
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2006, Vol.35, No.3

BUSINESS KNOWLEDGE EXTRACTION FROM LEGACY
INFORMATION SYSTEMS

Bronius Paradauskas, Aurimas Laurikaitis
Kaunas University of Technology, Department of Information Systems

Studentų St. 50, LT-51368 Kaunas, Lithuania

Abstract. This article discusses the process of enterprise knowledge extraction from relational database and source
code of legacy information systems. Problems of legacy systems and main solutions for them are briefly described
here. The uses of data reverse engineering and program understanding techniques to automatically infer as much as
possible the schema and semantics of a legacy information system is analyzed. Eight step data reverse engineering
algorithm for knowledge extraction from legacy systems is provided. A hypothetical example of knowledge extraction
from legacy information system is presented.

Keywords: knowledge extraction, relational database, data reverse engineering, legacy information systems.

1. The problems of legacy information systems

Legacy information system is any information
system that significantly resists modification and
evolution to meet new and constantly changing busi-
ness requirements 0. Legacy systems typically contain
incredible detailed business rules and form the
backbone of the information flow of organization that
consolidates information about its business 0. A failure
in one of these systems may have a serious business
impact. Legacy information systems are currently
posing numerous and important problems to their host
organizations. The most serious of these problems are:
• systems usually run on obsolete hardware which

is slow and expensive to maintain;
• maintenance of software is generally expensive;

tracing faults is costly and time consuming due to
the lack of documentation and a general lack of
understanding of the internal workings of the
system;

• integration efforts are greatly hampered by the
absence of clean interfaces;

• legacy systems are very difficult, if not impos-
sible, to expand.

In response to these problems, several approaches
to change or replace legacy systems have been
proposed. They are classified into the following three
categories 0: redevelopment, wrapping, and migration.
Redevelopment involves process of developing
system from scratch, using a new hardware platform,
architecture, tools and databases. Wrapping involves
developing a software component called wrapper that
allows an existing software component to be accessed

by other components. Migration allows legacy sys-
tems to be moved to new environments that allow
information systems to be easily maintained and adap-
ted to new business requirements, while retaining
functionality and data of the original legacy systems
without having to completely redevelop them.

Usually, in the process of replacing legacy systems
the above three approaches are combined in varying
degrees. First thing needed when solving the problems
of legacy systems is the exact picture of information
system. So reverse engineering must be accomplished
in order to discover and extract as much as possible
business knowledge from legacy sources.

2. Knowledge extraction

The goal of knowledge extraction from legacy
systems is to semiautomatically discover and extract
enterprise knowledge from legacy sources, i.e.
generate a detailed description of the legacy source,
including entities, relationships, application-specific
meanings of the entities and relationships, business
rules, data formatting and reporting constraints, etc.
We collectively refer to this information as business
knowledge.

The schema information is extracted (Figure 1)
from legacy system database management system
(DBMS). Then this schema information can be
semantically enhanced using clues extracted by the
semantic analyzer from available application code,
business reports and other electronically available
information that may encode business data such as e-
mail correspondence, corporate memos, etc.

214

Business Knowledge Extraction from Legacy Information Systems

In this article, data reverse engineering algorithm
(DRE) which is comprised of schema extraction (SE)
and semantic analysis (SA) is provided. An example
that illustrates the DRE operation and confirms the
power of the approach is also provided.

Legacy Source

Data Reverse Engineering

Schema
Extraction

Semantic
Analysis

Schema
Information

Embedded
Queries

Revise,
validate

Legacy DB

Reports

Legacy
Application

Code

Source
Schema,

Semantics,
Business Rules

Figure 1. Knowledge extraction conceptual diagram

3. Data Reverse Engineering

Data reverse engineering is defined as the appli-
cation of analytical techniques to one or more legacy
data sources to elicit structural information (e.g., term
definitions, schema definitions) from the legacy
source(s) in order to improve the database design or
produce missing schema documentation 0. In this
article, DRE is applied to relational databases only.
However, since the relational model has only limited
semantic expressability, in addition to the schema,
DRE algorithm generates an E/R-like representation
of the entities and relationships that are not explicitly
defined in the legacy schema (but which exist
implicitly).

Formally DRE can be described as follows. We are
given a legacy database defined as ({RLDB

1 2

{ R(r 22

1, R2,,
Rn}, D), where denotes the schema of the i-th
relation with attributes A , A , ..., A , keys K , K , ...,
K

iR

(r1

m(i) 1 2

}m(i), data , such that
 denotes the data (extent) for schema at

time

)R(r),...,),RD nn1=
)R(r ii iR

t . Furthermore, have functional dependen-
cies

LDB
{ })i(k21 F,F F,...,F = and inclusion dependencies

{ })i(lI,...,

LDB
2I1 ,II = expressing relationships among the

relations in . The goal of DRE is to first extract

{ }n21 R,...,R,R , I , and F and then use I , F , ,
and (program code) to produce a semantically
enhanced description of { that includes
all relationships among the relations in (incl.
those that are implicit), semantic descriptions of the
relations as well as the business knowledge that is
encoded in and .

D

LC

DB

}n21 R,...,R,

LDB

R

LDB

DB

L LC

L

This approach to data reverse engineering for
relational sources is based on the existing algorithms
by Chiang 0,0 and Petit et al. 0. However, in order to
reduce the dependency on human input, to eliminate
some of the limitations of their algorithms (e.g.,
consistent naming of key attributes and the
requirement that the legacy schema be modeled in
3NF), and to produce a semantically richer schema
description at the end, their methodologies were
improved in several ways.

The DRE algorithm is divided into two parts:
schema extraction and semantic analysis, which
operate in interleaved fashion. An overview of the two
algorithms, which are comprised of eight steps, is
shown in Figure 2. In addition to the modules that
execute each of the eight steps, the architecture in
Figure 2 includes three support components: the
configurable Database Interface Module (upper-left
hand corner), which provides connectivity to the
underlying legacy source. Note that this component is
the only source-specific component in the
architecture: in order to perform knowledge extraction
from different sources, only the interface module
needs to be changed. The Knowledge Encoding (lower
right-hand corner) represents the extracted knowledge
in the form of an XML document. The Metadata
Repository is internal to DRE and used to store
intermediate run-time information needed by the
algorithms including user input parameters and the
abstract syntax tree for the code (e.g., from a previous
invocation), etc.

We provide a trivial example of legacy system in
order to highlight each of the eight steps and related
activities outlined in Figure 2. Assume that the
underlying legacy database is managed by a re-
lational database management system. For simplicity,
we assume without lack of generality or specificity
that only the following relations exist in , whose
schema will be discovered using DRE:

Projects [Proj_ID, ...]
Availability [Proj_ID, Avail_UID, ...]
Resources [Proj_ID, Res_UID, ...]
Tasks [Proj_ID, Task_UID, ...]
Assignment [Proj_ID, Assn_UID, ...]
In order to illustrate the code analysis and how it

enhances the schema extraction, the following C code
fragment is used representing a simple, hypothetical
interaction with a legacy database:
char *aValue, *cValue;
int bValue = 0;

215

B. Paradauskas, A. Laurikaitis

if (*cValue < *aValue)
{ cValue = aValue; } /* more code */
..........
/* more code */ EXEC SQL SELECT T_StD, T_FinD INTO

:aValue, :cValue
printf("Task Start Date %s ",
aValue);

FROM Tasks WHERE T_Dur = :bValue;
..........

printf("Task Finish Date %s ",
cValue);

/* more code */
..........

Attribute
Classification

Legacy
SourceDB Interface

Model

Configuration

Application CodeData

AST
Generation

Dictionary
Extraction

Code
AnalysisInclusion

Dependency
Mining

Relation
Classification

Entity
Identification

 Relationship
Identification

Knowledge
Encoding

Metadata
Repository

Queries

AST

Business
Knowledge

Schema

XML DOC

XML DTD

1

2

8

7

6

5

3

4

Figure 2. Conceptual view of the data reverse engineering algorithm

block

dclns

dcln

id

*aValue

id

char

id

*cValue

dcln

id

int id

bValue

int

0

=

beginSQL

embSQL

SQLselectone

columnlist

id

T_StD

id

T_FinD

hostvariablelist

id

aValue

id

cValue

tablelist

id

Tasks

SQLassignment =

id

T_Dur

id

bValue

if

id id

<

id id

assign

block

*cValue *aValue

text

Task start
date %s

print

text

print

Task finish
date %s

id

aValue

id

cValue

cValue aValue

Figure 3. Abstract syntax tree for the legacy application code

3.1. Abstract syntax tree generation

The DRE process begins with the generation of an
abstract syntax tree (AST) (AST is described in 0, 0,
0) for the legacy application code (Figure 3). The AST
will be used by the semantic analyzer for code
exploration during Step 3. Our objective in AST
generation is to be able to associate “meaning” with
program variables. For example, format strings in
input/output statements contain semantic information
that can be associated with the variables in the in-

put/output statement. This program variable in turn
may be associated with a column of a table in the
underlying legacy database.

3.2. Dictionary Extraction

The goal of Step 2 is to obtain the relation and
attribute names from the legacy source. This is done
by querying the data dictionary, stored in the
underlying database in the form of one or more
system tables. Otherwise, if primary key information

LDB

216

Business Knowledge Extraction from Legacy Information Systems

cannot be retrieved directly from the data dictionary,
the algorithm passes the set of candidate keys along
with predefined rule-out patterns to the code analyzer.
The code analyzer searches for these patterns in the
application code and eliminates those attributes from
the candidate set, which occur in the rule-out pattern.
The rule-out patterns, which are expressed as SQL
queries, occur in the application code whenever
programmer expects to select a SET of tuples. By
definition of primary key, this rules out the possibility
that the attributes form a primary key. Three
sample rule-out patterns are:

n1 aa K

1. SELECT DISTINCT <selection> FROM
table
WHERE a1=<expression1> AND
a2=<expression2> AND … AND
an=<expressionn>

2. SELECT <selection> FROM table
WHERE a1=<expression1> AND
a2=<expression2> AND … AND
an=<expressionn>
GROUP BY …

3. SELECT <selection> FROM table
WHERE a1=<expression1> AND
a2=<expression2> AND … AND
an=<expressionn>
ORDER BY …

Following code analysis, if a primary key cannot
be identified, the reduced set of candidate keys must
be presented to the user for final primary key
selection.

Result. From the example legacy system, the
following relations and their attributes were obtained:

Projects [Proj_ID, ...]

Availability [Proj_ID, Avail_UID, ...]
Resources [Proj_ID, Res_UID, ...]
Tasks [Proj_ID, Task_UID, ...]
Assignment [Proj_ID, Assn_UID, ...]

3.3. Code analysis

The objective of Step 3, code analysis, is twofold:
(1) augment entities extracted in Step 2 with domain
semantics, and (2) identify business rules and con-
straints not explicitly stored in the database, but which
may be important to the process of reverse engi-
neering. This approach to code analysis is based on
program understanding, which includes slicing 0, 0,
0and pattern matching 0.

The first step is the construction of program de-
pendency graph (PDG) from the abstract syntax tree.
The PDG is constructed in the following three steps 0:
1) augmented control flow graph (ACFG) construction
from the AST; 2) computation of the post dom graph
from ACFG; 3) construction of the PDG using ACFG
and the post dom graph. The PDG for the AST in
Figure 3 is presented in Figure 4.

The next step is the pre-slicing. From the AST of
the application code, the pre-slicer identifies all the
nodes corresponding to input, output and embedded
SQL statements. If an identifier node (which
corresponds to the occurrence of a variable in that
statement) exists in the subtree in that statement node,
then it appends the actual variable name to the list of
slicing variable. For example, for the AST in Figure 3,
the array contains the following information depicted
in Table 1. The identifiers that occur in this data
structure maintained by the pre-slicer form the set of
slicing variables.

Table 1. Information maintained by pre-slicer for slicing variables

Slicing Variable Type of Statement Direction of Slicing Text string (only for print nodes)
aValue Output Backwards “Task Start Date”
cValue Output Backwards “Task Finish Date”

entry
char *aValue ,

*cValue

if (*cValue<*aValue)

print (aValue)

cValue=aValue

int bValue=0

SELECT T_StD, T_FinD INTO
:aValue,:cValue FROM Tasks WHERE

T_Dur = :bValue;

print (cValue)

Figure 4. Program dependency graph for the legacy application code

217

B. Paradauskas, A. Laurikaitis

The code slicer and analyzer, which represent sub-
steps three and four, respectively, are executed once
for each slicing variable identified by the pre-slicer. In
the above example, the slicing variables that occur in
SQL and output statements are aValue and cValue.
The direction of slicing is fixed as backwards or
forwards depending on whether the variable in
question is part of an output (backwards) or input
(forwards) statement. The slicing criterion is the exact
statement (SQL or input or output) vertex that
corresponds to the slicing variable.

During code slicing sub-step the flow and control
edges of the PDG for the source code are followed and
only those vertices are retained that were reached by
traversal. The result of slice consists of the set of
vertices and the set of edges induced by this vertex set
that are relevant to the slice with respect to the slicing
variable. Figure 5 shows backward slice for the PDG
in Figure 4 with respect to printf(cValue)
vertex. The reduced AST that correspond to the PDG
in Figure 5 is shown in

Figure 6.

entry
char *aValue,

*cValue

if (*cValue<*aValue)

cValue=aValue

int bValue=0

SELECT T_StD, T_FinD INTO
:aValue,:cValue FROM Tasks WHERE

T_Dur = :bValue;

print (cValue)

Figure 5. Backward slice for the legacy application code

block

dclns

dcln

id

*aValue

id

char

id

*cValue

dcln

id

int id

bValue

int

0

=

beginSQL

embSQL

SQLselectone

columnlist

id

T_StD

id

T_FinD

hostvariablelist

id

aValue

id

cValue

tablelist

id

Tasks

SQLassignment =

id

T_Dur

id

bValue

if

id id

<

id id

assign

block

*cValue *aValue

text

print

Task finish
date %s

id

cValue

cValue aValue

Figure 6. Reduced abstract syntax tree

Table 2. Information inferred during analysis sub-step

Identifier
Name Meaning Possible Business Rule Data type Column

Name Table Name

aValue Task Start Date Char * => string T_St_D Tasks
cValue Task Finish Date if (*cValue < *aValue)

{ cValue = aValue; }
Char * => string T_Fin_D Tasks

During the analysis sub-step, algorithm extracts

the information shown in Table 2, while traversing the
reduced AST.
1. If a dcln node is encountered, the data type of the

identifier can be learned.
2. embSQL contains the mapping information of

identifier name to the corresponding column
name and table name in the database.

3. print/scanf nodes contain the mapping
information from the text string to the identifier.
In other words, we can extract the meaning of the
identifier from the text string.

It is important to note that enterprise knowledge is
identified by matching templates against code
fragments in the AST. So, patterns for discovering
business rules must be developed which are encoded
in loop structures and/or conditional statements and

218

Business Knowledge Extraction from Legacy Information Systems

219

mathematical formulae, which are encoded in loop
structures and/or assignment statements. Note, the
occurrence of an assignment statement itself does not
necessarily indicate the presence of a mathematical
formula, but the likelihood increases significantly if
the statement contains one of the slicing variables.

3.4. Inclusion Dependency Mining

After extraction of the relational schema in Step 2,
the goal of Step 4 is to identify constraints to help
classify the extracted relations, which represent both
the real-world entities and the relationships among
them. This is done using inclusion dependencies
(INDs), which indicate the existence of inter-relational
constraints including class/subclass relationships.

Let A and be two relations, and B X and Y be
attributes or a set of attributes of A and ,
respectively. An inclusion dependency

B
Y.BX.A <<

denotes that a set of values appearing in is a
subset of . Inclusion dependencies are discovered
by examining all possible subset relationships between
any two relations

X.A
Y.B

A and in the legacy source.
Inclusion dependencies can be identified in an
exhaustive manner as follows: for each pair of rela-
tions

B

A and in the legacy source schema, compare
the values for each non-key attribute combination

B
X

in A with the values of each candidate key attribute
combination Y in (note that B X and Y may be
single attributes). An inclusion dependency

 may be present if: Y.BX.A <<
1. X and Y have the same number of attributes.
2. X and Y must have pair wise domain

compatibility (matching data types and matching
maximum length of attributes).

3. . Y.BX.A ⊆
In order to check the subset criteria (3), the

following generalized SQL query templates are
provided, which are instantiated for each pair of
relations and attribute combinations and run against
the legacy source:

C1 = SELECT count (*) FROM A
WHERE X NOT IN (SELECT Y FROM B);
C2 = SELECT count (*) FROM B
WHERE Y NOT IN (SELECT X FROM A);

If is zero, we can deduce that there may exist an
inclusion dependency

1C
.YBA.X << ; likewise, if C is

zero, there may exist an inclusion dependency
. Note that it is possible for both C and

 to be zero. In that case, we can conclude that the
two sets of attributes

2

1.XA
C
B.Y <<

2
X and Y are equal.

The worst-case complexity of this exhaustive
search, given tables and N M attributes per table
(total attributes), is O . However, the
search space can be reduced in those cases where
equi-join queries in the application code could be
identified (during semantic analysis). Each equi-join
query allows to deduce the existence of one or more

inclusion dependencies in the underlying schema. In
addition, using the results of the corresponding count
queries the “direction” of the dependencies can also be
determined. This allows to limit exhaustive searching
to only those relations not mentioned in the extracted
queries.

NM (2N)2M

Result: Inclusion dependencies are as follows:
Assignment [Task_UID, Proj_ID] << Tasks
[Task_UID, Proj_ID]
Assignment [Res_UID, Proj_ID] << Resources
[Res_UID, Proj_ID]
Availability [Res_UID, Proj_ID] << Resources
[Res_UID, Proj_ID]
Resources [Proj_ID] << Projects [Proj_ID]
Tasks [Proj_ID] << Projects [Proj_ID]
Assignment [Proj_ID] << Projects [Proj_ID]
Availability [Proj_ID] << Projects [Proj_ID]

The last two inclusion dependencies can be removed
since they are implicitly contained in the inclusion de-
pendencies listed in lines 2, 3 and 4 using the transi-
tivity relationship.

3.5. Relation Classification

When reverse-engineering a relational schema, it is
important to understand that due to the limited ex-
pressability of the relational model, all real-world en-
tities are represented as relations irrespective of their
types and role in the model. The goal of this step is to
identify the different types of relations, some of which
correspond to actual real-world entities while others
represent relationships among them.

In this step, all the relations in the database are
classified into one of four types – strong, regular,
weak or specific. Identifying different relations is
done using the primary key information obtained in
Step 2 and the inclusion dependencies from Step 4.
Intuitively, a strong entity-relation represents a real-
world entity whose members can be identified exclusi-
vely through its own properties. A weak entity-relation
represents an entity that has no properties of its own
that can be used to identify its members. In the
relation model, the primary keys of weak entity-
relations usually contain primary key attributes from
other (strong) entity-relations. Both regular and speci-
fic relations are relations that represent relationships
between two entities in the real world (rather then the
entities themselves). However, there are instances
when not all of the entities participating in an (n-ary)
relationship are present in the database schema (e.g.,
one or more of the relations were deleted as part of the
normal database schema evolution process). While
reverse engineering the database, such relationships
must be identified as special relations.
Result:

Strong entity: Projects
Weak entity: Resources, Tasks, Availability
Regular relation: Assignment

B. Paradauskas, A. Laurikaitis

3.6. Attribute Classification

Attributes are classified as (a) primary key (PK) or
foreign key (FK), (b) dangling key (DK) or general
key (GK), or (c) non-key (NK) (rest).

Result: Table 3 illustrates attributes obtained from the
example legacy source.

Table 3. Attribute classification example

 PKA DKA GKA FKA NKA
Projects Proj_ID
Resources Proj_ID Res_UID
Tasks Proj_ID Task_UID
Availability Proj_ID Avail_UID Res_UID+Proj_ID
Assignment Proj_ID Assn_UID Res_UID+Proj_ID,

Task_UID+Proj_ID

All remaining attributes

3.7. Entity Identification

Strong (weak) entity relations obtained from Step 5
are directly converted into strong (resp. weak) entities.
Result: The following entities were classified:

Strong entities: Projects with Proj_ID as its key.
Weak entities:
Tasks with Task_UID as key and Projects as its
owner.
Resources with Res_UID as key and Projects as
its owner.
Availability with Avail_UID as key and
Resources as its owner.

3.8. Relationship Identification

The inclusion dependencies discovered in Step 4
form the basis for determining the relationship types
among the entities identified above. This is a two-step
process:
1. Identify relationships present as relations in the

relational database. The relation types (regular
and specific) obtained from the classification of
relations (Step 5) are converted into relationships.
The participating entity types are derived from the
inclusion dependencies. For completeness of the
extracted schema, a new entity may be created
when conceptualizing a specific relation.
The cardinality between the entities is . N:M

2. Identify relationships among the entity types
(strong and weak) that were not present as
relations in the relational database, via the
following classification:

• IS-A relationships can be identified using the
PKAs of strong entity relations and the inclusion
dependencies among PKAs. If there is an
inclusion dependency in which the primary key of
one strong entity-relation refers to the primary
key of another strong entity-relation, then an IS-A
relationship between those two entities is
identified. The cardinality of the IS-A relationship
between the corresponding strong entities is . 1:1

• Dependent relationship: For each weak entity
type, the owner is determined by examining the
inclusion dependencies involving the correspon-
ding weak entity-relation. The cardinality of the
dependent relationship between the owner and the
weak entity is . N:1

• Aggregate relationships: If the foreign key in any
of the regular and specific relations refers to the
PKA of one of the strong entity relations, an
aggregate relationship is identified. The cardina-
lity of the aggregate relationship between the
strong entity and aggregate entity (a
relationship and its participating entities at the
conceptual level) is as follows: if the foreign key
contains unique values, then the cardinality is

, else the cardinality is 1 .

N:M

1:1 N:
• Other binary relationships: Other binary relation-

ships are identified from the FKAs not used in
identifying the above relationships. The cardina-
lity of the binary relationship between entities is
as follows: if the foreign key contains unique
values, the cardinality is , else the cardinality
is .

1:1
N:1

Result: The following binary relationships
between the following entities were discovered:

N:1

Between Projects and Tasks
Between Projects and Resources
Between Resources and Availability

Since two inclusion dependencies involving
Assignment exist (i.e., between Tasks and Assignment
and between Resources and Assignment), there is no
need to define a new entity. Thus, Assignment
becomes an relationship between Tasks and
Resources.

N:M

3.9. Knowledge Representation

8 steps of DRE enable the extraction of the
following schema information from the legacy
database:
• Names and classification of entities;
• Names of attributes;

220

Business Knowledge Extraction from Legacy Information Systems

• Primary and foreign keys;
• Data types;
• Simple constraints (e.g., Null, Unique) and

explicit assertions;
• Relationships and their cardinalities;
• Business rules.
A conceptual overview of the extracted schema is
represented by the entity-relationship diagram shown
in Figure 7.

Proj_ID

Projects Resources

Tasks Availability

Has
Assignment

Res_UID

Task_UID Avail_UID

1

1

N

N

N

M

1

N

Has

Has

Figure 7. E/R diagram representing the extracted schema

4. Conclusion
Legacy information systems contain incredible

detailed business rules and form the backbone of the
information flow of organization, but their main-
tenance is very expensive and it is very difficult, if not
impossible, to expand them. Reverse engineering is
the essential part of process of changing and replacing
legacy systems. Its main objective is to discover and
extract business knowledge from legacy sources. Re-
verse engineering builds the powerful foundation for
renovation of IT systems that enables the application
of new technologies and programs.

Data reverse engineering algorithm provided in
this article is comprised of schema extraction and se-
mantic analysis. The most important techniques of
semantic analysis as program slicing, and pattern
matching, together with the more conventional ap-
proaches of lexical/syntactic analysis semantically
enhance the extracted schema from database. Two
algorithms which operate in interleaved fashion lead
to reduced need of human input compared to other
existing methods.

8 steps of data reverse engineering enable the ex-
traction of names and classification of entities, names
of attributes, primary and foreign keys, data types,
simple constraints and explicit assertions, relation-
ships and their cardinalities, business rules. This
knowledge then could be used when changing or
replacing legacy systems, i.e. when redeveloping,
wrapping, or migrating legacy systems.

References
 [1] G. Bakehouse, T. Wakefield. Legacy Information

Systems. ACCA, 2005, internet resource:
<http://www. accaglobal.com/>.

 [2] T. Ball, S. Horwitz. Slicing Programs with Arbitrary
Control Flow. Technical Report 1128, 1992, internet
resource: <http://citeseer.ist.psu.edu/>.

 [3] J. Bisbal, D. Lawless, B. Wu, and J. Grimson. Le-
gacy Information System Migration: A Brief Review
of Problems, Solutions and Research Issues. Technical
Report TCD-CS1999-38, 1999, internet resource:
<https://www.cs.tcd.ie/>.

 [4] S. Carr. An Abstract Syntax Tree for Nolife. 2002,
internet resource: <http://www.cs.mtu.edu/>.

 [5] R.H. Chiang. A Knowledge-Based System for Per-
forming Reverse Engineering of Relational Database.
Decision Support Systems, 1995, 13, 295-312.

 [6] R.H.L. Chiang, T.M. Barron, V.C. Storey. Reverse
Engineering of Relational Databases: Extraction of an
EER Model from a Relational Database. Data and
Knowledge Engineering, 1994, 12:1, 107-142.

 [7] J. Hammer, M. Schmalz, W. O. Brien, S. Shekar,
and N. Haldavnekar. Knowledge Extraction in the
SEEK Project Part I: Data Reverse Engineering.
Technical Report TR-0214, 2002, internet resource:
<http://www.cise.ufl.edu/>.

 [8] J. Henrard. Program Understanding in Database
Reverse Engineering. Thesis submitted for the degree
of Doctor of Science, 2003, internet resource:
<http://edoc.bib.ucl.ac.be:61/>.

 [9] S. Horwitz, T. Reps. The Use of Program Depen-
dence Graphs in Software Engineering. Proceedings of
the Fourteenth International Conference on Software
Engineering, 1992, internet resource:
<http://www.cs.wisc.edu/>.

[10] S. Horwitz, T. Reps, D. Binkley. Interprocedural
Slicing Using Dependency Graphs. ACM Transactions
on Programming Languages and Systems, 1990, 12,
internet resource: http://www.cs.wisc.edu/>.

[11] J. L. Nhampossa. Strategies to Deal with Legacy
Information Systems: A Case Study From the Mozam-
bican Health Sector. IRMA, 2004, internet resource:
<http://heim.ifi.uio.no/>.

[12] S. Paul, A. Prakash. A Framework for Source Code
Search using Program Patterns. IEEE Transactions on
Software Engineering, 1994, 20(6), 463-475, internet
resource: <http://citeseer.ist.psu.edu/>.

[13] J.M. Petit, F. Toumani, J.F. Boulicaut, J. Kouloum-
djian. Towards the Reverse Engineering of Denorma-
lized Relational Databases. Proceedings of the Twelfth
International Conference on Data Engineering
(ICDE), 1996, 218-227.

[14] C.H. Stork, V. Haldar. Compressed Abstract Syntax
Trees for Mobile Code. Workshop on Intermediate
Representation Engineering, 2001, internet resource:
<http://www.ics.uci.edu/>.

[15] D. S. Wile. Toward a Calculus for Abstract Syntax
Trees. Proceedings of a Workshop on Algorithmic
Languages and Calculii, 1997, 324-352, internet re-
source: <http://mr.teknowledge.com/>.

Received June 2006.

221

