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Abstract. In this paper, an extension of Piece Linear Aggregates (PLA) formalization language is presented. This 
extension, called dynPLA (dynamic PLA) is intended for formalization of dynamic systems. Dynamic systems are 
characterized as the ones that change their structure and/or behavior during runtime. This paper covers the extension of 
PLA – dynPLA model, its specification and meta-model. An example of transaction coordinating systems is given to 
illustrate presented method. 
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1. Introduction 

It’s hard to imagine today’s enterprise without 
internet site and without information system within 
enterprise, which supports its processes. More and 
more systems are created to support e-commerce, e-
work, e-health etc. These systems render obsolete if 
are unable to function in changing environment [5]. 
Regardless the domain these systems belong to – 
business, government or health care – in some way 
they represent the domain itself, which is dynamic [8]. 
Systems must be able to adapt to volatile environment, 
e.g. start communicating with new information system 
of new enterprises partner, accept data in different 
format from new source etc.  System should be able to 
change its behavior and structure [11] – i.e. adapt. 
More and more Web services, which can be imple-
mented as agent systems, are used to for systems 
interoperability. Today, agent applications become 
more popular, which in turn require systems to be 
dynamic, able to change behavior and structure at run-
time [10, 11]. Complex information systems, such as 
electronic health record systems (EHRS) from health-
care infrastructure, require enormous flexibility to 
support various processes of the domain [5]. There are 
also other types of systems, which in one way or 
another are required to support change of structure or 
behavior, e.g. network protocols, networks of systems 
[1].  

As for every system, creation of adaptive systems 
can be supported by their formal specification, valida-
tion, verification and simulation. Formalization and 
modeling languages are altered to support descriptions 
of dynamic systems. Dynamic DEVS [11] extension 
was introduced for popular formalization language 

DEVS [12]. This extension enabled specification of 
self modification (structure and behavior). There are 
also suggestions to use some new languages, such as 
“Visual Language with Dynamic Specification” [7], 
M-trans [4], designed to describe adaptive systems. 

In this paper, we present an extension of formaliza-
tion language Piece Linear Aggregates (PLA) [9], 
supporting dynamics, which will enable to change for-
mal specification of systems and herewith system’s 
structure and behavior. The rest of the paper is orga-
nized into sections as follows. Section 2 gives a brief 
description of PLA formalization language and intro-
duces Dynamic PLA – extensions to specification and 
its meta-model. Section 3 illustrates dynPLA exten-
sion with example. Conclusions are given in Section 
4.  

2. Dynamic PLA model (dynPLA) 
2.1. Extension of PLA model 

Dynamic PLA extension requires defining system 
model, which can change in time. For this, we propose 
to add a set of aggregates, named A with index t. 
Elements of set At represent system’s aggregates at 
time t. That is, the set A represents the structure of 
systems model at some specific time. 

We suggest to use matrix M with index t, which 
would hold connections of the system between aggre-
gates at certain time t. An example of the connection 
matrix M is given at the Table 1. 

Also, we suggest the modifications of aggregates 
description by: 
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1. Creating set H with index t, which contains aggre-
gate operators H at given time t, and operations 
with this set, which deletes or adds H operators to 
this set. 

Operators G and H are associated, respectively, 
with inner and outer events. The ability to modify 
events requires modifying G, H sets, respectively. 
That is, by adding inner or outer events to G, H 
sets, operators G, H which process these new 
events, must be added too. 

2. Creating set G with index t, which contains aggre-
gate operators G at given time t, and operations 
with this set, which deletes or adds G operators to 
this set. 

10. Deletion of the G, H: Ht+1=Ht\{H(e’old) }, where H 
is an operator, which processes event e’old; Gt+1 = 
Gt \ {G(e’old)}, where G is an operator, which pro-
cesses event e’old. 

To extend PLA formalization language, it is 
needed to introduce new operations. Operations are 
defined in H set for each aggregate – i.e. an aggregate 
can operate with its own discrete and continuous 
variables, and its and systems structure. Specification 
of aggregate is extended with the following 
operations: 

Operators G and H are associated, respectively, 
with inner and outer events.  Ability to modify 
events requires modifying G, H sets respectively. 
That is, by deleting inner or outer events from G, 
H sets, operators G, H which process these events, 
must be deleted too. 1. Addition of new aggregate to the system model: 

At+1 = At U {Anew}, where Anew is an aggregate 
added to the model. Initial state of new aggregate 
is based on the parameters defined in aggregate. 

11. Creation of inner events in aggregate: E’’t+1 = E’’t 
U { e’’new }, where e’’new is an inner event added to 
the aggregate. 

12. Deletion of inner events from the aggregate: E’’t + 

1 = E’’t \ { e’’old }, where e’’old is an inner event 
removed from the aggregate. 

2. Removal of an aggregate from the system: 
At+1=At\{Aold}, where Aold is an aggregate removed 
from the model. 

13. Creation of outer events in aggregate: E’t+1 = E’t 
U { e’new }, where e’new is an outer event added to 
the aggregate. 

3. Addition of new input to the aggregate: 
Xt+1=XtU{xnew}, where xnew is an input added to 
the aggregate. 

4. Removal of input from the aggregate: Xt+1 = 
Xt\{xold}, where xold is an input removed from 
aggregate. 

Creation of outer events requires addition of in-
puts to the aggregate. Therefore if new input is 
added, then new outer event must be added, too. 

5. Addition of new output to aggregate: Yt+1 = YtU 
{ynew}, where ynew is an output added to the aggre-
gate. 

14. Deletion of outer events from the aggregate: E’t+1 
= E’t \ { e’old }, where e’old is an outer event 
removed from the aggregate. 

6. Removal of output from the aggregate: Yt+1= Yt \ 
{yold}, where yold is an output removed from the 
aggregate. 

Deletion of outer events requires deletion of 
inputs from aggregate. Therefore if input is 
deleted, then outer event must be deleted, too. 

7. Creation of new connection between aggregates: Defined operations (from 1 to 11) add or delete 
elements (aggregates, inputs, outputs, connections, 
operators, events) to/from aggregate system model. 
For element modification (i.e. for changing elements 
properties) we suggest to delete an old element (the 
one that is changed) and add modified one. 

Mt+1 =MtU{5, Afrom, yfrom, Ato, xto }, connection 
(No. 5) is created by connecting aggregates Afrom 
output yfrom to aggregates Ato input xto.  
With this action, the whole new line with connec-
tion parameters is added to the connection matrix 
M.  Table 1. Connection matrix of aggregates 

8. Deletion of connection between aggregates: Mt+1 
= Mt \ { 5, Afrom, yfrom, Ato, xto }, connection 
(No. 5) from Afrom aggregates output yfrom to Ato 
aggregates input xto is deleted. 

Channel No. From 
aggregate Output To 

aggregate Input 

1 TC y1 RM1 x1 
2 TC y2 RM2 x1 
3 RM1 y1 TC x0 
4 RM2 y1 TC x1 
5 RM1 y2 Agg0 x1 
6 RM2 y2 Agg0 x2 
7 Agg0 y1 TC x2 

The specified line is deleted from the connection 
matrix M. 

9. Creation of G, H operators which process events. 
Ht+1 = HtU{H(e’new)} is an addition of H operator, 
which processes event e’new. Gt+1 = Gt U 
{G(e’new)} is an addition of G operator, which 
processes event  e’new. 
Operators, which are added, must be defined be-
forehand in specification of aggregate, but not 
included in the main H and G sets. This inclusion 
should be preformed in specification logics of 
other H operators. 

We also defined situations when aggregates 
operator H modifies self description. In some cases it 
is needed to modify structure of other aggregate. For 
this we suggest to use the full name of element, which 
is composed of the aggregate name, symbol “.” (dot, 
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period) and the name of element, e.g. to add new input 
xnew to aggregate Agg0, specification should be: 
Agg0.Xt+1 = Agg0.Xt U { xnew }. (Here Agg0 is the 
name of the aggregate, X – set of inputs). 

2.2. DynPLA meta-model 

We shall describe the meta-model of Dynamic 
PLA using UML graphical notation [2], which in turn 
is described in MOF notation [6]. Meta model of 
Dynamic PLA is presented as series of UML class 
diagrams. The top level diagram presents the highly 
abstract view Dynamic PLA meta-model. Other dia-
grams provide a detailed description of elements in 
highly abstract view diagram. The aggregation relation 
in diagrams presents the idea that one element of 
Dynamic PLA specification consists of other elements 
in specification, inheritance specifies that element 
generalizes other elements in specification. Mainly, 
diagrams follow standard UML notations syntax. 

Meta-model of Dynamic PLA is presented in three 
views: 
• System meta-model  
• Aggregate meta-model  
• Operation meta-model  

2.2.1. System meta-model  

System meta-model presents modeled system from 
the most abstract point. Modeled system is presented 
by System class, which in own turn contains models, 
aggregates and other elements, as depicted in Figure 1. 

System class represents a whole modeled system as 
single entity. It holds only the name of modeled 
system as its only one attribute, and also contains a 
collection of models which depict behavior and 
structure of modeled systems. Purpose of system class 

is to serve as a container for the whole modeled sys-
tem.  

 
Figure 1. Meta-model of modeled system 

Because we consider the dynamic system, model 
of system can be changed during the existence of the 
system. So the system is composed of models (i.e. set 
of models), which represent it at the different time 
moments. Model at the specified time contains a set of 
aggregates and connections between them. We assume 
that the system may contain a finite or infinite number 
of models, of which one is valid for a specified time 
frame. 

Aggregate class represents aggregate of systems 
models at the specified time. In system meta-model 
view, it is depicted as simple class with two attributes: 
t and name. The Aggregate structure is detailed more 
in the next subsection. Attribute t specifies at which 
time frame this aggregate is valid. 

Connection class represents a connection between 
two aggregates in the model at the specified time. It 
has one attribute t, which specifies at which time 
frame this connection is valid. Connection joins two 
aggregates. The set of connections in a model repre-
sents a structure of the whole systems at the specified 
time frame. 

 
Figure 2. Aggregate meta-model 
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2.2.2. Aggregate meta-model  
Aggregate meta-model presents a detailed view of 

aggregate in the System meta-model. Aggregate is 
presented as class which has some attributes and 
contains other elements as depicted in Figure 2. 

Aggregate class represents aggregate of system 
model at the specified time. It is depicted as complex 
class with two attributes: t and name. Attribute name 
specifies aggregates name, and attribute t specifies at 
which time frame this aggregate is valid. Aggregate 
consists of objects such as: inputs, outputs, initial 
states, G, H operators, continuous variables, discrete 
variables, control sequences, E’’, and E’. Aggregate 
embodies a structure of single aggregate at the spe-
cified time t using inputs, outputs, initial states, 
continuous variables, discrete variables, control se-
quences, E’’ and E’ objects and embodies behavior 
using G, H operators. 

Input class represents input to the aggregate which 
could be connected by Connection object with outputs 
of other aggregates. Input has name, which identifies 
specific input in concrete aggregate. Input also has t 
attribute which specifies at which time frame this 
input is valid and thus can be used in connection 
between two aggregates in a model. 

Output class represents output from the aggregate 
which could be connected by Connection object with 
inputs of other aggregates. Output has name, which 
identifies specific output in concrete aggregate. Output 
also has t attribute which specifies at which time 
frame this output is valid and thus can be used in 
connection between two aggregates in a model. 

InitialState class represents initial state of the ag-
gregate. Initial state just defines initial values of dis-
crete and continuous variables, which are applied for 
aggregate creation and addition to the systems model. 

E’ class represents an external event in the aggre-
gate. It is closely related to input object, because each 
input must have its representing external event. An 
external event has the name which uniquely identifies 
this event in the aggregate, and also has t attribute 
which defines at which time frame this event is valid. 

E’’ class represents an internal event in the aggre-
gate. An internal event has the name which uniquely 
identifies this event in the aggregate, and also has t 
attribute which defines at which time frame this event 
is valid. 

DiscreteVariable class represents discrete variable 
in the aggregate. It has the name which uniquely iden-
tifies it in the aggregate. It also has the t attribute 
which specifies at which time frame this variable is 
valid. This variable is used in G an H operators. These 
operators define aggregates behavior. 

ContinousVariable class represents continuous 
variable in the aggregate. It has the name which 
uniquely identifies in the aggregate. It also has the t 
attribute which specifies at which time frame this 

variable is valid. This variable is used in G an H 
operators. These operators define aggregates behavior. 

ControlSequence class represents controlling se-
quence which controls how some continuous variables 
change. Control sequence is represented as mathema-
tical expression like function of normal distribution 
with specific parameters. It has attribute t which spe-
cifies at which time frame this controlling sequence is 
valid. 

G class represents operators in the aggregate. Ope-
rators define some calculations (expressed as mathe-
matical formulas) and produce some results which are 
outputted to aggregates Outputs. Calculations defined 
in G operator can be: Expression, operations with sets, 
operations with aggregates and models structure and 
output operations. G contains t attribute which speci-
fies at which time frame this operation is valid. 

H class represents operators in the aggregate. Ope-
rators define some calculations (expressed as mathe-
matical formulas). Calculations defined in H operator 
can be: Expression, operations with sets, operations 
with aggregates and models structure. H contains t at-
tribute which specifies at which time frame this 
operation is valid. 

Expression class represents a mathematical expres-
sion, which performs some calculations, operates with 
structure of aggregate and/or system model. 

2.2.3. Operation meta-model  

Operation meta-model details Expression class 
which was presented in the Aggregate meta-model 
view. Aggregates expression depictures a composite 
design patterns [3], it contains either one mathematical 
expression or a set of them. It can also be an empty set 
– no operations performed at all. Besides mathemati-
cal operations, expression can also be the one which 
performs modifications of aggregate and/or model 
structure. This is the core of Dynamic PLA - aggregate 
can modify its own structure or whole system, thus 
causing a change of the systems model. Expressions 
detailed view is presented in Figure 3. Inheritance spe-
cifies a new type of operation which perform structure 
and behavior modification of aggregates or systems. 

Expressions AddOutput, AddInput, AddDiscrete-
Variable, AddContinuousVariable, AddControlSe-
quence, AddE’, AddE’’, AddG, AddH add respectively  
Output, Input, DiscreteVariable, ContinousVariable, 
ControlSequence, E’, E’’, G, H to the structure of 
aggregate. 

Expressions DelOutput, DelInput, DelDiscrete-
Variable, DelContinuousVaraible, DelControlSe-
quence, DelE’, DelE’’, DelG, DelH delete respectively 
Output, Input, DiscreteVariable, ContinousVariable, 
ControlSequence, E’, E’’, G, H from the structure of 
aggregate. 

Expressions AddConnecton, AddAggregate add 
respectively Connection, Aggregate to the structure of 
system. 
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Figure 3. Detailed expressions 

Expressions DelAggregate, DelConnection delete 
respectively Connection, Aggregate from the structure 
of system. 

• TC – is transaction coordinator, which receives 
requests to perform tasks. It forwards them to the 
aggregate called RM_visi (which emulates a dy-
namically expanding pool of resources which in 
turn execute requested tasks). TC also receives an 
acknowledgment of finished tasks from aggregate 
RM_visi. 

Each Add/Del expression changes model of the 
system. These expressions depict the dynamic beha-
vior of Dynamic PLA model. 

• RM_visi – emulates the expanding pool of re-
source managers. When RM_visi receives a re-
quest to perform a task, it creates a resource 
manager (i.e. new aggregate) which would 
execute the task. But because the model is static, 
all tasks are queued and executed one by one in 
RM_visi.  When new task arrives, it is placed in 
the queue. When RM_visi is ready (all tasks 
before current task are finished), tasks is taken 
from the queue and is executed. After completion 
the task is removed from the queue and the cor-
responding output is being sent to the TC 
aggregate. 

3. Example 
3.1. Definition of the resource management system 

To illustrate extension of PLA formalization, we 
present an example – specification of transaction pro-
cessing system model. The system consists of trans-
action coordinator (TM), which handles resources 
(RM), which in turn perform some actions. When 
transaction coordinator receives a request to perform a 
task, it allocates a resource and passes the request to it. 
When resource completes the task, it notifies the trans-
actions manager, which in turn can then free up the 
resource. 

A formal specification of this system in PLA lan-
guage is presented in Figure 5. 3.2. PLA specification of the resource management 

system Using the PLA formalism, the dynamically expan-
ding pool of resource managers, which can perform 
tasks simultaneously, is emulated by simple queue in 
aggregate, simplifying simulations of concurrent 
execution to sequential execution of tasks placed in 
the queue. In this way, the model does not really 
match real situation and, in addition, its real nature is 
hidden by formal specification syntax and models. In 

In order to formalize the system presented in Sec-
tion 3.1. the PLA model could be built. The systems 
model is presented in Figure 4 and its PLA specifi-
cation in Figure 5. The systems model consists of two 
aggregates: TC and RM_visi where: 
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3.3. Formalization with dynPLA general, we can not easily see the dynamic nature of 
this system (the ability to create a resource manager 
on request and destroy it after usage). In order to 
overcome these limitations the systems model is 
presented using DynPLA in Section 3.3. 

Changes of analyzed systems model are presented 
in Figure 6. At the initial moment (t0) the system has 
only one aggregate – transaction coordinator (TC, 
Figure 6a). Later, say, at a time tn a request comes to 
transaction coordinator TC, which creates the first 
resource RM1 with connections (systems model 
changes – expands) and passes the task (Figure 6b). At 
some point later (tm) two more requests arrive at TC, 
and two more resources (RM2 and RM3) are allocated 
(Figure 6c). Figure 6d represents system at a time tp 
when both resources RM1 and RM2 have already 
finished their tasks and were deleted from the model 
(model changes – shrinks).  
 Figure 4. Systems aggregate model 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. Changes of systems model in time (a) t0 – initial 
scheme of the model; (b) tn – model scheme with added 

new aggregate (RM1); (c) tm – added one more aggregate 
(RM3), (d) tp - aggregates RM1 and RM2 are removed as 

they have finished tasks 
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TID – transaction ID 
 
TC: 
1. X = { x0, x1 } x1 : TID 
2. Y = { y1 } 
3. E’ = { e’0, e’1, }   here e’i means `received xi signal`
4. E’’ = { Ø } 
5. Ø 
6. W(tm) = { Ø } 
7. ν(tm) = { Ø }   
8. Ø 
9. H(e’0) : /* task request to TC . */ 
H(e’i): /* signal about finished task from resource  */ 
G(e’0): 
  Y := { y1 } 

 
 

Mt =  
Channel 

No. 
From 

aggregate Output To 
aggregate Input 

1 TC y1 RM_VISI x1 
2 RM_VISI y1 Agg0 x0 
3 RM_VISI y2 TC x1 
4 Agg0 y1 TC x0 

 
 

 

RM_VISI: 
1. X = { x1 } 
2. Y = { y1, y2 } y2 : TID 
3. E’ = { e’1 } 
4. E’’ = { e’’1 } e’’1 end of operation processing 
5. { e’’1 }  { η(1)

k }, k = 1, ∞ 
6. W(tm) = { w(e’’1 , tm) } 
7. ν(tm) = ( active_op ) 
8. active_op = 0 
9. H(e’1) : 
  active_opt+1 = active_opt + 1 
  // adding to queue etc.. 
H(e’’1) : // end of processing 
  active_opt+1 = active_opt - 1 
G(e’1) : 
G(e’’1) : // end of prcessing 
  y2 = active_opt 
  Y : = { y1, y2 } 
 

Figure 5. Systems formal specification in PLA language 
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Specification of this system in dynamic PLA is 
given in Figure 7. 

From standard PLA specification, dynamic PLA 
differs as follows. In line L1, we define a set of 
aggregate in the system at initial time t0. Later this set 
(i.e. the model of system) will change. Lines L4, L5, 
L47 and L48 introduce sets of G and H, respectively, 
which define G and H operators of aggregates. Lines 
L16-L23 and L25-L32 introduce dynamic part. 
Aggregate operators H manipulate the structure of the 
system. Line L16 adds new aggregate and line L25 
removes it. In line L17, new input is added, and in line 
L27 it is removed.  
 
L1 
L2 
L3 
L4 
L5 
L6 
L7 
L8 
L9 
L10 
L11 
L12 
 
L13 
L14 
L15 
L16 
L17 
L18 
L19 
L20 
L21 
L22 
L23 
L24 
L25 
L26 
L27 
L28 
L29 
L30 
L31 
L32 
L33 
L34 
L35 
L36 

At0 = {TC} 
 
TC: 
Ht0 = { H(e’0), H(e’i) } 
Gt0 = { G(e’0) } 
1. X = { x0, x1, x2 } 
2. Y = { y1, y2 } 
3. E’ = { e’0, e’1, e’2}   here e’i means `received xi signal` 
4. E’’ = { Ø } 
5. Ø 
6. W(tm) = { Ø } 
7. ν(tm) = { cnt(tm) }   

here cnt(tm) – count of aggregates RM in system 
8. cnt(tm) = 0 
9. H(e’0) : /* task request to TC . */ 
  cnt(t+1) = cnt(t) + 1; 
  At+1 = At U { Acnt(t+1) } 
  Xt+1 = Xt U { xcnt(t+1) } 
  Yt+1 = Yt U { ycnt(t+1)} 
  Ht+1 = Ht U { Hcnt(t+1) } 
  Agg0.Xt+1 = Agg0.Xt U { xcnt(t+1) } 
  Mt+1 = Mt U { cnt(t+1)*3–1, TC, ycnt(t+1), RMcnt(t+1), x1 } 
  Mt+1 = Mt U { cnt(t+1)*3+0, RMcnt(t+1), y2, TC, xcnt(t+1) } 
  Mt+1 = Mt U { cnt(t+1)*3+1, RMcnt(t+1), y1, Agg0, xcnt(t+1) } 
H(e’i): /* signal about finished task from resource  */ 
  At+1 = At – { Acnt(t+1) }   
  Xt+1 = Xt – { xcnt(t+1) } 
  Yt+1 = Yt – { ycnt(t+1) } 
  Ht+1 = Ht – { Hcnt(t+1) } 
  Mt+1 = Mt – { cnt(t+1)*3–1, TC, ycnt(t+1), RMcnt(t+1), x1 } 
  Mt+1 = Mt – { cnt(t+1)*3+0, RMcnt(t+1), y2, TC, xcnt(t+1) } 
  Mt+1 = Mt – { cnt(t+1)*3+1, RMcnt(t+1), y1, Agg0, xcnt(t+1) } 
  Agg0.Xt+1 = Agg0.Xt  – { xcnt(t+1) } 
  cnt(t+1) = cnt(t) – 1 
G(e’0): 
  Y := { ycnt(t+1) } 

 
 
 

L37 
L38 
 
L39 
L40 
L41 
L42 
L43 
L44 
L45 

Mt0 =  
Channel 

No. 
From 

aggregate Output To aggregate Input 

1 TC y1 RM1 x1 
2 TC y2 RM2 x1 
3 RM1 y1 TC x0 
4 RM2 y1 TC x1 
5 RM1 y2 Agg0 x1 
6 RM2 y2 Agg0 x2 
7 Agg0 y1 TC x2 

  

L46
L47
L48
L49
L50
L51
L52
L53
L54
L55
L56
L57
L58
L59
L60

RMi:  // i > 1 
Ht0 = { H(e’1) } 
Gt0 = { G(e’1) } 
1. X = { x1 } 
2. Y = { y1, y2 } 
3. E’ = { e’1 } 
4. E’’ = { e’’1 } 
5. { e’’1 }  { η(1)

k }, k = 1, ∞ 
6. W(tm) = { w(e’’1 , tm) } 
7. ν(tm) = Ø 
8. Ø 
9. H(e’1) : 
  /* task processing */ 
G(e’’1) : 
  Y : = { y1, y2 } 
 

Figure 7. Specification of transaction system in 
dynPLA 

In lines L18 and L27, output is added and removed 
respectively.  In lines L19 and L28, operator H is ad-
ded and removed. It’s worth noting that lines L20 and 
L32 change the structure of another aggregate (input 
to aggregate Agg0 is added and removed, respec-
tively). Lines L20-L23 create connections between 
aggregates. Action of adding line, which defines a 
connection between aggregates, to a set (i.e. Mt+1 = Mt 
U {cnt(t+1)*3–1, TC, ycnt(t+1), RMcnt(t+1), x1}) means 
that this line is added to the connection matrix M. In 
lines L29-L31, connections are deleted. 

4. Conclusions 

In the paper we presented extension of PLA for-
malization to dynamic PLA (DynPLA), adapting this 
language to define dynamic systems, which can 
change self structure and/or behavior. Extension 
DynPLA allows to define model of system more 
compactly and clearly. However, models of dynamic 
systems during simulation can change dramatically, 
which makes harder to notice errors in the initial 
model specification. This is influenced by addition of 
new abstraction levels, which is especially noticeable 
while debugging model. 
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