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Abstract. Design problems of predictor-based self tuning digital control systems for power plants are discussed. 
Investigation results for self-tuning control algorithms for a nuclear reactor are presented. These algorithms provide the 
minimum variance of power deviations from the given trajectory in transition and stationary regimes of operation. 
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1. Introduction In case of a stochastic control plant it is natural to 
demand for the control system to provide the mini-
mum variance of the deviations of the observed output 
sequence  from the reference sequence . ty *

ty

Usually control system design must take into ac-
count the fact that a priori information about the plant 
and its environment is insufficient. Control system 
must be capable of ensuring the control task despite 
variations in plant‘s dynamic and static characteristics, 
provoked by inner and outer disturbances. 

Sometimes it is preferable to apply a generalized 
minimum variance control algorithm, obtained by 
introducing control costing. In this case, the control 
criterion is A self-tuning control system usually consists of 

two loops. The control plant and the controller form 
the so-called main loop. The second loop may be 
called the tuning loop, and its aim is to change the 
control law so as to get adjusted to the unknown 
situation and to accomplish the control task. Different 
synthesis methods for the latter loop make it possible 
to group self-tuning control systems into explicit and 
implicit ones. An explicit self-tuning control system is 
based on the estimation of an explicit control plant 
model, while an implicit one is based on implicit 
estimation of the controller parameters. Different mo-
difications of self-tuning control systems can be suc-
cessfully used in order to cope with these require-
ments [1, 5, 6]. 
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and optimal control values can be obtained by 
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This paper considers practical issues in the imple-
mentation of predictor-based self-tuning control 
systems [3, 4, 8, 11]. In this case, control plant model 
is constructed in the form of an optimal predictor of 
the output signal 

( ) 111 ++++++ += τττ ξ tttt cyy , (1) 

is the admissible domain for the control values; u , 
are control signal boundaries; 

min

maxu 0>tδ  are the 
restriction values for the introduction rate of the 
control signal; denotes the reference trajectory for 

the output signal;  is the polynomial weight 
coefficient; M is the mathematical expectation sign.  
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Solution of the extremal problem (3) requires the 
knowledge of genuine plant model parameters c. Since 
these parameters are usually a priori unknown and 
vary in the operation process, current estimates can be 
used instead of genuine parameters. The estimates can 
be obtained in the identification process from the 
condition [7] 

where )(1 cy tt ++τ  is optimal ( )1+τ  step prediction of 

the output signal ; c is the vector of control plant 
model parameters; 

1++τty

+ 1+τξ t  is a sequence of random 
values. 
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where  is the admissible domain for the parameters 
c, usually the same as the stability domain for the 
closed-loop system; 

cΩ

)()( 111 cyyc ttttt +++ −=ε               (6) 

is the error of one step prediction of the output signal; 
)(1 cy tt+  is the optimal one-step-prediction of the out-

put signal. 
Thus we arrive at an explicit predictor-based self-

tuning control system. Its structural diagram is given 
in Figure 1 [8, 9]. 

 

 
Figure 1. Structural diagram of predictor-based self-tuning control system 

2. Problem statement 

Power plant is a nuclear reactor working in ulti-
mately low power levels and operating as a part of a 
device assembly designed for physical modelling of 
the activate zone of a power nuclear reactor. Distinct 
features of a research-purpose reactor as a control 
plant are, first of all, possibly frequent variations of 
the active zone geometry and physical fuel composi-
tion, and, secondly, pronounced stochastical character 
of the chain-reaction in ultimately low power levels 
distinquishable in the form of strong neutron flux 
fluctations. 

For these reasons, design of control systems, 
capable of compensating random power fluctuations 
and of adapting themselves to the variations of the 
characteristics of the research-purpose reactor, is 
important. 

In the terms of power control system design opera-
tional conditions of a research-purpose reactor can be 
defined by a different stochastic equation 

( ) ( ) ttt zBzPzA ζρ += −−− 111 ,              (7) 
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where tρ  and  are correspondingly introduced 
reactivity and power values at discrete time moments, 

tP

tζ  is the sequence of independent random values  

with zero mean and finite variance , 2
ζσ

1−z  is one-
step delay operation in time domain. 

Optimal control law – current control signal values 
 is defined from the condition *

tρ
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where  is reference power value at the moment t; *
tP

minρ , maxρ are possible reactivity value limits, ρδ is 
the restriction value for the reactivity introduction 
rate, defined in accordance with nuclear safety rules. 

3. Control algorithms 

Optimal reactivity, satisfying the law (9), is 
defined from the relationship [8] 
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Reactivity values tρ~  in control law (11) are de-
fined with the methods described below. 

Control criterion ( )tQ ρ  can be rewritten as 
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represents the vector of unknown parameters. where the optimal one-step-ahead power prediction 
can be defined by a recursive equation [1] Control law obtained in this case 
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where polynomial  is defined from the relation-
ship 

( 1−zF ) contains parameters depending on the control plant 
parameters, which are a priori unknown and can vary 
in the operating process. The unknown genuine para-
meters c can be substituted by their current estimates 

 obtained in the identification process (5), where tĉ
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Such a design approach, the so-called implicit self-
tuning control scheme allows to obtain the controller 
parameters directly without obtaining the control plant 
parameters first, and that simplifies the control signal 
calculations. The drawback of the method is that it can 
be applied only to minimum-phase systems and to 
those nonminimum-phase systems that can give the 
roots of the closed-loop characteristic equation 

In order to simplify calculations in defining 
optimal control signal values, a generalized output 
function tφ  is introduced [2]. Its optimal one-step-
ahead prediction can be defined by the following 
equation, minimizing the criterion (12) in the fol-
lowing way 
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outside the unit circle on the z-plane by choosing the 
appropriate parameters of the polynomical ( )1−zD . where 

( ) ( ) 0
1

0
1 / bzLlzD −− =                    (17) For this reason, equation (25) gives good results 

for research-purpose reactor‘s operation in stationary 
and transition regimes for small reactivity values. In 
the speed-up regime of the research-purpose reactor 
with significant reactivity values, the process becomes 
nonstationary, and in the closed-loop system unob-
servable and unstable regimes may turn up, manifes-
ting themselves on the control signal dynamics. 

and correspondingly, 
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Optimal control law, obtained by minimizing the 
control criterion 
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In this case the system under identification 
becomes a nonminimum-phase one, and the polyno-
mial of weight coefficients  doesn‘t ensure the 
system‘s stability. Choosing too large polynomial 
parameter values results in control quality. 

( 1−zD )
coincides with the control law obtained by minimizing 
the criterion (12). 

In this case, the control task can be solved by 
applying control scheme with control plant parameter 
identification, instead of direct adaptive control. 
Parameters under identification are the parameters of 
the polynomials ( )1−zA  and , and the factoriza-
tion method is applied in case of an unstable polyno-
mial 

( 1−zB )

( )1−zB  [1]. 

In minimizing the criterion ( )tQ ρ , a prediction 
can be obtained by the following recursive equation 
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where 

( ) ( ) ( 111 −−− += zDzBzG )                (21) 
Control criterion (9), when , is substi-

tuted by  
( ) 01 =−zL

has zero value every time step and drives the gene-
ralized output 
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and the vector of the parameters of the generalized 
output function under minimization becomes to a white noise sequence. 

In the equation (22), { }1,,...,,,..., 02,1 −−−−=
ba nn

T bbaaac .   (29) { }*
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T
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Application of the factorization method is accomp-
lished in the following way. represents the measurement vector and 

Polynomial ( )1−zB  is decomposed into two factors { 1,...;,,...;, 1010 −= ggffcT }         (24) 
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roots of the polynomial (32) are inside the unit circle 
or on its boundary. 

In this case, the control law can be rewritten 
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normalized square prediction error of the generalized 
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5. Simulation results 

4.  Identification algorithms Apriori information about the orders of polyno-
mials 2== ba nn  and the initial estimate values for 
the parameters of the research-purpose reactor‘s 
mathematical model (7)-(8) were obtained in the 
process of off-line identification by means of solving 
the point kinetics equation, taking into account the 
stochastic character of the neutron fission process. 

In the stabilization and power elevation, regimes 
of the research-purpose reactor for small control signal 
values current values c , used in the control algorithm 
instead of unknown parameters c, are received in 
identification process in the closed-loop with help of 
the recursive least squares method 
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values, the control quality criterion was applied in the 
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( ) ( )11 1 −− −= zzL λ  .                    (51) where I stands for the unit matrix; n  is the number of 
unknown parameters. 

c

Figure 2 illustrates process in the nuclear reactor 
power regime with power increasing up to certain 
reference level by means of the control algorithm (11), 
(25) and the algorithm (11), (33) with factorization 
after 100 second. Unsignifluctuation of the control 
signal before switching on the factorization is 
observed. 

In the speed-up regime of the research-purpose 
reactor, for significant control signal values and fast 
parameter changes, the algorithm (36)-(39) is mo-
dified by means of the restricted exponential forget-
ting method, which allows to suppress the old 
information and to increase the numerical reliability of 
identification [10]. Figure 3 presents the behaviour of the control and 

output signals at the speed-up regime of the nuclear 
reactor corresponding to the control process according 
to the algorithm with factorization (11), (33) and 
without it (11), (25) 0=λ in (51). These figures show 

Equation (38) is rewritten as 

( t
T
ttt xI Π−=Π +++ 111 λ  ,               (40) 
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that fluctuations of the control and output signals are 
removed after switching on the factorization algorithm 

in the twentieth second. 

 
 

Figure 2. Self-tuning control process for nuclear reactor at the elevation regime 

 
 

Figure 3. Self-tuning control process for the nuclear reactor at the speed-up regime 

6. Conclusions 

Design problems of predictor-based self-tuning 
control for power plants are discussed. Control algo-
rithm synthesis is accomplished, taking into account 
amplitude and/or introduction rate constraints for the 
control signals. The unknown parameters of the opti-
mal predictor are being estimated in the identification 
process in the closed loop. 

Investigations, that were accomplished, showed 
the effectiveness of the designed control algorithms 
for the power control of as nuclear reactor. The algo-
rithms ensure minimal power deviations from the refe-
rence trajectory, taking into account amplitude restric-
tions and variation rate of the control signal in the 
speed-up and power stabilization regimes. In stabiliza-
tion and speed-up regimes for small control signal 
values the direct (implicit) tuning algorithm was 

applied (immediate adjustment for the parameters of 
the control law). In the speed-up regime under signifi-
cant control signal values, the self-tuning control algo-
rithm with identificator and factorization of the unst-
able polynomial under fast changing parameters was 
applied, and the factor of exponential forgetting intro-
duced into the identification process is ensured by 
using the square roots of the covariance matrix. 
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