19, 1993,
389-395.

[18] J. Sametinger. Software Reuse with Reusable Com-
ponents. Springer Verlag, 1997.

[19] T.K. Hazra. Building Enterprise Portals: Principles to
Practice. Proc. of International Conference on
Software Engineering ICSE’02, May 19-25, Orlando,
Florida, USA, 2002, 623-633.

[20] C. Alexander. The Timeless Way of Building. Oxford
Univ. Press, 1979.

[21] M. Gries. Methods for Evaluating and Covering the
Design Space during Early Design Development.
Integration, the VLSI Journal, Elsevier Science, 2004,

[22] Z. Zhang, K. Lyytinen. A Framework for Component
Reuse in a Metamodeling Based Software Develop-
ment. Requirements Engineering Journal 6 (2), 2001,
116 - 131.

[23] P. Szekely. Retrospective and Challenges for Model-
Based Interface Development. Proc. of the 2nd Inter-
national Workshop on Computer-Aided Design of
User Interfaces. Namur Univ. Press, Namur, 1996.

[24] E. Aarts, E. Roovers. Embedded System Design
Issues in Ambient Intelligence. In T. Basten, M. Gei-
len, H. de Groot (eds.). Ambient Intelligence: Impact
on Embedded System Design. Kluwer Academic
Publishers, 2003.

[25] T. Makimoto, D. Manners. Digital Nomad. John
Wiley and Sons, 1997.

[26] W.E. Hefley, D. Murray. Intelligent user interfaces.
Proc. of the International Workshop on Intelligent
User Interfaces, January 4-7, 1993, Orlando, Florida,
USA, pp. 3-10.

[27] J. Eisenstein, J. Vanderdonckt, A. Puerta. Applying
Model-Based Techniques to the Development of UIs
for Mobile Computers. Proc. International Conference
on Intelligent User Interfaces: IUI 2001. Santa Fe,
NM: ACM Press., January 14-17, 2001, 69-76.

[28] V. Štuikys, R. Damaševičius, M. Montvilas. A Meta-
programming-Based model for Generation of the
eLearning-Oriented WEB Pages. T. Boyle, P. Oriogun,
A. Pakstas (Eds.), Proc. of the 2nd Int. Conf. on
Information Technology: Research and Education
(ITRE 2004), June 28-July 1, 2004, London, England,
64-68.

Received April 2006.

