
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2006, Vol.35, No.3A

COMPARING GOAL-MODELLING TOOLS WITH THE RE-TOOL
EVALUATION APPROACH∗

Raimundas Matulevičius1, Patrick Heymans1, and Guttorm Sindre2

1 Computer Science Department, University of Namur, Belgium
2 Dept. of Computer and Info. Science, Norwegian Univ. of Science and Technology

Abstract. Goal modelling usually takes place during the early information systems development phase known as
requirements engineering (RE). RE is a key factor for project success where a good tool support is necessary. Several
goal-modelling tools exist and several approaches can be used to evaluate them. In this paper, we report on an
experiment to evaluate two goal-modelling tools - KAOS/Objectiver and i*/OME. We use an RE-tool evaluation
approach (R-TEA) in order to determine which of the tools is better at supporting the creation of goal models. It turns
out that KAOS/Objectiver apparently offers better model creation support but the quality of the resulting models is
more dependent on situational language characteristics such as the focus on early (vs late) requirements.

1. Introduction

With the increasing complexity of today’s busi-
nesses, the development of their supporting Informa-
tion Systems (IS) becomes an ever more difficult and
risky endeavour. A clear and complete understanding
of the requirements is a necessary prerequisite for
successful IS development and maintenance. Require-
ments Engineering (RE) is defined as “a set of acti-
vities concerned with identifying and communicating
the purpose of a software-intensive system, and the
contexts in which it will be used. Hence, RE acts as
the bridge between the real world needs of users, cus-
tomers, and other constituencies affected by a soft-
ware system, and the capabilities and opportunities af-
forded by software-intensive technologies” [5].

∗ This work is partially supported by the Commission of the European Communities under the sixth framework programme (InterOP

Network of Excellence, Contract 508011), URL: http://www.interop-noe.org/.

For such a complex activity as RE, powerful tool
support is paramount. However, it has been observed
[16] that mainstream RE practice relies more on office
(text editors and spreadsheets) and drawing (paint,
Visio, DIA) tools, rather than on dedicated RE tools.
This situation inevitably leads to under-exploiting RE-
specific tool functionalities.

Currently, goal modelling has become a major
technique to support early IS development stages and
RE in particular. Goal models express the scope and
rationale for designing an IS, they help to resolve
conflicts early in the lifecycle and ensure that the
voices of the various stakeholders are heard by the de-
velopment team. Tools have been proposed to support
goal-modelling languages [1, 3, 4, 6, 17, 18, 19].
However, to date, we do not know of any systematic

evaluation of their capabilities. We believe that such
comparisons are likely to have an impact on the quali-
ty of the proposed tools. Furthermore, by having inde-
pendent sources to inform the potential adopters about
the pros and cons of tools, we hope to allow them to
make the best choice for a tool that actually suits their
needs.

This paper reports on an experiment where the RE-
tool evaluation approach (R-TEA) [16] is applied to
evaluate goal-modelling tools. The main research
question it addresses is:

RQ.1: Which tool provides better support to create
goal models?

The research question focuses on the creation of
goal models. Thus it avoids investigating how goal
models are maintained by the tools, or how the tools
might help to reason about goal models. However, we
also considered the correlation between the quality of
tools and that of their supported languages, as well as
between the quality of tools and that of the goal
models that they helped to produce. These later two
issues are separate research questions in their own
right. In this work we hint at them (see section 5) but
mainly focus on tool evaluation.

The paper is structured as follows: Section 2 intro-
duces R-TEA and how it is applied to test the tools. In
Section 3 we describe our research method. Section 4
presents the results of an experiment which are further
discussed in Section 5. Finally, Section 6 concludes
the paper and suggests directions for future work.

276

Comparing Goal-modelling Tools with the RE-Tool Evaluation Approach

2. The RE-Tool Evaluation Approach

R-TEA [16] suggests a set of guidelines (see Figu-
re 1) following which a detailed tool evaluation is per-
formed. It considers two groups of stakeholders: the
evaluation team and the tool users. The evaluation

team plans, organises and executes the tool evaluation
process, and coordinates the evaluation steps. The tool
users evaluate and compare the suitability of tools
among which they may have the intention to select
one for future use.

Requirements frameworks

Figure 1. RE-tool evaluation approach

R-TEA consists of six basic phases (see Figure 1):
1. Preparation of a requirements specification for

the tool selection. It consists of analysing the require-
ments for the RE-tools. In the literature we could find
several lists of requirements [14, 23] as well as
systematic evaluation approaches and frameworks [7,
8, 10, 16]. Wiegers [23] suggests 16 requirements and
applies them to assess RE-tools. Elsewhere [14], Lang
and Duggan characterise a requirement management,
communication and cooperative work system by 12
requirements. However, in both cases the requirements
are fairly basic and at a high level of abstraction; they
are thus not appropriate for a detailed tool evaluation.

The INCOSE framework [10] classifies 52 re-
quirements into 14 categories. However, the termino-
logy used in the framework is not defined, so the
evaluations are hard to compare when the require-
ments are interpreted differently by different evalua-
tors. The priority-based evaluation framework [7]
created in consultations with practitioners classifies 53
requirements according to three priority levels - high
(essential), medium (useful) and low (desirable, but
not essential). But organisations are not homogeneous
environments, so priorities depend on various objec-
tive and subjective circumstances. The framework has
no guidelines for how to analyse the RE-tool if user

priorities vary in different environments. The role-
based framework [8] suggests 93 requirements, which
are grouped according to roles: developer, project
administrator and RE-tool administrator. However,
requirements cannot be entirely partitioned according
to roles. Furthermore, the role-based framework does
not consider guidelines for the context-specific appli-
cation. The authors also do not provide empirical
evidence of the framework's validity.

The R-TEA method [16] introduces two require-
ments frameworks (R-TEA frameworks). The frame-
work for functional RE-tool requirements consists of
three requirements dimensions [21]. The represen-
tation dimension denotes the degree of formality at
which the tool allows to represent requirements. The
agreement dimension indicates whether the tool sup-
ports improving the level of agreement among partici-
pants e.g. by means of collaboration or rationale main-
tenance techniques. The specification dimension deals
with improving the understanding and completeness
of the requirements. The framework for non-func-
tional RE-tool requirements separates process, product
and external requirements. Process requirements cha-
racterise constraints placed upon the user's work prac-
tice that influence the tool. Product requirements spe-
cify the desired qualitative characteristics of RE-tools.

1. Preparation of a
requirements specification

2. Selection of the
business parties

RE-tools
candidates

Requirements
Specification

6. Decision about
the RE-tool(s)

4. Investigation of the
process requirements

5. Investigation of the
product requirements

Evaluation results
from phases 3, 4, and 5

Evaluation technique(s)

RE-tool(s)
found

Investigation of
RE-tools

NoYes

3. Investigation of the
functional requirements

277

R. Matulevičius, P. Heymans, G. Sindre

External requirements are separated to organisational
requirements and requirements to business parties.

Once a framework is chosen, the evaluation team
adapts the requirements to their specific context by
prioritising them. The result of this phase is thus a
prioritised requirements specification.

2. Selection of business parties involves the inves-
tigation of the RE-tool market. The evaluation team
requests trial and demonstration RE-tool versions
from the business parties, briefly investigates them
and makes a short list that will undergo further evalua-
tion.

3. Investigation of the functional requirements
delivers a functionality evaluation of the tool candi-
dates. Several evaluation techniques (e.g. test based on
tutorial or small case study) help to get familiar with
the tools’ functionalities.

4. Investigation of the process requirements is per-
formed in correspondence to functional analysis. The
phase tries to spot (in)adequacies between the user
activities and the support offered by the tool.

5. Investigation of the product requirements invol-
ves assessing usability, performance and reliability.
The evaluation team should also investigate which
portion of maintenance could be fulfilled by the tool
users internally, and which should be redirected to the
RE-tool vendors.

6. A decision about the RE-tool selection is made
after summarising the results from phases 3, 4 and 5.
One of three decisions should be made: (i) the users
adopt the "best-evaluated" RE-tool without changing
the RE process; (ii) the users start using the "best-
evaluated" RE-tool, but they have to reconsider the
RE process; or (iii) the "best-evaluated" tool is not
suitable for the users and they need to repeat the RE-
tool evaluation (reconsider requirements, and/or
search for other tool candidates).

3. Research Method

In this section we start performing activities of the
R-TEA method. Section 3.1 presents how the selection
of the tool requirements and preparation of the
requirements specification was performed (step 1). In
section 3.2, the pre-study and selection of the goal-
modelling tools are described (step 2). Section 3.3
introduces the evaluation technique used to investigate
the tools (steps 3-5).

3.1. Preparation of Requirements Specification

The preparation of the requirements specification
for the tool evaluation involves the definition of re-
quirements according to which tool compatibility will
be assessed. We have chosen to use two most recent
evaluation frameworks: the role-based framework [8]
and the R-TEA frameworks [16]. In each framework,
we identified 50 requirements deemed relevant for
goal-modelling tools (see appendix Table 9 and 10).

As a simplifying assumption, we considered that each
of the requirements was of the same importance.

Instead of preparing a requirements specification
for tool selection, we adapted each of two frameworks
to evaluation forms. In these forms, it is asked that the
compatibility of the tools wrt each requirement be
evaluated on a scale from 1 to 5 (1 – compatibility is
poor; 5 – compatibility is excellent). Other assessment
values included 0 (the tool fulfils the requirement but
this capability was not used when creating a goal
model) and -1 (the requirement was not understood).

3.2. Selection of Tools (Pre-study)

The second step of the R-TEA method is the selec-
tion of the tools to be tested. After screening the
research literature and web resources on goal model-
ling, we identified 7 tools (Table 1) and performed
their pre-evaluation. All the tools are research proto-
types except KAOS/Objectiver which is a commercial
tool. We have been using the R-TEA functional frame-
work to make a first assessment of the tools. In addi-
tion, we paid attention to some non-functional require-
ments like tool reliability (absence of tool malfunc-
tions) and user-friendliness (how easy is to perform
the basic functions). The pre-study was performed by
“executing” tool tutorials and/or other material found
of the tool’s website. Based on the results of the pre-
study1 we have selected i*/OME and KAOS/Objec-
tiver to be used in the experiment. Although
TROPOS/ST-Tool is evaluated higher than other tools
and seems to be the most mature academic project in
the field, for the purpose of the experiment we decided
to use the best evaluated i* tool (i*/OME) because it
supports a more mainstream version of the i* lan-
guage.

3.3. Investigation of Tools. Evaluation technique

The experiment was carried on at the University of
Namur (UoN) with 19 Computer Science graduate
students in their 2nd year2. The experiment was a part
of the mandatory assignments of the Requirements
Engineering course. The students were divided into
four groups of 4-5 persons (see Table 2). The
treatment involved the course material and theoretical
lectures given to the students. Attending the lectures
was not compulsory but participants actively parti-
cipated (minimum 17 participants per lecture). So, all
the participants received the same treatment and infor-
mation about the experiment.

The experiment consisted of three steps (Figure 2):
interviewing, creating goal models and evaluating
tools.

1 In Table 1, the pre-study results are shown as the sums of
tool functional compatibility values.
2 That is, the 4th year of the whole Computer Science
curriculum.

278

Comparing Goal-modelling Tools with the RE-Tool Evaluation Approach

Table 1. Goal-modelling tools

Supported language/Tool Project type Pre-study result Selected
i*/OME [18] Research project at University of Toronto 88 Yes
i*/OpenOME [19] Research project at University of Toronto 63 No
i*/DIA plug-in [4] Open source project 11 No
i*/TAOM4E [1] Research project at ITC-IRST, Trento 58 No
KAOS/Objectiver [17] Commercial tool by Respect-IT 172 Yes
KAOS/DIA plug-in [4] Open source project 7 No
TROPOS/ST-Tool [3] Research project at University of Trento 114 No

Table 2. Instruments used in the experiment

 Group 1 Group 2 Group 3 Group 4
Group size 5 5 5 4
Tools i*/OME KAOS/Objectiver i*/OME KAOS/Objectiver
Framework R-TEA frameworks Role-based framework R-TEA frameworks Role-based framework

Problem

Problem understanding;
Interviewees’ goals;
System requirements

1. Interviewing
(performed by group)

Goal-modelling tools;
Tool tutorials;

Language guidelines

Goal models prepared with tools;
Understanding of tool functionality

2. Creating goal models
(performed by group)

Tools evaluation forms

Figure 2. Experiment design

Interviewing. The experiment was initiated by the
presentation of its settings to the participants. The
problem for which the participants had to create goal
models was stated in one sentence: "What are the
major goals and requirements for an information
system to be used by academics and researchers at our
university for reporting on scientific activities." All the
details – goals and requirements – had to be discove-
red by the students by interviewing two users and one
developer of the existing system. The interviewees
were involved neither in the experiment nor in its
treatment. The participants had followed lectures on
requirements elicitation and were simply asked to use
the techniques that they found the most appropriate.
They all chose face-to-face interviews with open-
ended questions. Each interview session lasted 30
minutes (1 hour 30 minutes on total for one participant
group). The interviews provided the participants with
an understanding of the problem domain, intervie-
wees’ goals and system requirements.

Creating goal models. Each group was then ran-
domly assigned a goal modelling tool (Table 2). In
addition, the groups were provided with the tool tuto-
rials and guideline documents on how to use the mo-
delling language supported by the tool. The groups
worked for two weeks independently; but they could
always ask questions to the teaching staff. Besides

delivering goal models, the participants also acquired
knowledge and understanding on the functionality of
the tool.

Evaluating tools. In the last step, each student,
individually, had to fill in the tool evaluation form
introduced in Section 3.1 and prepared according to
the assigned framework (see Table 2). When filling
the evaluation form, the participants were advised to
run the tool in order to be sure about the evaluation.
The outcomes of this step were the tool evaluation
results: 10 filled evaluation forms based on the R-TEA
frameworks, and 9 filled evaluation forms based on
the role-based framework.

4. Results
In this section we use hypothesis testing to answer

our research question. We also analyse how the results
received in the pre-study and experiment correlate
between each other. Finally we discuss the threats to
the validity of our experiment.

4.1. Analysis Method

Based on the research question formulated in the
introduction we define the null hypothesis that tools
give equal support (H10), and an alternative hypothesis

3. Evaluating tools
(performed individually)

Tool evaluation results

279

R. Matulevičius, P. Heymans, G. Sindre

that KAOS/Objectiver is better (H11). The motivation
for the latter is that KAOS/Objectiver is a commercial
tool, while i*/OME is a research prototype.

H10: Both, i*/OME and KAOS/Objectiver provide the
same level of support to create goal-models.

H11: KAOS/Objectiver provides better support to
create goal models than i*/OME.

The subsequent hypotheses address the validity of
the tool evaluation. Again, for each, we have a null
and an alternative hypothesis:

H20: Tool assessment results received in the pre-study
and in the experiment are the same.

H21: Tool assessment results received in the pre-study
and in the experiment are not the same.

H30: Agreement (between the participants) on the tool
evaluation is the same both in the pre-study and
in the experiment.

H31: Agreement on the tool evaluation is not the same
in the pre-study and in the experiment.

The second hypothesis (H2) tests whether the tool
evaluation performed by participants corresponds to
the pre-study results (for i*/OME and KAOS/Objec-
tiver) described in section 3.2. The third hypothesis
(H3) investigates the variation of the tool evaluation
among the participants. Even if the tools are evaluated
differently in the pre-study and in the experiment, the
difference might be in the different interpretation of
the requirements’ support levels.

In order to address the first and the second null
hypothesis we will use the t-test, paired two sample

for means. The third null hypothesis will be analysed
using the t-test, two-sample assuming equal variances.

4.2. Tool Comparison

The tool evaluation results are shown in the appen-
dix. Since we were using two evaluation frameworks
[8, 16], we need to apply the paired t-test twice. Table
3 shows the summary of the t-test when it was applied
to the results received using the role-based framework
(see Table 9 in appendix) and the R-TEA frameworks
(see Table 10 in appendix) respectively. The t-test
indicates that we can reject H10 and accept the alter-
native hypothesis H11. The result indicates that
KAOS/Objectiver does provide better means to create
a goal model.

4.3. Validation of Tool Evaluation

In the pre-study we used the R-TEA functional
framework. We now compare the pre-study results and
the experiment results received when using the R-TEA
frameworks. Table 4 shows the summary of the t-test
(paired two sample for means) for the tool evaluation
in both cases. The result shows that we can reject the
null hypothesis H20 for evaluation of i*/OME. This
means that in the experiment i*/OME was evaluated
better than in the pre-study. But we cannot reject H20
for KAOS/Objectiver, because the t-test is lower than
critical t value. In both cases this tool was assessed on
the same level.

Table 3. t-test of the tool evaluation means using different evaluation frameworks (t crit two tail = 2,009575; df=49; α=0,05)

Framework Tools Mean of means Standard deviation p-value t-test
i*/OME 2,095 2,30758

Role-based framework
KAOS/Objectiver 2,811 1,68002

0,001586 3,3448

i*/OME 1,988 1,4994
R-TEA frameworks

KAOS/Objectiver 2,801 1,9798
0,0000902 4,2674

Table 4. t-test of the tool evaluation (t crit two tail = 2,030107915; df=35; α=0,05)

Tools Evaluation Mean of evaluations Standard deviation p-value t-test
Pre-study 1,208 1,9196

i*/OME
Experiment 1,594 0,8948

0,0226 2,3858

Pre-study 1,972 3,4135
KAOS/Objectiver

Experiment 2,505 2,1752
0,1454 1,4892

Table 5. t-test of the agreement about tool evaluation (t crit two tail = 1,994437; df=70; α=0,05)

Tools Evaluation Mean of evaluations Standard deviation p-value t-test
Pre-study 1,208 1,9196

i*/OME
Experiment 1,594 0,8948

0,1717 1,3809

Pre-study 1,972 3,4135
KAOS/Objectiver

Experiment 2,505 2,1752
0,1809 1,3515

280

Comparing Goal-modelling Tools with the RE-Tool Evaluation Approach

4.4. Agreement about Tool Evaluation

Agreement on the tool evaluation in the pre-study
and the experiment could be compared using the
variance measure. Table 5 shows the summary of the
t-test (two-sample assuming equal variances) for the
agreement of tool evaluation in both cases.

Table 5 shows that we cannot reject the null hypo-
thesis H30. So even if i*/OME is evaluated differently
(see section 4.3), the difference exists only in the
(subjective) choice of the evaluation range.

4.5. Threats to Validity

We will analyse in turn the threats to conclusion,
internal, construct and external validity. Threats to
conclusion validity concern issues that affect the
ability to draw the correct conclusion about the
relationship between the experiment’s treatment and
its outcome [24]. Conclusion validity deals with the
power of the statistical test. If the power is low, there
is a high risk that conclusions are incorrect. Another
threat is the experiment treatment. Participants were
given treatment related to RE in general, but not in
particular to the experiment settings. Validity might
also depend on the formulation of the compatibility
requirements and the design of the evaluation form. In
order to mitigate the latter threats, the evaluation form
was reviewed by two independent researchers not
involved in the experiment.

Threats to internal validity analyse issues that
might indicate a causal relationship [24]. We were not
influencing the formation of the participant groups.
However the participants might have formed their
group according to the known skills of their collea-
gues. Two other threats to internal validity are related
to the settings of the pre-study and the experiment.
First, the experiment design was prepared by the same
researcher who performed the pre-study. Second, the
experiment treatment was given by the same person
who designed the experiment. Both cases might
influence the internal validity, however, in order to de-
crease these threats the experiment itself was con-
ducted as a self-controlled exercise by the participants.

Threats to construct validity concern the extent to
which the experiment settings reflect the construct
under study [24]. In the experiment there is a threat of
misunderstanding or misinterpretation of the require-
ments according to which the tools were evaluated. In
the evaluation form participants identified 11,79%
(evaluation set to “-1”) of requirements that were not
understood. But the real threat appears when partici-
pants interpret a certain requirement in an unintended
way. In order to mitigate this threat we provided a self
study material describing both evaluation frameworks.
Also, having the same person in charge of both the
treatment and the experiment design (see above) has
the advantage that the terminology is more consistent
between the courses and the forms.

Threats to external validity refer to the ability to
generalise experiment results outside the experiment
settings [24]. A threat to external validity might be that
the participants had no real ambition to select a tool;
hence the motivation for performing an elaborate
evaluation may have been smaller than in a real case.
Furthermore, the experiment involved students rather
than practitioners. Hence, the participants had basic
knowledge but limited experience in RE practice. But
they all were following the same study program for
3,5 to 4 years, i.e., they were quite homogeneous re-
garding age and background. The use of students is a
common experimentation approach in software engi-
neering (e. g., [11, 20]). Since the participants were in
their 4th year and had only 1 study year left, their
knowledge were quite close at least to junior
practitioners.

5. Discussion

In this section we discuss the low and high evalua-
ted tool requirements. We then highlight the corres-
pondences between tools used in the experiment and
the language that these tools support, as well as the
quality of the goal models created with the tools. We
end the section with a survey of related work.

5.1. Tool evaluation

In the appendix we provide the average capability
values of tool compatibilities for each require-
ment/tool pair. Based on them we define requirements
compatibility to tool as low (if mean < 2), medium (if
2 ≤ mean ≤ 3,5), and high (3,5 < mean).

Common low and high requirements selected from
both frameworks are summarised in Table 6. We did
not calculate correlations between different require-
ments, but certain tendencies could be easily noticed.
For example, limitation to define user accounts results
in no support for collaborative work activities, and
also influences agreement, negotiation and discussion
facilities. In general both tools have high evaluated
requirements for graphical representation of the goal
model. But formal representation is evaluated as low
although there are possibilities to define formal goal
models in both tools. Most likely, this is because (i) it
was not required by the experiment settings and (ii)
formal definition is performed by typewriting and not
edited through an editor of a tool. Table 6 also shows
the importance to evaluate non-functional require-
ments (such as ease of use, ease of learning, efficiency
to solve problem) requirements of the tools. Non-func-
tional requirements might be an important factor for
tool acceptance.

Some of the requirements (see Table 9 and 10 in
appendix) are not evaluated by the participants. The
reason might be threefold: (i) the tool does not support
the requirement, (ii) the participants were not using
the particular feature of the tool to solve the problem,
or (iii) the participants were not able to identify the

281

R. Matulevičius, P. Heymans, G. Sindre

requirement in the tool although the tool supports it.
Finally, it is also not surprising that KAOS/Objectiver,
a commercial tool, was evaluated better then i*/OME,
a research project. However, the experiment on tool
evaluation showed the features of both tools that

should be improved in later developments both for
supporting goal model creation and as well as its
maintenance in later RE activities.

Table 6. Weak and high evaluated requirements for goal-modelling tools

Low evaluated requirements (requirement ID number from the framework) i*/OME KAOS/Objectiver

Definition of user accounts and groups (RQ39, RQ40 and FEF2.1.1, FEF2.1.2) X X

Agreement, negotiation, discussion means (RQ15 and FEF2.1.4) X

Collaborative work (RQ37 and FEF2.3.2; FEF2.3.3) X X

History (versions) of requirements model (RQ16-21 and FEF2.1.5) X

Interfaces with other tools (RQ13, RQ30-32 and FEF1.5, NF1.4) X X

Extensibility (RQ44-46 and NF2.6) X

Traceability between different kind of information (RQ25 and FEF1.4.5) X

Reporting (RQ33-34, RQ36 and FEF3.2.1-3) X

Structured information import (RQ29, RQ32 and FEF1.1.3) X X

Formal requirements definition (FEF1.3.) X X

Requirements specification (RQ5 and NF1.1) X X

High evaluated requirements (requirement ID number from the framework)

Unique identification (RQ.1 and FEF1.1.2) X

Graphical definition of requirements model (RQ4, RQ9 and FEF1.2) X X

Basic formatting (RQ11) X X

Reuse (RQ3 and FEF3.1.1-2) X

Number of element entries not fix (RQ41) X

Views (RQ8, RQ10 and FEF2.2.1, FEF3.2.2) X

Number of database entries (RQ41) X X

Two directional traceability links (RQ22, RQ23, RQ26 and FEF1.4.5) X

Easy to learn (NF2.1.1) X X

Efficiency to solve problem (NF2.1.2) X X

Easy to remember (NF2.1.3) X X

Easy to understand (NF2.1.5) X

5.2. Language, Goal Model and Tool

Beside the comparison of the goal-modelling tools
we have also investigated the correlation between the
tools and (i) the quality of the language they support
as well as (ii) the quality of the models they helped to
produce. Both the languages and the created goal
models were evaluated by the participants using the
semiotic quality framework (SEQUAL) [13], a well
accepted model and language quality assessment
framework. SEQUAL considers various dimensions of
quality: physical, empirical, semantic, syntactic, prag-
matic and social quality. Because of the space limits
we will not discuss all the observed dependencies, but
just provide the basic ones in Table 7. The results
indicate that even if we have a tool and a language that
are of high quality, they do not guarantee that the pro-
duct (the created goal model) will be of high quality
too. The reason for this might be found in the litera-
ture [12]. In this paper, the authors survey most goal-

oriented languages in RE and classify them according
to their suitability to support RE activities. There,
KAOS is characterised as more suited to support late
RE activities performed when specifying require-
ments. On the other hand, i* is judged more suitable
for eliciting early requirements. As a consequence,
KAOS might appear more complete in terms of
constructs. It makes the language richer. But when one
has to make a first, high level, goal model, the lan-
guage may appear too rich.

Table 7. Comparison of modelling instruments
Comparison Results

i*/OME Tools support for
creation of goal
models

KAOS/Objectiver KAOS/Objectiver

i*
Languages quality

KAOS
KAOS

i* model
Goal model quality

KAOS model
i* model

282

Comparing Goal-modelling Tools with the RE-Tool Evaluation Approach

5.3. Framework comparison

In this work we adapted two frameworks – role-
based [8] and R-TEA [16] – to assess the goal-
modelling tools. In addition, the participants were
asked to evaluate the performance of the two frame-
works according to the criteria listed in Table 8. We
formulated the hypothesis that both frameworks pro-

vide equal support for tool evaluation. But the t-test
showed that we need to reject the null hypothesis and
accept the alternative saying that performance of the
R-TEA frameworks is better than the role-based
framework. Those results will be detailed in further
publications.

Table 8. Framework evaluation and t-test of their comparison (t crit two tail =2,5706; df=5; α=0,05)

Role-based framework R-TEA framework
Criteria Mean of 9 evaluations for

each criteria
Mean of 10 evaluations for each

criteria
Help you to evaluate tools 3,11 3,2
Easy to understand framework requirements 2,56 2,9
Sufficient material to learn the framework 2,67 3,2
Framework contributes to understanding of the tools 2,22 2,8
Framework contributes to understanding of how tool should look like 3,44 3,8
Use of the evaluation framework for a real life problem? 2,67 3,3

Mean of means 2,78 3,2
Variance 0,1861 0,124
p-value 0,0036
t-test 5,1555

5.4. Related work

There is a wide variety of approaches to assess
commercial-off-the shelf (COTS) products. The most
extensive surveys are provided in [22] and [16]. The
surveys report that approaches essentially focus on the
process of defining the compatibility requirements.
Furthermore, we found only three reported cases [2,
15, 16] where RE-tools were evaluated. For instance,
the procurement-oriented requirements engineering
method [15] introduces a case that starts with 30 RE-
tools (later narrowed to 6) and results with 2 tools sug-
gested for use. The work also draws important lessons
for the selection of the COTS products such as “struc-
ture requirements”, “stakeholder representatives
should be present”, “record information”, and others.

Elsewhere [2], a quality-based approach is used
jointly with the COSTUME (composite software
system quality model development) to assess 5 RE-
tools. The case study contributes with the description
of the RE-tool domain and provides guidelines how to
construct quality models based on the ISO/IEC 9126-1
standard.

Separate constraints of the R-TEA method are tes-
ted in several case studies in the academic environ-
ment [16]. The most comprehensive one includes the
assessment of 4 commercial RE-tools by ten different
participant groups. The study shows the usefulness of
R-TEA, and points out the importance of different
requirements (functional vs non-functional) categories.

The most closely related work performed with the
goal-modelling tools is the i*-wiki project [9]. The
project proposes a questionnaire to assess the tool
maturity level, extensibility and some interoperability
issues. An interesting category is “i* suitability” that
might serve as an extension to the R-TEA frameworks

when analysing the (i*-based) goal-modelling pers-
pective in tools. However the questionnaire facilitates
only tool description, but not in-depth analysis. 4 goal-
modelling tools (OME [18], OpenOME [19],
TAOM4E [1] and REDEPEND_REACT-BCN [6]) are
overviewed; however the survey might be subjective
in the sense that it was performed by tool developers
or promoters.

We have found no case studies considering goal-
modelling tools. In this work, we screened 7 goal-mo-
delling tools in the pre-study and compared 2 of them
in details during the experiment. We also investigated
dependencies between (i) the tools and languages they
support and between (ii) the tools and the goal models
produced with these tools.

6. Conclusions and Lessons Learnt

This paper reports on an experiment where the RE-
tool evaluation approach (R-TEA) is used to compare
goal-modelling tools i*/OME and KAOS/Objectiver.
The experiment shows that KAOS/Objectiver, a com-
mercial goal-modelling tool, provides better support to
create goal models. However, we observe that the
quality of a goal model does not necessarily depend
on the general quality of the means (language and
supporting tool) used to create it, but rather on
particular characteristics of the modelling language
with respect to a given context [12].

As most of the current goal-modelling tools are
prototypes [1, 3, 6, 18, 19], the experiment highlights
improvements required to adequately support RE
activities. The basic ones include means to negotiate
and agree about goal/requirements model. It is also
important to improve traceability between a goal

283

R. Matulevičius, P. Heymans, G. Sindre

model and its informal and formal representations.
Finally, in order for the goal-modelling tools to
become more mature, they should be able to prepare
and maintain not only the goal models, but also the
requirements specifications which are the output of
RE.

Possible future works include the repetition of
similar experiments in order to validate and enhance
the current findings. We also plan to evaluate tools
that support other goal-modelling languages than i*
and KAOS. In addition to tools, the evaluation of
goal-modelling languages is also in our scope.

Acknowledgement. We wish to thank Robert Da-
rimont for supporting and providing us the tool tested
in the experiment.

References
 [1] D. Bertolini, L. Delpero, J. Mylopoulos, A. Novi-

kau, A. Orler, A. Perini, A. Susi, B. Tomasi. A
Tropos Model-Driven Development Environment.
CAiSE 2006 Forum proceedings, 2006, 56-59.

 [2] J.P.Carvallo, X. Franch, C. Quer. A Quality Model
for Requirements Management Tools. Requirements
Engineering for Sociotechnical Systems, Idea Group
Publishing, 2004.

 [3] P. Giorgini, F. Massacci, J. Mylopoulos, N. Zan-
none. ST-Tool: A CASE Tool for Security Require-
ments Engineering, Proceedings of the 13th IEEE In-
ternational Conference on Requirements Engineering
(RE'05), 2005, 451-452.

 [4] DIA, URL: http://www.gnome.org/projects/dia/.
 [5] S. Easterbrook. Requirements Engineering, Lecture

Notes, University of Toronto, 2006.
 [6] G. Grau, X. Franch, N. Maiden. REDEPEND-

REACT: an Architecture Analysis Tool. Proceedings
of the 13th IEEE International Conference on Requi-
rements Engineering (RE'05), 2005, 455-456.

 [7] E. Haywood, P. Dart. Towards Requirements for Re-
quirements Modelling Tools. Proceedings of the 2nd
Australian Workshop on Requirements Engineering
(AWRE’97), 1997, 61-69.

 [8] M. Hoffmann, N. Kuhn, M. Weber, M. Bittner. Re-
quirements for Requirements Management Tools.
Proceedings of the IEEE Joint International
Conference on Requirements Engineering (RE’04),
2004, 301-308.

 [9] i*-wiki project.
URL: http://istar.rwth-aachen.de/tiki-index.php.

[10] INCOSE. INCOSE: Tools Survey: Requirements Ma-
nagement (RM) Tools by International Council on
Systems Engineering (INCOSE)
URL: http://www.incose.org/, 2002.

[11] L. Karlsson, P. Berander, B. Regnell, C. Wohlin.
Requirements Prioritisation: An Experiment on
Exhaustive Pair-Wise Comparison versus Planning
Game Partitioning. Proceedings of the Empirical As-
sessment in Software Engineering, 2004.

[12] E. Kavakli, P. Loucopoulos. Goal Modeling in Re-
quirements Engineering: Analysis and Critique of Cur-
rent Methods. Krogstie J., Halpin T., Siau K. (eds),
Information Modeling Methods and Methodologies,
Idea Group Publishing, 2005, 102–124.

[13] J. Krogstie. A Semiotic Approach to Quality in
Requirements Specifications. Proceedings IFIP 8.1
Working Conference on Organisational Semiotics,
2001.

[14] M. Lang, J. Duggan. A Tool to Support Collaborative
Software Requirements Management. Requirement
Engineering, 6 (3), 2001, 161-172.

[15] N.A. Maiden, C. Ncube. Acquiring COTS Software
Selection Requirements. IEEE Software, 1998, 46-56.

[16] R. Matulevičius. Process Support for Requirements
Engineering: A Requirements Engineering Tool Eva-
luation Approach. PhD theses. NTNU, 2005, 309.

[17] Objectiver. URL: http://www.objectiver.com/.
[18] OME. URL: http://www.cs.toronto.edu/km/ome/.
[19] OpenOME,URL:

http://www.cs.toronto.edu/km/openome/
[20] P. Shoval, A. Yampolsky, M. Last. Class Diagrams

and Use Cases – Experimental Examination of the
Preferred Order of Modeling. Proceedings of CAiSE
2006 workshop on Exploring Modeling Methods for
System Analysis and Design (EMMSAD 2006), 2006,
453-472.

[21] K. Pohl. The Three Dimensions of Requirements En-
gineering: a Framework and its Applications. Informa-
tion systems, 19(3), 1994, 243-258.

[22] G. Ruhe. Intelligent Support for Selection of COTS
Products. Proceedings of the NODe 2002 Web and
Database-Related Workshops on Web, Web-Services,
and Database Systems, 2003, 34 - 45.

[23] K. Wiegers. Automating Requirements Management.
Software Development, 7 (7), 1999.

[24] C. Wohlin, P. Runeson, M. Høst, M.C. Ohlsson, B.
Regnell, A. Wesslen. Experimentation in Software
Engineering, Kluwer Academic Publishers, 2002.

Received August 2006.

284

Appendix. Evaluation of Goal-modelling Tools

Table 9. Evaluation of goal-modelling tools using the role-based framework

i*/OME KAOS/Objectiver
Category Requirements Number of

evaluations
Ave-
rage

Number of
evaluations

Ave-
rage

1 2 3 4 5 6
RQ1. Every object must be uniquely identifiable over its lifetime. 5 2,60 3 4,00
RQ2. The model must be changeable during the project. 5 3,20 4 5,00
RQ3. Reuse should be available for all classes, types and attributes. 4 2,75 3 3,67
RQ4. It could be possible to define the model graphically. 5 4,80 4 4,50

Information
model

RQ5. The tool could support models that are needed when using standard RE templates
(e.g., Volere or IEEE 830-1998). 1 3,00 0

RQ6. The tool must allow views to be defined in a user-specific manner. 5 3,00 4 2,25
RQ7. The views must be freely configurable, including complex filters on objects, relations,

and attributes. 5 2,20 4 2,50
RQ8. The objects must be changeable in the current view. 5 3,20 4 5,00
RQ9. Graphical views of the requirements should be available. 5 4,40 4 4,50

Views

RQ10. The tool should allow views to be predefined for user roles. 5 1,20 2 4,00
RQ11. The tool should support the basic formatting. 5 4,20 4 4,50
RQ12. Non-text objects should be saved. 5 2,60 2 4,50

Formatting,
Multimedia
and External
files

RQ13. External objects must be viewed either through a pre-viewer inside the tool or in the
native application if called directly from the tool’s user interface. 5 1,00 1 3,00

RQ14. The change requests should have public status information like pending. 0 0 1 1,00 Change
Management
and Comments

RQ15. There could be a comments or discussion function tightly linked to the requirements
5 1,00 3 4,67

RQ16. All changes to the requirements must be tracked. 5 1,00 4 2,25
RQ17. The object in the tool must be versioned. 5 1,00 3 2,00
RQ18. Changes must be tracked down to the smallest unit of data structures. 5 1,00 4 2,25
RQ19. A tool must allow a requirement to be changed back to any previous state anytime. 5 1,00 4 2,75
RQ20. The tool must generate freely configurable change reports. 5 1,00 3 2,00

Documen-
tation of the
history

RQ21. A comment should be saved with a change to enable it to be understood later on. 5 1,00 3 3,00
RQ22. Link must be directed and an object must be a source and target at the same time. 5 5,00 2 3,50
RQ23. It must be possible to follow link directly in both directions. 5 4,00 3 4,33
RQ24. It must be possible to give the link attributes. 5 2,60 4 3,00
RQ25. It must be possible to create roles for governing what kinds of requirements must

have links to what other kind of requirements. 5 1,00 4 3,25
RQ26. Links must connect any objects, not only in the same subset. 5 4,80 4 3,75

Traceability

RQ27. The tool must feature a practical, user friendly and concise graphical presentation
and navigation of the traces. 5 3,00 3 3,00

Baselining RQ28. The tool must support baselines. 0 0 1 4,00
Analysis
function

RQ29. The tool can scan the description texts of the requirements for patterns like
unsuitable/inexact language or wrongly used terminology. 5 5,00 2 1,00

Tool
integration

RQ30. The tool must have open interfaces to other tools used in the development process
and make information stored in them visible and linkable. 5 1,00 1 1

RQ31. The tool must recognise text marks, formatting, line ends, grammatical structure or
keywords to interpret them as the beginning or end of requirement texts. 5 1,20 3 2,67

Import

RQ32. The tool should support a semiautomatic import of requirements from existing
documents. 5 1,20 0 0

RQ33. The subset of data to be included in the document must be flexibly configurable,
comparable to views. 1 1,00 1 3,00

RQ34. The document generation must be able to include all information available in the
tool. 5 1,60 4 3,25

RQ35. The document generator must be able to create document in a certain standard
formats. 5 3,80 4 3,00

Document
generation

RQ36. The document generator must be extensible via a programming interface provided by
a tool. 5 1,00 2 2,50

Collaborative
working

RQ37. It must be possible for many user to work on the same data at the same time.
5 1,00 3 2,67

Web access RQ38. The tool should have a web interface or another browser based client. 5 1,00 2 1,00
RQ39. The administrator must be able to manage user accounts and group and role

assignments. 5 1,00 2 1,00
User roles and
rights

RQ40. Users must be defined centrally for all projects. 1 1,00 2 1,00
Size restriction RQ41. The number of element entries must not be of a fixed size. 2 5,00 3 4,67

RQ42. The tool could support system development via an administrable, organized and
structured process. 0 0 1 2,00

Workflow
management

RQ43. The process must not simple restrict the users, but guide them through the process. 4 1,00 2 3,00
RQ44. The tool must provide an open and well-documented model and API which makes all

data and functions accessible to extensions. 5 1,00 2 2,00
RQ45. The object model and the API must be stable across versions of the tool. 4 1,00 2 2,50

Extensibility

RQ46. The user interface of the tool must be customizable and extensible with a standard
script language. 5 1,00 2 2,00

RQ47. The tool must be reliable (Did you experience any tool malfunction, crashes?). 5 3,00 4 2,75
RQ48. The data must have a consistency analysis and data integrity check. 5 5,00 3 3,33

Database

RQ49. It must be possible to export all project data and to import them again at a different
time or places from/with different tool. 5 1,40 4 2,50

Encryption RQ50. The information stored in the database of the tool must not be readable to intruders. 1 1,00 2 2,50

Comparing Goal-modelling Tools with the RE-Tool Evaluation Approach

285

Table 10. Evaluation of goal-modelling tools using the R-TEA frameworks
i*/OME KAOS/Objectiver

Category Requirements Number of
evaluations

Ave-
rage

Number of
evaluations

Ave-
rage

1 2 3 4 5 6
FEF 1.1.1 provide natural language description. 3 1,33 4 3,25
FEF 1.1.2 allow specifying unique identification (ID) for each separate
requirements (goal/requirement/actor/etc). 5 1,00 3 4,33

FEF1.1. Specify uniquely
identifiable description using
informal language.

FEF 1.1.3 allow importing of requirements (goals/actors/etc.) and their
description from text document. 5 1,00 2 1,00
FEF 1.2.1 provide tools for semiformal (graphical) language description. 5 4,20 5 5,00 FEF1.2. Specify requirements

using semi- formal language(s). FEF 1.2.2 provide forward/ backward traceability between semiformal, and
informal, formal descriptions. 5 1,40 0 0
FEF 1.3.1 provide tools for formal language description. 4 1,00 5 1,80 FEF 1.3. Specify requirements

using formal language(s). FEF 1.3.2 provide forward/ backward traceability between formal and informal,
semiformal descriptions. 5 1,20 3 1,00
FEF 1.4.1 provide functions for testing traceability between informal, semiformal
and formal requirement description. 5 1,00 4 1,25
FEF 1.4.2 create parent-child traceable relations between requirements. 5 3,60 5 4,40
FEF 1.4.3 maintain peer-to-peer traceable relations between requirements. 5 3,80 5 3,20
FEF 1.4.4 maintain traceable relation between various related information. 3 2,67 2 4,00

FEF 1.4. Define traceable
associations between requirements
and the different elements of
requirements specification.

FEF 1.4.5 maintain forward/ backward traceability between a source of
requirements (goals/actors/etc.), the requirements (goals/actors/etc.) and design. 4 1,00 1 4,00
FEF 1.5.1 allow importing/exporting requirements (goals/actors/etc.) description
from/to text documents. 5 3,00 3 2,00

FEF 1.5. Connect seamlessly with
other tools and systems, by
supporting interoperable protocols
and standards.

FEF 1.5.2 allow importing/exporting requirements (goals/actors/etc.) description
from/to graphical documents. 5 3,00 3 1,67
FEF 2.1.1 maintain user authentication to the system (i.e. user name, password). 5 1,00 5 1,00
FEF 2.1.2 allow grouping users into different groups. 5 1,00 5 1,00
FEF 2.1.3 allow creating different views for different groups of stakeholders. 5 2,20 4 2,00
FEF 2.1.4 register agreement/ rationale/ discussion/ negotiation/ changes/
history of requirements and by how it was achieved. 5 1,00 5 1,00

FEF 2.1. Maintain an audit trail of
changes, archive baseline versions;
and engage a mechanism to
authenticate and approve change
requests.

FEF 2.1.5 call the earlier requirement (goals/actors/etc.) description/ versions
and register them into history context. 5 1,00 4 1,00
FEF 2.2.1 allow specifying attributes/ properties of the requirement. 5 1,40 4 4,25
FEF 2.2.2 provide sorting according to different attributes/ properties. 5 1,20 4 2,75

FEF 2.2. Classify requirements into
logical user- defined groupings.

FEF 2.2.3 provide filtering according to different attributes/ properties. 5 1,00 2 1,00
FEF 2.3.1 provide platform independent interface for geographically distributed
users. 5 2,40 3 1,00
FEF 2.3.2 allow making a copy for modification of an already approved version
of requirements description in different abstract levels (document, requirement). 4 1,50 4 4,00

FEF 2.3. Support secure,
concurrent cooperative work
between members of a
multidisciplinary team, which may
be geographically distributed. FEF 2.3.3 provide a change approval cycle for multiple change negotiation and

approval before posting into common repository. 5 1,00 2 1,00
FEF 2.4.1 provide the single repository or data and concept dictionary. 5 1,00 1 1,00
FEF 2.4.2 provide separate data dictionaries for non-technical and technical users. 5 1,00 5 1,40

FEF 2.4. Maintain a data
dictionary of all project
components and requirements in a
shared repository.

FEF 2.4.3 provide the help system to the users.
5 1,00 5 5,00

FEF 3.1.1 enable selection and extraction of common domain requirements and
requirements which differentiate systems in product line. 1 1,00 2 4,00
FEF 3.1.2 incorporate requirements to a concrete project. 4 1,50 4 3,75
FEF 3.1.3 adapt/ spread changes in domain requirements to concrete projects
within domain. 5 1,00 4 3,25

FEF 3.1. Collect and store a
common system’s and a product
family’s domain requirements
(goals/actors/ etc.).

FEF 3.1.4 provide comparison of domain requirements feasibility. 5 1,00 3 2,67
FEF 3.2.1 provide wizards for report generation. 5 1,00 3 2,00
FEF 3.2.2 provide possibility to print report according to views and sorting. 5 1,00 4 4,50
FEF 3.2.3 provide possibility to print results of agreement. 5 1,00 4 1,50

FEF 3.2. Generate reports,
documents that comply with
standard industrial templates, with
support for presentation-quality
output and in-built document
quality controls.

FEF 3.2.4 provide techniques for error checking.

5 3,00 5 4,20
NF1.1. Support the requirements specification standards (e.g. IEEE830-1998,
Volere). 3 1,00 4 3,25
NF1.2. Support the selected modelling perspectives (e.g. goal-oriented modelling). 5 5,00 5 4,00
NF1.3. Support the software development models (Could the RE-tool be used when
applying waterfall, spiral, transformational, etc, development). 5 2,60 2 2,00

Non-functional process
requirements

NF1.4. Support the interfaces with the text, editing, modelling and
implementation tools (please identify [if any] the observed tools in the
comments). 1 1,00 5 2,80
NF2.1.1 How easy is it to learn the functionality of the tool. 5 4,20 5 4,20
NF2.1.2 Is the tool efficient enough to solve the problem specified in the exercise? 5 3,80 5 4,20
NF2.1.3 How easy is it to remember the functionality of the tool? 5 4,20 5 4,20
NF2.1.4 Are you satisfied with the tool usage? 5 2,60 5 4,20
NF2.1.5 How easy is it to understand the functionality of the tool? 5 4,20 5 3,40
NF2.2. Provide a satisfying reliability of the system. 5 3,00 5 4,40
NF2.3. Provide a satisfying performance of the system. 5 4,00 4 4,25
NF2.5. Does the tool have sufficient functionality for ensuring the safety of the
information (safety from unauthorised use of data) 5 1,60 5 2,80
NF2.6. How easy is it to extend the tool with additional functionality? 5 1,60 3 2,00

Non-functional product
requirements

NF3.1 Does the tool have sufficient material for understanding it? (tutorials,
illustrative examples, information on the Web, etc.) 5 3,20 5 4,20

R. Matulevičius, P. Heymans, G. Sindre

286

