
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2006, Vol.35, No.3

EXTENSION OF PLA SPECIFICATION FOR DYNAMIC
SYSTEM FORMALIZATION

Šarūnas Packevičius, Algirdas Kazla, Henrikas Pranevičius
Kaunas University of Technology, Faculty of Informatics

Studentų str. 50, LT - 51368 Kaunas

Abstract. In this paper, an extension of Piece Linear Aggregates (PLA) formalization language is presented. This
extension, called dynPLA (dynamic PLA) is intended for formalization of dynamic systems. Dynamic systems are
characterized as the ones that change their structure and/or behavior during runtime. This paper covers the extension of
PLA – dynPLA model, its specification and meta-model. An example of transaction coordinating systems is given to
illustrate presented method.

Keywords: dynamic formal specifications, PLA, DEVS.

1. Introduction

It’s hard to imagine today’s enterprise without
internet site and without information system within
enterprise, which supports its processes. More and
more systems are created to support e-commerce, e-
work, e-health etc. These systems render obsolete if
are unable to function in changing environment [5].
Regardless the domain these systems belong to –
business, government or health care – in some way
they represent the domain itself, which is dynamic [8].
Systems must be able to adapt to volatile environment,
e.g. start communicating with new information system
of new enterprises partner, accept data in different
format from new source etc. System should be able to
change its behavior and structure [11] – i.e. adapt.
More and more Web services, which can be imple-
mented as agent systems, are used to for systems
interoperability. Today, agent applications become
more popular, which in turn require systems to be
dynamic, able to change behavior and structure at run-
time [10, 11]. Complex information systems, such as
electronic health record systems (EHRS) from health-
care infrastructure, require enormous flexibility to
support various processes of the domain [5]. There are
also other types of systems, which in one way or
another are required to support change of structure or
behavior, e.g. network protocols, networks of systems
[1].

As for every system, creation of adaptive systems
can be supported by their formal specification, valida-
tion, verification and simulation. Formalization and
modeling languages are altered to support descriptions
of dynamic systems. Dynamic DEVS [11] extension
was introduced for popular formalization language

DEVS [12]. This extension enabled specification of
self modification (structure and behavior). There are
also suggestions to use some new languages, such as
“Visual Language with Dynamic Specification” [7],
M-trans [4], designed to describe adaptive systems.

In this paper, we present an extension of formaliza-
tion language Piece Linear Aggregates (PLA) [9],
supporting dynamics, which will enable to change for-
mal specification of systems and herewith system’s
structure and behavior. The rest of the paper is orga-
nized into sections as follows. Section 2 gives a brief
description of PLA formalization language and intro-
duces Dynamic PLA – extensions to specification and
its meta-model. Section 3 illustrates dynPLA exten-
sion with example. Conclusions are given in Section
4.

2. Dynamic PLA model (dynPLA)
2.1. Extension of PLA model

Dynamic PLA extension requires defining system
model, which can change in time. For this, we propose
to add a set of aggregates, named A with index t.
Elements of set At represent system’s aggregates at
time t. That is, the set A represents the structure of
systems model at some specific time.

We suggest to use matrix M with index t, which
would hold connections of the system between aggre-
gates at certain time t. An example of the connection
matrix M is given at the Table 1.

Also, we suggest the modifications of aggregates
description by:

235

Š. Packevičius, A. Kazla, H. Pranevičius

1. Creating set H with index t, which contains aggre-
gate operators H at given time t, and operations
with this set, which deletes or adds H operators to
this set.

Operators G and H are associated, respectively,
with inner and outer events. The ability to modify
events requires modifying G, H sets, respectively.
That is, by adding inner or outer events to G, H
sets, operators G, H which process these new
events, must be added too.

2. Creating set G with index t, which contains aggre-
gate operators G at given time t, and operations
with this set, which deletes or adds G operators to
this set.

10. Deletion of the G, H: Ht+1=Ht\{H(e’old) }, where H
is an operator, which processes event e’old; Gt+1 =
Gt \ {G(e’old)}, where G is an operator, which pro-
cesses event e’old.

To extend PLA formalization language, it is
needed to introduce new operations. Operations are
defined in H set for each aggregate – i.e. an aggregate
can operate with its own discrete and continuous
variables, and its and systems structure. Specification
of aggregate is extended with the following
operations:

Operators G and H are associated, respectively,
with inner and outer events. Ability to modify
events requires modifying G, H sets respectively.
That is, by deleting inner or outer events from G,
H sets, operators G, H which process these events,
must be deleted too. 1. Addition of new aggregate to the system model:

At+1 = At U {Anew}, where Anew is an aggregate
added to the model. Initial state of new aggregate
is based on the parameters defined in aggregate.

11. Creation of inner events in aggregate: E’’t+1 = E’’t
U { e’’new }, where e’’new is an inner event added to
the aggregate.

12. Deletion of inner events from the aggregate: E’’t +

1 = E’’t \ { e’’old }, where e’’old is an inner event
removed from the aggregate.

2. Removal of an aggregate from the system:
At+1=At\{Aold}, where Aold is an aggregate removed
from the model.

13. Creation of outer events in aggregate: E’t+1 = E’t
U { e’new }, where e’new is an outer event added to
the aggregate.

3. Addition of new input to the aggregate:
Xt+1=XtU{xnew}, where xnew is an input added to
the aggregate.

4. Removal of input from the aggregate: Xt+1 =
Xt\{xold}, where xold is an input removed from
aggregate.

Creation of outer events requires addition of in-
puts to the aggregate. Therefore if new input is
added, then new outer event must be added, too.

5. Addition of new output to aggregate: Yt+1 = YtU
{ynew}, where ynew is an output added to the aggre-
gate.

14. Deletion of outer events from the aggregate: E’t+1
= E’t \ { e’old }, where e’old is an outer event
removed from the aggregate.

6. Removal of output from the aggregate: Yt+1= Yt \
{yold}, where yold is an output removed from the
aggregate.

Deletion of outer events requires deletion of
inputs from aggregate. Therefore if input is
deleted, then outer event must be deleted, too.

7. Creation of new connection between aggregates: Defined operations (from 1 to 11) add or delete
elements (aggregates, inputs, outputs, connections,
operators, events) to/from aggregate system model.
For element modification (i.e. for changing elements
properties) we suggest to delete an old element (the
one that is changed) and add modified one.

Mt+1 =MtU{5, Afrom, yfrom, Ato, xto }, connection
(No. 5) is created by connecting aggregates Afrom
output yfrom to aggregates Ato input xto.
With this action, the whole new line with connec-
tion parameters is added to the connection matrix
M. Table 1. Connection matrix of aggregates

8. Deletion of connection between aggregates: Mt+1
= Mt \ { 5, Afrom, yfrom, Ato, xto }, connection
(No. 5) from Afrom aggregates output yfrom to Ato
aggregates input xto is deleted.

Channel No. From
aggregate Output To

aggregate Input

1 TC y1 RM1 x1
2 TC y2 RM2 x1
3 RM1 y1 TC x0
4 RM2 y1 TC x1
5 RM1 y2 Agg0 x1
6 RM2 y2 Agg0 x2
7 Agg0 y1 TC x2

The specified line is deleted from the connection
matrix M.

9. Creation of G, H operators which process events.
Ht+1 = HtU{H(e’new)} is an addition of H operator,
which processes event e’new. Gt+1 = Gt U
{G(e’new)} is an addition of G operator, which
processes event e’new.
Operators, which are added, must be defined be-
forehand in specification of aggregate, but not
included in the main H and G sets. This inclusion
should be preformed in specification logics of
other H operators.

We also defined situations when aggregates
operator H modifies self description. In some cases it
is needed to modify structure of other aggregate. For
this we suggest to use the full name of element, which
is composed of the aggregate name, symbol “.” (dot,

236

Extension of PLA Specification for Dynamic System Formalization

237

period) and the name of element, e.g. to add new input
xnew to aggregate Agg0, specification should be:
Agg0.Xt+1 = Agg0.Xt U { xnew }. (Here Agg0 is the
name of the aggregate, X – set of inputs).

2.2. DynPLA meta-model

We shall describe the meta-model of Dynamic
PLA using UML graphical notation [2], which in turn
is described in MOF notation [6]. Meta model of
Dynamic PLA is presented as series of UML class
diagrams. The top level diagram presents the highly
abstract view Dynamic PLA meta-model. Other dia-
grams provide a detailed description of elements in
highly abstract view diagram. The aggregation relation
in diagrams presents the idea that one element of
Dynamic PLA specification consists of other elements
in specification, inheritance specifies that element
generalizes other elements in specification. Mainly,
diagrams follow standard UML notations syntax.

Meta-model of Dynamic PLA is presented in three
views:
• System meta-model
• Aggregate meta-model
• Operation meta-model

2.2.1. System meta-model

System meta-model presents modeled system from
the most abstract point. Modeled system is presented
by System class, which in own turn contains models,
aggregates and other elements, as depicted in Figure 1.

System class represents a whole modeled system as
single entity. It holds only the name of modeled
system as its only one attribute, and also contains a
collection of models which depict behavior and
structure of modeled systems. Purpose of system class

is to serve as a container for the whole modeled sys-
tem.

Figure 1. Meta-model of modeled system

Because we consider the dynamic system, model
of system can be changed during the existence of the
system. So the system is composed of models (i.e. set
of models), which represent it at the different time
moments. Model at the specified time contains a set of
aggregates and connections between them. We assume
that the system may contain a finite or infinite number
of models, of which one is valid for a specified time
frame.

Aggregate class represents aggregate of systems
models at the specified time. In system meta-model
view, it is depicted as simple class with two attributes:
t and name. The Aggregate structure is detailed more
in the next subsection. Attribute t specifies at which
time frame this aggregate is valid.

Connection class represents a connection between
two aggregates in the model at the specified time. It
has one attribute t, which specifies at which time
frame this connection is valid. Connection joins two
aggregates. The set of connections in a model repre-
sents a structure of the whole systems at the specified
time frame.

Figure 2. Aggregate meta-model

Š. Packevičius, A. Kazla, H. Pranevičius

2.2.2. Aggregate meta-model
Aggregate meta-model presents a detailed view of

aggregate in the System meta-model. Aggregate is
presented as class which has some attributes and
contains other elements as depicted in Figure 2.

Aggregate class represents aggregate of system
model at the specified time. It is depicted as complex
class with two attributes: t and name. Attribute name
specifies aggregates name, and attribute t specifies at
which time frame this aggregate is valid. Aggregate
consists of objects such as: inputs, outputs, initial
states, G, H operators, continuous variables, discrete
variables, control sequences, E’’, and E’. Aggregate
embodies a structure of single aggregate at the spe-
cified time t using inputs, outputs, initial states,
continuous variables, discrete variables, control se-
quences, E’’ and E’ objects and embodies behavior
using G, H operators.

Input class represents input to the aggregate which
could be connected by Connection object with outputs
of other aggregates. Input has name, which identifies
specific input in concrete aggregate. Input also has t
attribute which specifies at which time frame this
input is valid and thus can be used in connection
between two aggregates in a model.

Output class represents output from the aggregate
which could be connected by Connection object with
inputs of other aggregates. Output has name, which
identifies specific output in concrete aggregate. Output
also has t attribute which specifies at which time
frame this output is valid and thus can be used in
connection between two aggregates in a model.

InitialState class represents initial state of the ag-
gregate. Initial state just defines initial values of dis-
crete and continuous variables, which are applied for
aggregate creation and addition to the systems model.

E’ class represents an external event in the aggre-
gate. It is closely related to input object, because each
input must have its representing external event. An
external event has the name which uniquely identifies
this event in the aggregate, and also has t attribute
which defines at which time frame this event is valid.

E’’ class represents an internal event in the aggre-
gate. An internal event has the name which uniquely
identifies this event in the aggregate, and also has t
attribute which defines at which time frame this event
is valid.

DiscreteVariable class represents discrete variable
in the aggregate. It has the name which uniquely iden-
tifies it in the aggregate. It also has the t attribute
which specifies at which time frame this variable is
valid. This variable is used in G an H operators. These
operators define aggregates behavior.

ContinousVariable class represents continuous
variable in the aggregate. It has the name which
uniquely identifies in the aggregate. It also has the t
attribute which specifies at which time frame this

variable is valid. This variable is used in G an H
operators. These operators define aggregates behavior.

ControlSequence class represents controlling se-
quence which controls how some continuous variables
change. Control sequence is represented as mathema-
tical expression like function of normal distribution
with specific parameters. It has attribute t which spe-
cifies at which time frame this controlling sequence is
valid.

G class represents operators in the aggregate. Ope-
rators define some calculations (expressed as mathe-
matical formulas) and produce some results which are
outputted to aggregates Outputs. Calculations defined
in G operator can be: Expression, operations with sets,
operations with aggregates and models structure and
output operations. G contains t attribute which speci-
fies at which time frame this operation is valid.

H class represents operators in the aggregate. Ope-
rators define some calculations (expressed as mathe-
matical formulas). Calculations defined in H operator
can be: Expression, operations with sets, operations
with aggregates and models structure. H contains t at-
tribute which specifies at which time frame this
operation is valid.

Expression class represents a mathematical expres-
sion, which performs some calculations, operates with
structure of aggregate and/or system model.

2.2.3. Operation meta-model

Operation meta-model details Expression class
which was presented in the Aggregate meta-model
view. Aggregates expression depictures a composite
design patterns [3], it contains either one mathematical
expression or a set of them. It can also be an empty set
– no operations performed at all. Besides mathemati-
cal operations, expression can also be the one which
performs modifications of aggregate and/or model
structure. This is the core of Dynamic PLA - aggregate
can modify its own structure or whole system, thus
causing a change of the systems model. Expressions
detailed view is presented in Figure 3. Inheritance spe-
cifies a new type of operation which perform structure
and behavior modification of aggregates or systems.

Expressions AddOutput, AddInput, AddDiscrete-
Variable, AddContinuousVariable, AddControlSe-
quence, AddE’, AddE’’, AddG, AddH add respectively
Output, Input, DiscreteVariable, ContinousVariable,
ControlSequence, E’, E’’, G, H to the structure of
aggregate.

Expressions DelOutput, DelInput, DelDiscrete-
Variable, DelContinuousVaraible, DelControlSe-
quence, DelE’, DelE’’, DelG, DelH delete respectively
Output, Input, DiscreteVariable, ContinousVariable,
ControlSequence, E’, E’’, G, H from the structure of
aggregate.

Expressions AddConnecton, AddAggregate add
respectively Connection, Aggregate to the structure of
system.

238

Extension of PLA Specification for Dynamic System Formalization

239

Figure 3. Detailed expressions

Expressions DelAggregate, DelConnection delete
respectively Connection, Aggregate from the structure
of system.

• TC – is transaction coordinator, which receives
requests to perform tasks. It forwards them to the
aggregate called RM_visi (which emulates a dy-
namically expanding pool of resources which in
turn execute requested tasks). TC also receives an
acknowledgment of finished tasks from aggregate
RM_visi.

Each Add/Del expression changes model of the
system. These expressions depict the dynamic beha-
vior of Dynamic PLA model.

• RM_visi – emulates the expanding pool of re-
source managers. When RM_visi receives a re-
quest to perform a task, it creates a resource
manager (i.e. new aggregate) which would
execute the task. But because the model is static,
all tasks are queued and executed one by one in
RM_visi. When new task arrives, it is placed in
the queue. When RM_visi is ready (all tasks
before current task are finished), tasks is taken
from the queue and is executed. After completion
the task is removed from the queue and the cor-
responding output is being sent to the TC
aggregate.

3. Example
3.1. Definition of the resource management system

To illustrate extension of PLA formalization, we
present an example – specification of transaction pro-
cessing system model. The system consists of trans-
action coordinator (TM), which handles resources
(RM), which in turn perform some actions. When
transaction coordinator receives a request to perform a
task, it allocates a resource and passes the request to it.
When resource completes the task, it notifies the trans-
actions manager, which in turn can then free up the
resource.

A formal specification of this system in PLA lan-
guage is presented in Figure 5. 3.2. PLA specification of the resource management

system Using the PLA formalism, the dynamically expan-
ding pool of resource managers, which can perform
tasks simultaneously, is emulated by simple queue in
aggregate, simplifying simulations of concurrent
execution to sequential execution of tasks placed in
the queue. In this way, the model does not really
match real situation and, in addition, its real nature is
hidden by formal specification syntax and models. In

In order to formalize the system presented in Sec-
tion 3.1. the PLA model could be built. The systems
model is presented in Figure 4 and its PLA specifi-
cation in Figure 5. The systems model consists of two
aggregates: TC and RM_visi where:

Š. Packevičius, A. Kazla, H. Pranevičius

240

3.3. Formalization with dynPLA general, we can not easily see the dynamic nature of
this system (the ability to create a resource manager
on request and destroy it after usage). In order to
overcome these limitations the systems model is
presented using DynPLA in Section 3.3.

Changes of analyzed systems model are presented
in Figure 6. At the initial moment (t0) the system has
only one aggregate – transaction coordinator (TC,
Figure 6a). Later, say, at a time tn a request comes to
transaction coordinator TC, which creates the first
resource RM1 with connections (systems model
changes – expands) and passes the task (Figure 6b). At
some point later (tm) two more requests arrive at TC,
and two more resources (RM2 and RM3) are allocated
(Figure 6c). Figure 6d represents system at a time tp
when both resources RM1 and RM2 have already
finished their tasks and were deleted from the model
(model changes – shrinks).
 Figure 4. Systems aggregate model

(a)

(b)

(c)

(d)

Figure 6. Changes of systems model in time (a) t0 – initial
scheme of the model; (b) tn – model scheme with added

new aggregate (RM1); (c) tm – added one more aggregate
(RM3), (d) tp - aggregates RM1 and RM2 are removed as

they have finished tasks

L2
L3
L4
L5
L6
L7
L8
L9
L10
L11
L12

L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
L27
L28
L29
L30
L31
L32
L33
L34
L35
L36
L37
L38
L39
L40
L41

TID – transaction ID

TC:
1. X = { x0, x1 } x1 : TID
2. Y = { y1 }
3. E’ = { e’0, e’1, } here e’i means `received xi signal`
4. E’’ = { Ø }
5. Ø
6. W(tm) = { Ø }
7. ν(tm) = { Ø }
8. Ø
9. H(e’0) : /* task request to TC . */
H(e’i): /* signal about finished task from resource */
G(e’0):
 Y := { y1 }

Mt =
Channel

No.
From

aggregate Output To
aggregate Input

1 TC y1 RM_VISI x1
2 RM_VISI y1 Agg0 x0
3 RM_VISI y2 TC x1
4 Agg0 y1 TC x0

RM_VISI:
1. X = { x1 }
2. Y = { y1, y2 } y2 : TID
3. E’ = { e’1 }
4. E’’ = { e’’1 } e’’1 end of operation processing
5. { e’’1 } { η(1)

k }, k = 1, ∞
6. W(tm) = { w(e’’1 , tm) }
7. ν(tm) = (active_op)
8. active_op = 0
9. H(e’1) :
 active_opt+1 = active_opt + 1
 // adding to queue etc..
H(e’’1) : // end of processing
 active_opt+1 = active_opt - 1
G(e’1) :
G(e’’1) : // end of prcessing
 y2 = active_opt
 Y : = { y1, y2 }

Figure 5. Systems formal specification in PLA language

Extension of PLA Specification for Dynamic System Formalization

241

Specification of this system in dynamic PLA is
given in Figure 7.

From standard PLA specification, dynamic PLA
differs as follows. In line L1, we define a set of
aggregate in the system at initial time t0. Later this set
(i.e. the model of system) will change. Lines L4, L5,
L47 and L48 introduce sets of G and H, respectively,
which define G and H operators of aggregates. Lines
L16-L23 and L25-L32 introduce dynamic part.
Aggregate operators H manipulate the structure of the
system. Line L16 adds new aggregate and line L25
removes it. In line L17, new input is added, and in line
L27 it is removed.

L1
L2
L3
L4
L5
L6
L7
L8
L9
L10
L11
L12

L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
L27
L28
L29
L30
L31
L32
L33
L34
L35
L36

At0 = {TC}

TC:
Ht0 = { H(e’0), H(e’i) }
Gt0 = { G(e’0) }
1. X = { x0, x1, x2 }
2. Y = { y1, y2 }
3. E’ = { e’0, e’1, e’2} here e’i means `received xi signal`
4. E’’ = { Ø }
5. Ø
6. W(tm) = { Ø }
7. ν(tm) = { cnt(tm) }

here cnt(tm) – count of aggregates RM in system
8. cnt(tm) = 0
9. H(e’0) : /* task request to TC . */
 cnt(t+1) = cnt(t) + 1;
 At+1 = At U { Acnt(t+1) }
 Xt+1 = Xt U { xcnt(t+1) }
 Yt+1 = Yt U { ycnt(t+1)}
 Ht+1 = Ht U { Hcnt(t+1) }
 Agg0.Xt+1 = Agg0.Xt U { xcnt(t+1) }
 Mt+1 = Mt U { cnt(t+1)*3–1, TC, ycnt(t+1), RMcnt(t+1), x1 }
 Mt+1 = Mt U { cnt(t+1)*3+0, RMcnt(t+1), y2, TC, xcnt(t+1) }
 Mt+1 = Mt U { cnt(t+1)*3+1, RMcnt(t+1), y1, Agg0, xcnt(t+1) }
H(e’i): /* signal about finished task from resource */
 At+1 = At – { Acnt(t+1) }
 Xt+1 = Xt – { xcnt(t+1) }
 Yt+1 = Yt – { ycnt(t+1) }
 Ht+1 = Ht – { Hcnt(t+1) }
 Mt+1 = Mt – { cnt(t+1)*3–1, TC, ycnt(t+1), RMcnt(t+1), x1 }
 Mt+1 = Mt – { cnt(t+1)*3+0, RMcnt(t+1), y2, TC, xcnt(t+1) }
 Mt+1 = Mt – { cnt(t+1)*3+1, RMcnt(t+1), y1, Agg0, xcnt(t+1) }
 Agg0.Xt+1 = Agg0.Xt – { xcnt(t+1) }
 cnt(t+1) = cnt(t) – 1
G(e’0):
 Y := { ycnt(t+1) }

L37
L38

L39
L40
L41
L42
L43
L44
L45

Mt0 =
Channel

No.
From

aggregate Output To aggregate Input

1 TC y1 RM1 x1
2 TC y2 RM2 x1
3 RM1 y1 TC x0
4 RM2 y1 TC x1
5 RM1 y2 Agg0 x1
6 RM2 y2 Agg0 x2
7 Agg0 y1 TC x2

L46
L47
L48
L49
L50
L51
L52
L53
L54
L55
L56
L57
L58
L59
L60

RMi: // i > 1
Ht0 = { H(e’1) }
Gt0 = { G(e’1) }
1. X = { x1 }
2. Y = { y1, y2 }
3. E’ = { e’1 }
4. E’’ = { e’’1 }
5. { e’’1 } { η(1)

k }, k = 1, ∞
6. W(tm) = { w(e’’1 , tm) }
7. ν(tm) = Ø
8. Ø
9. H(e’1) :
 /* task processing */
G(e’’1) :
 Y : = { y1, y2 }

Figure 7. Specification of transaction system in
dynPLA

In lines L18 and L27, output is added and removed
respectively. In lines L19 and L28, operator H is ad-
ded and removed. It’s worth noting that lines L20 and
L32 change the structure of another aggregate (input
to aggregate Agg0 is added and removed, respec-
tively). Lines L20-L23 create connections between
aggregates. Action of adding line, which defines a
connection between aggregates, to a set (i.e. Mt+1 = Mt
U {cnt(t+1)*3–1, TC, ycnt(t+1), RMcnt(t+1), x1}) means
that this line is added to the connection matrix M. In
lines L29-L31, connections are deleted.

4. Conclusions

In the paper we presented extension of PLA for-
malization to dynamic PLA (DynPLA), adapting this
language to define dynamic systems, which can
change self structure and/or behavior. Extension
DynPLA allows to define model of system more
compactly and clearly. However, models of dynamic
systems during simulation can change dramatically,
which makes harder to notice errors in the initial
model specification. This is influenced by addition of
new abstraction levels, which is especially noticeable
while debugging model.

References
[1] J. B. Fernando. Modeling formalisms for dynamic

structure systems. ACM Trans. Model. Comput. Simul.,
Vol.7, 1997, 501-515.

[2] M. Fowler. UML Distilled: A Brief Guide to the Stan-
dard Object Modeling Language. Third Edition ed.
Boston: Addison-Wesley Professional, 2003.

[3] E. Gamma. Design patterns : elements of reusable ob-
ject-oriented software. Reading, Mass.: Addison-Wes-
ley, 1995.

[4] S. Inoue, M. Iwaihara. Supporting dynamic process
specifications using communication based processes,
Proceedings of the 35th Annual Hawaii International
Conference on System Sciences (HICSS'02)-Volume 9,
2002.

Š. Packevičius, A. Kazla, H. Pranevičius

[5] B. Mario, A.K. Klaus, M. Christian, J. Stefan, L.
Richard. Towards a flexible, process-oriented IT archi-
tecture for an integrated healthcare network. Procee-
dings of the 2004 ACM symposium on Applied compu-
ting. Nicosia, Cyprus: ACM Press, 2004.

[6] S. J. Mellor. MDA distilled : principles of model-dri-
ven architecture. Boston: Addison-Wesley, 2004.

[7] J. Miyao, C. Shi-Kuo. A framework of a visual lan-
guage with dynamic specification, Proceedings of the
11th International IEEE Symposium on Visual Lan-
guages 1995.

[8] V.P. Nandish. Adaptive evolutionary information sys-
tems. V.P. Nandish, Ed.: Idea Group Publishing, 2003,
347.

[9] H. Pranevičius. Kompiuterinių tinklų protokolų forma-
lusis specifikavimas ir analizė: agregatinis metodas.
Kaunas: Technologija, 2003.

[10] K. Sugawara. An agent-based framework for develo-
ping flexible distributed systems. Proceedings of the
IEEE International Conference on Cognitive Informa-
tics (ICCI'02), 2002.

[11] A.M. Uhrmacher. A system theoretic approach to
constructing test beds for multi-agent systems. Discrete
event modelng and simulation technologies: a tapestry
of systems and AI-based theories and methodologies:
Springer-Verlag New York, Inc., 2001, 315-339.

[12] B. P. Zeigler, M. Yoonkeon, K. Doohwan, G. Ball.
The DEVS environment for high-performance mode-
ling and simulation. Computational Science and Engi-
neering, IEEE, Vol.4, 1997, 61-71.

Received May 2006.

