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Abstract. The goal of this paper is to discuss the tabu search (TS) meta-heuristic and its enhancement for 
combinatorial optimization problems. Firstly, the issues related to the principles and specific features of the standard 
TS are concerned. Further, a promising extension to the classical tabu search scheme is introduced. The most important 
component of this extension is a special kind of diversification mechanism. We give the paradigm of this new 
improved TS strategy, which is called an iterated tabu search (ITS). ITS was applied to the difficult combinatorial 
optimization problems, the traveling salesman problem (TSP) and the quadratic assignment problem (QAP). The 
results of the experiments with the TSP and QAP show the high efficiency of the ITS strategy. The outstanding 
performance of ITS is also demonstrated by the fact that the new record-breaking solutions were found for the hard 
QAP instances − tai80a and tai100a. 
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Introduction 

Complex optimization problems arising from both 
practice and theory pose a real challenge. These prob-
lems and their solution techniques attract the attention 
of the researchers around the world over several past 
decades. Many optimization problems belong to the 
class NP-hard and cannot be solved to optimality 
within polynomially bounded computation time. One 
of the ways to overcome such difficulties is to use the 
heuristic (local search) algorithms, i.e. the intelligent 
procedures (based upon human's intuition or nature 
inspired) [1,21,26] that seek for near-optimal solutions 
at reasonable computational time − but can not gua-
rantee that a problem will be solved in terms of 
obtaining the exact solution. The heuristic approaches 
have an essential advantage over exact algorithms: the 
heuristics usually find high quality solutions much 
more faster than the exact algorithms; this is espe-
cially true by solving the large-scale problems. 

Dozens of the improved heuristic algorithms ap-
pear every year. Nevertheless, the design of more 
elaborated, inventive and efficient variants of the 
existing methods − like simulated annealing, tabu 
search, genetic algorithms − as well as the creation of 
innovative optimization paradigms is still a matter of 
experience [12]. In this paper, the issues related, 
namely, to the new strategies for solving the difficult 

combinatorial (discrete) optimization (CO) problems 
are discussed. The focus is on the modern intelligent 
optimization technique, the well-known tabu search 
(TS) method. The concept of the tabu search was 
introduced by Hansen and Jaumard [14] and Glover 
[10,11]. Since that time, TS has been proven to be 
among the most powerful tools for solving various 
combinatorial optimization problems (for example, 
graph partitioning [28], quadratic assignment problem 
[32], scheduling [34], vehicle routing problem [35]). 
Still, the design of even more effective TS modifica-
tions for the specific problems is the research direction 
for many scientists. One of the possible extensions 
over the standard tabu search paradigm is a so-called 
iterated tabu search (ITS) we propose in this work. 
The approach we are going to discuss is not a pure 
heuristic. It is rather a universalized principle than the 
algorithm designed for a single problem's special 
benefit. We tried the preliminary variant of the ITS 
method on the well-known CO problems, the traveling 
salesman problem (TSP) and the quadratic assignment 
problem (QAP). However − after adding the corres-
ponding modifications − ITS may be easily applied to 
other related problems. 

The remaining part of this paper is organized as 
follows. The basic definitions of CO problems are 
introduced below. In Section 2, the descent local 
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search technique − as a basis for other developments − 
is briefly described. Then, the standard tabu search is 
outlined. The extension of the standard TS − an ite-
rated tabu search − is discussed in Section 4. The basic 
characteristics and the template of ITS are given. In 
Section 5, we present the experimental results for the 
TSP and QAP, which demonstrate quite promising 
efficiency of the ITS technique. Finally, Section 6 
completes the paper with conclusions. 

1. Preliminaries 

Before starting the next section, we introduce 
some very basic definitions related to combinatorial 
optimization. A combinatorial optimization problem P 
can be defined by a pair (S, f), where S = {s1, s2, ...} is 
a finite (or possibly countable infinite) set of feasible 
solutions (a "solution space") and f: S → R1 is a real-
valued objective (cost) function. Without loss of 
generality, we assume that f seeks a global minimum. 
For the sake of more clarity, let us consider the case 
where the solutions are permutations of the integers 
from 1 to n, that is S = {s | s = (s(1), s(2), ..., s(n)), 
s(i) ∈ {1, 2, ..., n}, i = 1, 2, ..., n, s(i) ≠ s(j), i, j = 1, 2, 
..., n, i ≠ j}; where s is the permutation, s(i) denotes 
the i-th element (item) of the permutation, and n is the 
problem size. 

Thus, to solve the CO problem one has to search 
for a solution sopt ∈ S such that 


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



 ==∈
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The solution sopt is called a globally optimal solu-
tion (global optimum) of (S, f) and Sopt ⊆ S denotes the 
set of global optima. It is very important for the 
heuristic algorithms that some appropriate neighbour-
hood structure of the solutions is defined. A neigh-
bourhood function Ν: S → 2S assigns for each s ∈ S a 
set Ν(s) ⊆ S − the set of neighbouring solutions 
(neighbours) of s (or simply the neighbourhood of s). 
As long as we operate upon permutation based 
solutions, we can define the neighbourhood function 
Νλ of order λ (1 < λ ≤ n) in the following way: 

}),(  , | {)( λρλ ≤′∈′′= ssSsss? , where s is a solution 

from S and ρ(s, s′) is a "distance" between the 
solutions s and s′. An example of defining the 
"distance" is counting the elements that are assigned 
to different positions of the solutions, i.e. 

)}()(|{),( isisiss ′≠=′ρ  (see also Sections 5.1 and 

5.2). Each solution s′ ∈ Ν(s) can be reached from s by 
an operation called a move, and s is said to move to s′ 
when such an operation is performed (often, the move 
follows the objective function evaluation which is 
called a trial). Formally, the move appears as a 
transformation (perturbation) operator φ: S → S such 
that φ(s) ∈ Ν(s), ∀s ∈ S. 

2. Descent local search 

The very early origins of the tabu search method 
go to the well-known technique − the descent local 
search (DLS) (also known as hill climbing) [25]. DLS 
starts from an initial (maybe, randomly generated) 
solution s°. Further, the search process is continued by 
performing the perturbations of solutions, i.e. making 
moves from solutions to solutions. A move is applied 
to the current solution s in order to get a new solution 
s′ from the neighbourhood of the current solution, 
Ν(s). The moves are controlled, i.e. decisions about to 
move to the neighbouring solutions, or not, are taken 
depending on the qualities of solutions (the objective 
function values f). If the decision is "positive", then 
the current solution is replaced by the neighbouring 
one, which will be used as a "starting point" for the 
subsequent trials; otherwise, the search is continued 
with the current solution. In classical DLS algorithms, 
the decision is "positive" if only the new solution is 
definitely better than the current one (i.e. the 
difference in the objective function values is negative 
(∆f = f(s′) − f(s) < 0, where s′ ∈ Ν(s))). The whole 
process is continued until the current solution s is 
locally optimal, that is, no better solution exists in the 
neighbourhood of the current solution (i.e. f(s′) ≥ f(s), 
∀s′ ∈ Ν(s)). The descent local search paradigm (in 
PASCAL language like notation) is presented in 
Figure 1. 

 

function DescentLocalSearch(s°); 
  // input: s° − the initial solution; output: s − the locally optimal solution // 
  s ← s°; 
  while s not locally optimal do begin // main cycle // 
    choose the solution s′ from the neighbourhood of s, Ν(s), 
    in such a way that f(s′) − f(s) < 0; 
    s ← s′ // replace the current solution s by the new one s′ (make a move to the new solution) // 
  end; // while // 
  return s 
end. 

 

Figure 1. Paradigm of descent local search 
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Given neighbourhood Νλ, the solution obtained by 
DLS may be treated as an optimal solution with 
respect to this neighbourhood, i.e. λ-opt(imal) solution 
− hence, the names of the corresponding procedures: 
2-opt, 3-opt, and so on. 

3. Standard tabu search 

The tabu search framework [10,11] originates from 
the local search policy described above. However, the 
TS goes beyond this paradigm. In contrast to DLS, 
which is limited to finding one locally optimal solu-
tion only, TS enables to escape local optima. TS-based 
algorithms continue the search even if a locally 
optimal solution is encountered. Shortly speaking, TS 
is a process of chains of moves from one local opti-
mum to another. The best local optimum found during 

this process is regarded as a result of TS. Thus, TS is 
an extended descent local search. Consequently, it 
explores much more larger part of the solution space 
when comparing with DLS. Hence, TS provides more 
room for discovering high quality solutions than the 
traditional DLS. 

The key idea of TS is allowing climbing moves 
when no improving neighbouring solution exists, i.e. a 
move is allowed even if a new solution s′ from the 
neighbourhood of the current solution s is worse than 
the current one. Naturally, the return to the locally 
optimal solutions previously visited is to be forbidden 
in order to avoid cycling. TS is based on the methodo-
logy of prohibitions: some moves are "frozen" 
(become "tabu") from time to time. 

 

function TabuSearch(s°); 
  // input: s° − the initial solution; output: s∗ − the best solution found; parameter: h − the tabu list size // 
  s ← s°; s∗ ← s°; 
  initialize the tabu list T; 
  repeat // continue the main cycle of TS // 
    given neighbourhood function Ν, tabu list T, and aspiration  
    criterion, find the best possible solution s′ ∈ Ν²(s) ⊆ Ν(s),  
    where Ν²(s) consists of the solutions that (or their "attributes")  
    are not in the tabu list T or satisfy the aspiration criterion; 
    s ← s′; // replace the current solution by the new one // 
    if f(s) < f(s∗) then s∗ ← s; // save the best so far solution // 
    insert the solution s (or its "attribute") into the tabu list T; 
    if sizeof(T) > h then remove the "oldest" member of T 
  until termination criterion is satisfied; 
  return s∗ 
end. 

 

Figure 2. Paradigm of standard tabu search 

More formally, the TS algorithm starts from an ini-
tial solution s° in S. The process is then continued in 
an iterative way − moving from a solution s to a 
neighbouring one s′. At each step of the procedure, a 
subset Ν²(s) ⊆ Ν(s) of the neighbouring solutions of 
the current solution is considered, and the move to the 
solution s′ ∈ Ν²(s) that improves most the objective 
function value f is chosen. Naturally, s′ must not ne-
cessary be better than s: if there are no improving 
moves, the algorithm chooses the one that least deg-
rades (increases) the objective function (a move is 
performed to the neighbour s′ even if f(s′) > f(s)). In 
order to eliminate an immediate returning to the solu-
tion just visited, the reverse move must be forbidden. 
This is done by storing the corresponding solution 
(move) (or its "attribute") in a memory (called a tabu 
list (T)). The tabu list keeps information on the last 
h = | T | moves which have been done during the 
search process. Thus, a move from s to s′ is considered 
as tabu if s′ (or its "attribute") is contained in T. This 

way of proceeding hinders the algorithm from going 
back to a solution reached within the last h steps. 
However, the straightforward prohibition may some-
times lessen the efficiency of the algorithm. Moreover, 
it might be worth returning after a while to a solution 
visited previously to search in another promising 
direction. Consequently, an aspiration criterion is 
introduced to permit the tabu status to be dropped 
under certain circumstances. Usually, a move from s 
to s′ (no matter its status) is permitted if f(s′) < f(s∗), 
where s∗ is the best solution found so far. The resulting 
decision rule can thus be described as follows: replace 
the current solution s by the new solution s′ if 

f(s′) < f(s∗) or ( )(minarg
)(

sfs
ss

′′=′
∈′′ ?

 and s′  

        (or "attribute" of s′) is not tabu). (2) 

The search process is stopped as soon as a 
termination criterion is satisfied (for example, a fixed 
a priori number of iterations (trials) has been 
performed). The pseudo-code for the standard (simple) 
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tabu search paradigm is presented in Figure 2. More 
details on the fundamentals and principles of TS can 
be found in [8,13,15]. 

4. Iterated tabu search 

TS is a powerful optimization tool. However, it 
typically faces, in its canonical form, less or more 
difficulties. They are as follows: a huge number of 
local optima over the solution space, presence of 
cycles (i.e. repeating sequences) of the search 
configurations (states), and the phenomenon of so-
called "deterministic chaos" (or chaotic attractors). 
The last one can be characterized by the situation in 
which "getting stuck" in local optima and cycles are 
absent but the search trajectory is still confined in 
some "narrow region" of the solution space [2] (see 
Figure 3). So, the search trajectory will visit only a 
limited part of the solution space: if this portion does 
not contain the global minimum, it will never be found 
− a stagnation of the search is said to take place. 
Figure 4 depicts an example of such a situation. 

 
 
 
 
 
 
 
 
 

Figure 3. Hypothetical view of the search trajectories 

In order to try to overcome the difficulties men-
tioned, an essential extension of the standard TS − 
iterated tabu search1 − can be proposed. It should be 
noted that several attempts to enhance the straight-
forward TS have been already made. One of the most 
famous enhancements is the reactive tabu search [2]. 
Nevertheless, we think of ITS as a, probably, more 
aggressive attempt. First of all, this is due to the new 
important features we discuss in this section. 

The standard TS goes beyond the descent local 
search − similarly, ITS seeks to go beyond the stan-
dard TS. The central idea of ITS is the concept of 
intensification and diversification (I&D). The early 
origins of this concept go back to 1986 [3]. Since that 
time, various modifications of the basic idea have 
been proposed, among them: iterated Lin-Kernighan 
algorithm [16], combined local search (chained local 
optimization) [20], "ruin and recreate" principle [30], 
iterated local search [18]. 

Generally speaking, the I&D framework is dis-
tinguishing for three main factors (components): 

                                                        
1 The term "iterated tabu search" is firstly mentioned 

in the paper by Smyth, Hoos, and Stützle [31]. 

intensification, diversification, and candidate accep-
tance (selection) (see Figure 5). 

The goal of intensification is the search for a better 
(locally optimal) solution in "surroundings", i.e. 
neighbourhood of the current solution. (Mathematical-
ly, intensification can be described as a special opera-
tor ψ: S → S such that f(s) ≤ f(ψ(s)), where s (s ∈ S) is 
the solution to be "intensified".) In the other words, 
one tries to improve the current solution as best as one 
can. If this improvement is performed by means of the 
classical tabu search, one just gets the ITS method. 
Intensification is always applied to the solution just 
reconstructed (i.e. the output of diversification), 
except the first iteration only at which intensification 
is applied to the initial solution (see Figure 5). It was 
revealed by experimentation that there is no need in 
the expensive runs of the tabu search based improve-
ment procedure. Firstly, the short tabu search itera-
tions allow saving considerable amount of CPU time. 
On the other hand, this limited tabu search in com-
bination with the robust diversification operators is 
capable of seeking near-optimal solutions − better than 
those obtained by the long runs of the pure tabu 
search. 

Diversification − it may be interpreted as a special 
sort of reconstruction (perturbation) of the solutions − 
is responsible for escaping from the current local 
optimum and moving towards new regions in the 
solution space. (Diversification can formally be 
defined by an operator ζ: S → S such that ζ(s) ∈ S and 
s ≠ ζ(s), where s (s ∈ S) is the solution which under-
goes the diversification process.). It is important that a 
proper level of diversification is kept up: if reconstruc-
tion is too strong, the resulting algorithm might be 
quite similar to a crude random (blind) multistart; if 
reconstruction is too weak, the process would periodi-
cally return to the solutions to which reconstruction 
has been applied. 

Many different perturbation variants may be 
proposed. For example, for the solutions based on per-
mutations, one can use the random pairwise inter-
changes which are the sequences of moves 

µµ
φφφ

2124321
,...,, rrrrrr −

. (
1+iirrφ  is a special case of the 

transformation operator (see Section 1), which inter-
changes the rith and ri+1th elements in the current 
solution.) In this case, it is sufficient to simply 
generate the pairs of uniform random numbers 
(ri, ri+1), such that 1 ≤ ri, ri+1 ≤ n, ri ≠ ri+1, i = 1, 2, ..., µ 
(n is the problem size). The larger the length of the 
sequence (i.e. the reconstruction level) µ, the stronger 
the diversification effect, and vice versa. We achieve 
more robustness of the diversification process by 
letting the parameter µ vary in some interval, say 
[µmin, µmax]  ⊆  [2, n]. The following strategy of 
changing the values of µ might be proposed. At the 
beginning, µ is equal to µmin; further, µ is increased 
gradually, step by step, until some limit is reached; 
once the maximum level µmax has been reached (or, 
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possibly, a better local optimum has been found), the 
current value of µ is immediately dropped to µmin, and 
so on. In addition, if the best so far solution remains 
unchanged for a quite long time, then the value of µmax 

may be increased, too (µmax should be reset to the 
initial value as soon as a new local optimum has been 
found). 

 
Figure 4. Illustration of the stagnation situation: 

a) the detailed "history" is presented, i.e. points corresponding to the current objective function values are depicted;  
b) only the best so far (record-breaking) values of the objective function are shown 

Figure 5. Generalized framework of I&D 
 

 

Figure 6. Towards the graphical interpretation of the I&D process 

Regarding the selection of candidates for diversifi-
cation, two main alternatives exist: a) exploitation and 
b) exploration. Exploitation is achieved by choosing 
only the currently best local optimum − the best so far 
(BSF) solution − as a candidate for reconstruction. In 
the case of exploration, a variety of policies may be 
used. In fact, each locally optimized solution (not 

necessary the best local optimum) can be considered 
as a potential candidate for diversification. Even gene-
ration of a new solution from scratch is possible as an 
extreme case. A so-called "where you are" (WYA) 
strategy is worth mentioning: in this case, every new 
local optimum (no matter its quality) is accepted for 
the reconstruction process. However, more 

time (search iterations) 

so
lu

ti
o

n
 q

u
al

it
y 

(a) 
time (search iterations) 

b
es

t 
so

 f
ar

 s
o

lu
ti

o
n

 q
u

al
it

y 

(b) 

candidate acceptance 

diversification 

intensification start 

end 

saving the best so far 
solution 

starting solution 

intensification 

diversification 
exploitation 

exploration 
local optimum 

best so far solution 



A. Misevicius, A. Lenkevicius, D. Rubliauskas 

192 

sophisticated strategies are available, for example, 
selection from a memory of locally optimal solutions, 
like in the population based (genetic) algorithms. 
(Exploitation/exploration could be formalized by 
introducing an operator ξ: 2S → S. If exploitation is 
used, then the following equation must hold: ξ(⋅) = s•, 
where s• (s• ∈ S) is the BSF solution.) 

A graphical illustration of the I&D process is 
shown in Figure 6. 

The typical flow of the iterated tabu search process 
is as follows. ITS is initiated by the improvement of 
an initial solution by means of the traditional TS. As a 
result, the first optimized solution, say s•, is achieved. 
Further, a given solution undergoes perturbation, and a 
new solution, say s~, is obtained. The goal of such a 
perturbation is not to destroy the current solution 

absolutely − on the contrary, it is highly desirable that 
the resulting solution inherits some characteristics of 
the previous local optimum, since parts of this opti-
mum may be close to the ones of the globally optimal 
solution. The reconstructed solution s~ serves as an 
input for the subsequent tabu search procedure, which 
starts immediately after the perturbation process is 
finished. The TS procedure returns the new optimized 
solution s•, which (or some other local optimum), in 
turn, is reconstructed, and so on. A new better solution 
(s∗) found during this iterative process is saved in a 
memory (as a potential resulting solution of ITS). This 
type of proceeding continues until a stopping condi-
tion is met, for example, a fixed number of iterations 
have been executed. The template of the ITS algo-
rithm is shown in Figure 7. 

 

function IteratedTabuSearch(s°); 
  // input: s° − the initial solution; output: s∗ − the best solution found // 
  s• ← TabuSearch(s°); // improve the initial solution s° by TS, get the resulting solution s• // 
  s ← s•; s∗ ← s•; 
  repeat // continue the cycle of the iterated tabu search // 
    s ←  CandidateAcceptance(s•,s, ...); // select a solution for reconstruction // 
    s~ ← Reconstruction(s); // ruin the selected solution, obtain a new solution s~ // 
    s• ← TabuSearch(s~); // improve the solution s~ by TS, get the resulting solution s• // 
    if f(s•) < f(s∗) then s∗ ← s• // save the best so far solution (as a possible result of ITS) // 
  until termination criterion is satisfied; 
  return s∗ 
end. 

 

Figure 7. Paradigm of iterated tabu search 

5. Computational experiments 

In order to evaluate the efficiency of the proposed 
iterated tabu search technique, some experiments have 
been carried out on the hard combinatorial optimiza-
tion problems, the traveling salesman problem and the 
quadratic assignment problem. 

5. 1. Experiments with the traveling salesman 
problem 

The traveling salesman problem can be formulated 
as follows. Given the matrix D = (dij)n×n and the set Π 
of permutations of the integers from 1 to n, find a 
permutation π = (π(1), π(2), ..., π(n)) ∈ Π that 
minimizes 

)1(),(

1

1
)1(),()( πππππ n

n

i
ii ddz += ∑

−

=
+ . (3) 

The interpretation of n, D  and π  is as follows: n is 
the number of cities; D  is the matrix of distances 
between all pairs of these cities; j = π(i) denotes city j 
to visit at step i. Usually, permutations are called 
tours, and the pairs (π(1), π(2)), ..., (π(i), π(i+1)), ..., 
(π(n), π(1)) are called edges. So, solving the TSP 
means searching for the shortest closed tour in which 

every city is visited exactly once. It has been proved 
that the TSP is NP-hard [7] and cannot be solved to 
optimality within polynomially bounded computation 
time. 

The TSP is a representative example of CO prob-
lem (S, f), where S ≡ Π and f corresponds to z. 
Regarding the neighbourhood function for the TSP-
solutions, there are some specific things. The TSP-
heuristics operate rather upon pairs of elements 
(j1 = π(i), j2 = π(i+1)) (i.e. edges) than single elements 
(j = π(i)). Taking this fact into account, the distance 
between two permutations (tours) is defined as the 
number of pairs of elements (edges) that are contained 
in the first permutation (tour) but not in the second 
one [4]. Thus, the distance between permutations π 
and π ′  may be declared as ρ(π,π ′ ) = Ω , where Ω is 
the set that consists of all possible pairs 
(π(i), π((i mod n)+1)) (i ∈ {1, 2, ..., n}) such that ∃ j: 
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We can then easily define the neighbourhood function 
Νλ of order λ (1 < λ ≤ n):  

}),(  , | {)( λππρπππΝ λ ≤′Π∈′′= , where π is from 
Π. In the case of λ = 2, a move from the current 
permutation π to the neighbouring one )(2 πΝπ ∈′  
may be described by using a perturbation operator 
φ(π, i, j): Π→××Π ?? , which gives for each 
permutation the permutation that is obtained by 
removing the two edges at the ith and jth position and 
inserting two different edges. That is, the pairs 
(π(i), π(i+1)) and (π(j), π((j mod n)+1)) are deleted, 
and the pairs (π(i), π(j)) and (π(i+1), π((j mod n)+1)) 
are added. More specifically, φ(π, i, j) gives π ′  such 
that π′(i) = π(i), π′(i+1) = π(j), π′(j) = π(i+1), 
π′((j mod n)+1) = π((j mod n)+1), where  
1 ≤ i, j≤n ∧ 1 < j−i < n−1; in addition, if j−i−2 ≥ 1, 
then π′(i+k+1) = π(j−k) for every k ∈ {1, ..., j−i−2}. 

Having the neighbourhood and solution perturba-
tions defined, we implemented the ITS algorithm for 

the TSP based on the paradigm in Figure 7. For the 
comparison, the following algorithms were used: 
1) the multi-start 2-opt (M-2-OPT) algorithm; 2) the 
4-opt (4-OPT) algorithm; 3) the simulated annealing 
(SA) algorithm; 4) the standard tabu search (STS) 
algorithm. The test data are from the well-known 
library of the TSP instances TSPLIB [27]. The perfor-
mance measures of the algorithms are: a) the average 
deviation of solutions from a provably optimal 
solution − δ  ( %][ )(100 optopt zzz −=δ , where z  is 
the average objective function value (tour length) over 
10 runs (i.e. single applications of the algorithm to a 
given instance) and zopt is the objective function value 
of the optimal solution (values zopt are taken from 
[27])); b) the number of solutions that are within 1% 
optimality (δ ≤1) (over 10 runs) − C1%; c)  the 
number of the optimal solutions found − Copt. The 
results of the comparison are presented in Table 1. 

Table 1. Comparison of the algorithms (Part I). The best results obtained are printed in bold face. CPU times  
 per run are given in seconds. (900 MHz PENTIUM computer was used in the experiments) 

Instance n zopt 
δ , C1%/Copt, CPU time 

 M-2-OPT 4-OPT SA STS ITS 
a280 280 2579 6.73, 0/ 0, 19  — 0.03 10/ 9, 78 2.04, 3/ 0, 140  0 25 
att48 48 10628 0.75, 6/ 0, 0.1 1.59, 3/ 0, 1.0  0 6.0 0.85, 7/ 1, 0.8  0 0.1 
bayg29 29 1610 0.26, 10/ 4, 0.1 1.44, 4/ 1, 0.1  0 5.0  0 0.2  0 0.0 
bays29 29 2020 0.03, 10/ 9, 0.1 0.97, 6/ 0, 0.1  0 5.0  0 0.2  0 0.0 
berlin52 52 7542 0.63, 7/ 6, 0.2 2.88, 1/ 0, 1.5  0 7.0 0.48, 8/ 8, 1.1  0 0.1 
bier127 127 118282 2.43, 0/ 0, 1.4 1.97, 1/ 0, 170 0.66, 5/ 5, 18 2.51, 2/ 0, 12  0 1.5 
brazil58 58 25395 0.00, 10/ 7, 0.1 0.94, 7/ 5, 2.9  0 8.0  0 1.4  0 0.2 
brg180 180 1950 8.82, 0/ 0, 3.9 0.10, 10/ 8, 700 16.30, 0/ 0, 36  0 23  0 0.5 
burma14 14 3323  0 0.0 0.57, 9/ 5, 0.0  0 0.5  0 0.1  0 0.0 
ch130 130 6110 2.64, 0/ 0, 1.6 2.39, 1/ 0, 190 0.27, 9/ 5, 19 2.56, 0/ 0, 14  0 2.9 
ch150 150 6528 4.12, 0/ 0, 2.4 2.51, 1/ 0, 400 0.33, 10/ 1, 24 1.06 6/ 1, 21  0 3.5 
d198 198 15780 2.22, 0/ 0, 6.0 1.28, 4/ 0, 1800 0.10, 10/ 2, 40 0.37, 9/ 0, 42  0 40 
dantzig42 42 699 0.16, 9/ 8, 0.1 0.36, 10/ 5, 0.5  0 6.0 0.07, 10/ 9, 0.6  0 0.0 
eil51 51 426 2.28, 0/ 0, 0.2 1.83, 2/ 0, 1.6 0.02, 10/ 9, 7.0 0.09, 10/ 6, 0.9  0 0.5 
eil76 76 538 3.90, 0/ 0, 0.3 2.36, 1/ 1, 17  0 10  0 2.7  0 0.4 
eil101 101 629 4.69, 0/ 0, 0.8 2.99, 0/ 0, 48  0 14 0.18, 9/ 6, 5.9  0 1.2 
fri26 26 937  0 0.1 0.38, 8/ 0, 0.0  0 5.2  0 0.2  0 0.0 
gil262 262 2378 5.13, 0/ 0, 17  — 0.24, 10/ 0, 75 2.94, 1/ 0, 145   0.00,10/9, 360 
gr17 17 2085  0 0.0 0.17, 10/ 4, 0.0  0 2.0 0.04, 10/ 8, 0.0  0 0.0 
gr21 21 2707  0 0.1 1.77, 5/ 5, 0.1  0 3.2  0 0.1  0 0.0 
gr24 24 1272  0 0.1 1.82, 6/ 4, 0.1  0 4.9  0 0.2  0 0.0 
gr48 48 5046 0.38, 10/ 0, 0.2 1.00, 7/ 0, 6.0  0 6.4 0.20, 10/ 5, 0.8  0 0.1 
gr96 96 55209 2.05, 0/ 0, 0.7 1.62, 5/ 0, 42 0.20, 10/ 0, 14 1.99, 3/ 0, 6.1  0 1.2 
gr120 120 6942 3.38, 2/ 0, 1.2 3.16, 0/ 0, 120 0.35, 10/ 0, 18 0.42, 9/ 0,10.6  0 6.9 
gr137 137 69853 2.73, 0/ 0, 2.0 2.27, 2/ 0, 270 0.15 10/ 2, 22 1.17, 4/ 0, 16  0 2.4 
gr202 202 40160 4.13, 0/ 0, 6.0 2.99, 0/ 0, 1900 0.24, 10/ 2, 40 2.23, 1/ 0, 50  0 160 
gr229 229 134602 4.10, 10/ 0, 9.0  — 0.61, 9/ 0, 47 2.50, 1/ 0, 78  0 190 
hk48 48 11461 1.27, 3/ 0, 0.1 0.93, 6/ 3, 1.0 0.46, 10/ 0, 4.8 0.28, 9/ 5, 0.8  0 0.2 

 
It is obvious from the results that the iterated tabu 

search clearly outperforms the standard tabu search 
with respect to the performance measures used (first 
of all, the average deviation). In general, ITS produces 
definitely higher quality results than all the remaining 
algorithms tested, including the simulated annealing 

algorithm, which, unexpectedly, seems even to be 
better than the simple tabu search. The outstanding 
performance of ITS can also be confirmed by some 
indirect comparisons with other known algorithms. 
For example, in Knox's paper [17], a version of the 
standard tabu search based algorithm was proposed. 
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The author reports few results for small TSP instances 
(n≤75). The solutions are very close to optimal, 
however the CPU times are quite large (for example, 
more than 600 seconds are needed for the instance 
with 50 cities). In [16], there was introduced an 
improved variant of the famous Lin-Kernighan 
heuristic. This algorithm was able to produce solutions 
that are within about 0.8% optimality on instances of 
size n≤100. The other efficient implementation of Lin-
Kernighan algorithm [19] yielded solutions that were 
from 0.24% to 3.04% of optimal solutions on 

instances of size 48 to 226. In a more recent work [9], 
the tabu search like algorithm (called a complete local 
search) could only find solutions that are from 1.13% 
to 8.62% far from optimal solutions for instances of 
size 52 to 200 (the CPU time reported is from 9.9 to 
2206 seconds). 

The efficiency of ITS can be improved even more 
by increasing the number of iterations (but at the cost 
of longer computation time) or tuning the values of 
other control parameters. 

Table 1. Comparison of the algorithms (Part II). The best results obtained are printed in bold face. CPU times  
 per run are given in seconds. (900 MHz PENTIUM computer was used in the experiments) 

Instance n zopt 
δ , C1%/Copt, CPU time 

 M-2-OPT 4-OPT SA STS ITS 
kroa100 100 21282 1.13, 5/ 0, 0.8 0.56, 8/ 0, 48 0.13, 10/ 5, 13 2.62, 5/ 0, 6.7  0 0.7 
kroa150 150 26524 3.64, 0/ 0, 2.4 2.02, 1/ 0, 360 0.06, 10/ 1, 24 2.94, 1/ 0, 22  0 14 
kroa200 200 29368 4.18, 0/ 0, 6.0 2.85, 1/ 0, 1800 0.41, 10/ 0, 39 3.68, 0/ 0, 53  0 11 
krob100 100 22141 2.03, 1/ 0, 0.7 2.25, 3/ 0, 48 0.09, 10/ 7, 14 1.91, 2/ 0, 6.6  0 0.9 
krob150 150 26130 2.88, 0/ 0, 2.5 1.99, 0/ 0, 360 0.19, 10/ 0, 25 3.33, 0/ 0, 21  0 8.5 
krob200 200 29437 4.71, 0/ 0, 6.0 2.47, 0/ 0, 1900 0.18, 9/ 0, 39 5.00, 0/ 0, 54  0 86 
kroc100 100 20749 1.81, 1/ 0, 0.8 1.78, 4/ 1, 48 0.03, 10/ 8, 13 2.22, 2/ 0, 6.8  0 0.8 
krod100 100 21294 2.37, 1/ 0, 0.8 1.88, 2/ 0, 48 0.07, 10/ 7, 13 2.53, 2/ 0, 6.6  0 0.9 
kroe100 100 22068 2.05, 0/ 0, 0.8 1.43, 4/ 0, 48 0.31, 10/ 0, 13 1.01, 8/ 0, 6.7  0 1.1 
lin105 105 14379 1.23, 3/ 0, 0.8 1.97, 4/ 0, 60 0.12, 19/ 7, 15 3.13, 0/ 0, 7.7  0 0.8 
lin318 318 42029 4.60, 0/ 0, 45  — 0.83, 7/ 0, 120 3.95, 0/ 0, 280    0.28, 10/ 3, 180 
pr76 76 108159 0.91, 8/ 0, 0.4 1.69, 3/ 0, 12  0 10 0.39, 9/ 0, 2.9  0 0.3 
pr107 107 44303 0.90, 6/ 0, 0.9 1.14, 5/ 0, 72  0 14 1.17, 9/ 1, 7.3  0 0.8 
pr124 124 59030 0.49, 9/ 1, 1.5 1.09, 4/ 1, 160 0.06, 10/ 3, 18 1.25, 4/ 1, 12  0 0.6 
pr136 136 96772 2.87, 0/ 0, 1.8 2.58, 1/ 0, 250 0.43, 9/ 0, 21 0.95, 5/ 0, 15  0 11 
pr144 144 58537 0.15, 10/ 0, 2.4 0.16, 9/ 5, 340 0.15, 9/ 6, 23 2.75, 2/ 0, 18  0 1.2 
pr152 152 73682 0.84, 6/ 0, 2.8 0.77, 7/ 0, 380 0.22, 10/ 1, 25 1.82, 2/ 0, 22  0 10 
pr226 226 80369 1.23, 0/ 0, 9.5  — 0.37, 10/ 0, 47 2.22, 6/ 0, 66  0 20 
pr264 264 49135 4.89, 0/ 0, 16  — 0.05, 10/ 8, 66 1.92, 3/ 1, 125  0 18 
pr299 299 48191 5.04, 0/ 0, 30  — 0.15, 10/ 1, 90 4.22, 0/ 0, 200  0 320 
rat99 99 1211 4.48, 0/ 0, 0.6 2.95, 1/ 0, 48  0 13 0.26, 10/ 2, 6.3  0 0.8 
rat195 195 2323 7.47, 0/ 0, 5.0 3.44, 0/ 0, 1700 0.20, 10/ 0, 37 0.30, 10/ 0, 40  0 150 
rd100 100 7910 3.03, 0/ 0, 0.7 3.26, 2/ 0, 49 0.15, 10/ 7,13.5 1.75, 2/ 1, 6.6  0 0.8 
si175 175 21407 0.45, 10/ 0, 3.7 0.21, 10/ 0, 900 0.04, 10/ 1, 31 0.27, 10/ 0, 28  0 11 
st70 70 675 0.76, 8/ 0, 0.2 1.84, 2/ 0, 70 0.02, 10/ 9, 9.0 1.04, 5/ 1, 2.2  0 0.3 
swiss42 42 1273  0 0.1 1.33, 5/ 2, 0.5  0 5.8 1.07, 7/ 7, 0.6  0 0.1 
ts225 225 126643 1.67, 2/ 0, 9.0  — 0.02, 10/ 7, 50 1.65 4/ 3, 62  0 4.3 
tsp225 225 3916 5.17, 0/ 0, 9.3  — 1.05, 2/ 0, 49 2.00, 1/ 0, 67  0 15 
u159 159 42080 3.14, 0/ 0, 3.0 2.55, 1/ 0, 370 0.68, 10/ 1, 26 3.26, 2/ 0, 25  0 1.4 
ulysses16 16 6859  0 0.0  0 0.0  0 3.4  0 0.1  0 0.0 
ulysses22 22 7013  0 0.1 0.11, 9/ 9, 0.1  0 5.4  0 0.1  0 0.0 

 
5.2. Experiments with the quadratic assignment 

problem 

The quadratic assignment problem is formulated as 
follows. Given two matrices C = (cij)n×n and 
D = (dkl)n×n and the set Π of permutations of the 
integers from 1 to n, find a permutation π = (π(1), 
π(2), ..., π(n)) ∈ Π that minimizes 

∑∑
= =

=
n

i

n

j
jiijdcz

1 1
)()()( πππ . (4) 

The QAP is also NP-hard [29]. Problems of size 
n > 36, are not, to this date, practically solvable to 
optimality. 

The QAP is a typical CO problem, where solutions 
are permutations, and the objective function is 
described according to the formula (4). As a 
neighbourhood structure, the 2-exchange 
neighbourhood function is widely used: 
Ν2(π ) = { π ′ | π ′ ∈ Π, ρ(π , π ′) ≤ 2 }, where π  ∈ Π, 
and ρ(π , π ′) is the distance between permutations π  

and π ′: ∑
=

′−=′
n

i

ii
1

|)()(|sgn),( ππππρ  (see also 
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Section 1). Exactly, the neighbourhood Ν2 was applied 
in our ITS algorithm for the QAP. A move from π  to 
π ′ ∈ Ν2(π ) can easily be defined by the operator φij 
(i, j = 1, 2, ..., n) which simply swaps the i-th and j-th 
elements in the given permutation, i.e. π ′(i) = π (j), 
π ′(j) = π (i), 1 ≤ i, j ≤ n ∧ j−i ≥ 1, where π  is the 
current permutation, and π ′ − the neighbouring per-
mutation. 

We compared our ITS algorithm with other four 
efficient algorithms for the QAP: 1) simulated annea-
ling (SA) algorithm [22]; 2) genetic algorithm (GA) 
[6]; 3) robust tabu search (RoTS) algorithm [32], and 
4) reactive tabu search (ReTS) algorithm [2]. We 
tested the above algorithms on a set of instances taken 
from the QAP instances library QAPLIB [5]. The 
performance measures are similar to those for the 
TSP: a) the average deviation from the best known 
solution − δ  ( %][ )(100 zzz ((−=δ , where z  is the 
average objective function value over 10 runs and z(  
is the best known value (BKV) of the objective 
function; b) the number of solutions that are within 
1% optimality (over 10 runs) − C1%; c)  the number of 

the best known solutions found − Cbks. The results of 
the comparison are shown in Tables 2 and 3 (in 
Table 2, the results for the randomly generated ins-
tances are given, whereas in Table 3, we present the 
results for the real-life like instances − instances of 
this type are generated in such a way that the entries of 
the data matrices resemble a distribution from real 
world problems). 

It may be viewed that the quality of results 
depends on the type of instances. For the randomly 
generated instances, the results are inferior to those for 
the real-life like instances. This is an indication that 
the random instances are much more difficult to solve 
and still remain a real challenge for the researchers. 
Regarding the real-life like instances, they are 
relatively easy for many heuristics, the ITS algorithm, 
too. For these instances, ITS produces very strong 
results. For example, the average CPU time needed to 
find the pseudo-optimal solution in every run out of 
10 for the instance tai80b is equal to about 350 
seconds on 900 MHz computer. 

Table 2. Results of comparison of the algorithms for the random QAP instances.  
 The best results obtained are printed in bold face. CPU times per run are given in seconds.  
 (900 MHz PENTIUM computer was used in the experiments) 

Instance n BKV 
δ , C1%/Cbks 

 SA GA RoTS ReTS ITS 
CPU time 

tai20a 20 703482 a 0.90 6/ 0 0.26 10/ 3 0.29 10/ 1 0.15 10/ 6 0.06 10/ 8 0.6 
tai25a 25 1167256 a 0.76 8/ 0 0.39 10/ 1 0.25 10/ 4 0.13 10/ 7  0 2.4 
tai30a 30 1818146 a 0.74 8/ 0 0.24 10/ 4 0.16 10/ 6 0.20 10/ 4  0 6.6 
tai35a 35 2422002 a 0.75 8/ 1 0.48 10/ 2 0.36 10/ 1 0.24 10/ 1  0 17 
tai40a 40 3139370 a 0.78 8/ 0 0.78 9/ 0 0.52 10/ 0 0.32 10/ 0 0.21 10/ 1 45 
tai50a 50 4941410 a 0.73 9/ 0 0.88 7/ 0 0.78 9/ 0 0.49 10/ 0 0.32 10/ 2 180 
tai60a 60 7205962 b 0.85 8/ 0 0.86 7/ 0 0.84 7/ 0 0.52 10/ 0 0.33 10/ 1 580 
tai80a 80 13546960 b 0.57 10/ 0 0.53 10/ 0 0.67 10/ 0 0.16 10/ 0 0.14 10/ 0 1500 
tai100a 100 21087588 c 0.56 10/ 0 0.59 10/ 0 0.81 10/ 0 0.28 10/ 0 0.26 10/ 0 3600 

a comes from [5]; b comes from [23]; c comes from [24]. 
 

Table 3. Results of comparison of the algorithms for the real-life like QAP instances.  
 The best results obtained are printed in bold face. CPU times per run are given in seconds.  
 (900 MHz PENTIUM computer was used in the experiments) 

Instance n BKV 
δ , C1%/Cbks 

 SA GA RoTS ReTS ITS 
CPU time 

tai20b 20 122455319 a 0.14 10/ 7 0.05 10/ 9 0.04 10/ 9 0.19 10/ 6  0 0.3 
tai25b 25 344355646 a 0.58 9/ 6 0.01 10/ 9 0.00 10/ 9 0.48 8/ 1  0 0.9 
tai30b 30 637117113 a 1.61 3/ 2 0.00 10/ 9 0.07 10/ 4 0.60 8/ 0  0 2.8 
tai35b 35 283315445 a 0.63 8/ 6 0.02 10/ 9 0.03 10/ 8 0.25 10/ 2  0 5.6 
tai40b 40 637250948 a 1.41 3/ 2  0   0 0.20 9/ 3  0 14 
tai50b 50 458821517 a 0.33 10/ 0 0.10 10/ 8 0.06 10/ 2 0.19 10/ 0  0 56 
tai60b 60 608215054 a 0.15 10/ 1 0.01 10/ 8 0.31 8/ 3 0.13 10/ 1  0 130 
tai80b 80 818415043 a 0.57 7/ 0 0.21 10/ 5 0.49 10/ 0 0.15 10/ 0  0 350 
tai100b 100 1185996137 a 0.17 10/ 0 0.09 10/ 5 0.03 10/ 0 0.08 10/ 0 0.00 10/ 9 1400 
tai150b 150 498896643 b 0.20 10/ 0 0.42 10/ 0 0.26 10/ 0 0.36 10/ 0 0.10 10/ 1 3600 

a comes from [5]; b comes from [33]. 
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The results of ITS may be improved even more by 
accurate tuning of the control parameters. Of course, 
we can obtain higher quality solutions by increasing 
the total number of iterations. After the additional 
long-lasting experimentation, ITS was successful in 
discovering new record-breaking solutions for two 

largest available random instances from QAPLIB. It 
took approximately 10 and 20 hours on 900 MHz 
computer to find the new best known solutions for the 
instances tai80a and tai100a, respectively. The results 
are summarized in Table 4. 

Table 4. New results for the large random QAP instances 

Instance # of runs 
# of best known 

solutions  
found 

New best known objective function 
values  

tai80a 10 1 13526696 
tai100a 10 3 21075558, 21072418, 21071558 

 
6. Conclusions 

One meta-heuristic that has been widely applied to 
many combinatorial optimization problems is tabu 
search. In this paper, an innovative enhancement of 
this method is proposed. We call this approach an 
iterated tabu search. The novelty of ITS is the incor-
poration of the special kind of solution reconstruction 
into the classical tabu search paradigm. ITS can be 
seen as a "reconstruct and improve" principle based 
optimization policy. It is distinguished, in principle, 
for two main components: diversification and intensi-
fication. During the first step, an existing solution is 
reconstructed in a proper way. In the second step, the 
local improvement based on the traditional tabu search 
procedure is applied to the solution just "ruined"; 
hopefully, the new improved solution is better than the 
solutions obtained in the previous iterations. By 
repeating these phases many times, one tries to seek 
for near-optimal solutions. That is the heart of ITS. 

On a basis of the proposed framework, two va-
riants of ITS were designed, which were applied to the 
NP-hard combinatorial optimization problems, the 
traveling salesman problem and the quadratic assign-
ment problem. The results obtained from the experi-
ments demonstrate high performance of the proposed 
strategy. ITS appears to be superior to pure TS algo-
rithms, as well as other heuristic algorithms. The 
power of ITS is also corroborated by the fact that the 
new record-breaking (best know) solutions were found 
for very hard QAP instances − tai80a and tai100a. This 
indicates that ITS seems to be one of the extremely 
efficient heuristics for the random QAP instances. 

As the results obtained for the TSP and QAP show 
very promising efficiency of ITS, it may be worthy 
applying the versions of the ITS method to other well-
known combinatorial optimization problems. 

Regarding further possible extensions of ITS, 
some directions may be proposed: 

• maintaining "the history" of the locally optimal 
solutions (as the potential candidates for 
diversification (reconstruction)); 

• using the reactive tabu search (instead of the 
straightforward tabu search) as a possibly more 
efficient intensification algorithm; 

• implementing other, more elaborated diversifi-
cation (reconstruction) procedures; 

• incorporating the ITS based procedure into 
other meta-heuristics, for example, genetic algorithms 
(as a robust local improvement heuristic). 
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