
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2006, Vol.35, No.3A

COMPONENT-BASED MODELLING AT THE SYSTEM DESIGN STAGE

Saulius Gudas1,2, Edvinas Pakalnickas2
1Vilnius University, Kaunas Faculty of Humanities

Muitines 8, 44280 Kaunas, Lithuania
2Kaunas University of Technology, Information Systems Department

Studentu 50, 51368 Kaunas, Lithuania

Abstract. This paper presents an approach to applications development based on the principles of the model-driven
architecture and using the component-based system model (CBSM). The CBSM helps to refine main components and
interfaces of the application at the design stage. This model integrates all steps of IS development life cycle. The
information system’s architecture is structured considering a business system as a set of different domains with definite
types of components, and with interfaces between the components of different types.

1. Introduction

The traditional approaches to engineering of infor-
mation systems focus on identifying business require-
ments [11] and delivering the specific functionality
required to automate some activities. Not enough
attention is being attached to how the created system
will interact with the rest of the business. As a result,
there is often a gap between the business requirements
and the systems implemented to support them. To
bridge this gap, many organizations are developing
enterprise architecture to provide a holistic vision of
how systems will support their business [6].

Model-driven architecture (MDA) focuses on mo-
delling activities in software development process and
shifts the software development process from the
writing code to the modelling activities. MDA sepa-
rates the business level from the technological plat-
form which implements information system. The key
feature of the model-driven architecture is its ability to
transform automatically the platform-independent
model (PIM) into the platform-specific model (PSM).
MDA uses modelling languages as programming
languages

Using interface-based programming is the evolu-
tion of the object-oriented programming and design.
The interfaces have made the software design more
adaptable to the rapid changes of the business environ-
ment. While using interfaces, software systems
achieve reusability, extensibility and maintainability
[4,10].

The idea of the interface-based design and prog-
ramming is used mainly in the service-oriented archi-
tecture (SOA) and the component-based development
(CBD) approaches [14] that are realized in the

technological approaches such as the Microsoft .NET
platform and the Java 2 Enterprise Edition.

The CBD approaches use the interface-based de-
sign idea and therefore have advantages such as more
effective management of complexity, a greater degree
of reuse and a wider range of usability [8]

The CBD requires a systematic approach to focus
on the component aspects of software development
[1]. The traditional software engineering approaches
must be adjusted to the component-based approach.
The software reuse and rapid IS development are ob-
tained building systems from components.

The building of the information systems from
components requires methodologies and processes not
only in relation to the aspect of development, but also
to the entire life cycle of system [9].

This paper deals with the strengths and the limi-
tations of temporary IS development approaches and
depicts the IS development approach based on the
component-based system model (CBSM) and the
MDA principles.

2. Semantic gap at IS development process

Figure 1 depicts the IS engineering approaches in
the IS development life cycle. On the horizontal axis
there is the information system development life
cycle, on the vertical axis there is the abstraction level
of the IS development activities. The IS development
approaches such as the enterprise architecture (EA),
the business process models (BPM), the object-orien-
ted analysis and design (OOAD) are used at different
levels of abstraction in the IS development process. A
very common route in the process of the IS

344

Component-Based Modelling at the System Design Stage

development is from BPM to OOAD or from EA to
OOAD. For this reason, there arise some problems
because the practices of BPM, EA and OOAD deve-
lopment are often disintegrated (Figure 1) and there-

fore a semantic gap emerges between the business’s
vision and structure of the high level and the systems
implemented to support them.

Maintenance

IS
 d

ev
el

op
m

en
t d

om
ai

ns

IS life cycle

Analysis Implementation

Business
domain

Architecture
 domain

Applications
domain

Design

Business process
modeling

(BPM)

Enterprise architecture
modeling

(EA)

IS architecture
modeling

Object-oriented
analysis and design

(OOAD)

Programming, code
generation

Figure 1. IS development activities

Figure 2. The place of the component-based system model in IS engineering process

2.1. Semantic gap at the IS development process

To bridge the gap between the activities of the IS
development, it is reasonable to create a component-
based approach (the dotted oval depicts proposed
method application area), which is used to integrate
elements from different modelling techniques (Figure
2) and the component-based system model, which
integrates the enterprise architecture with the informa-
tion system architecture (the dotted square with the
rounded corners).

3. The main features of contemporary IS
development approaches

The Business process modelling describes the
business domain without any IT view. The business

processes help to describe value-creating activities
within enterprise and between organizations. The busi-
ness processes describe also the interactions between
any participants.

The processes exchange information with other
processes. So we have a system of interacting proces-
ses and the interaction is performed by communica-
tion. The communication is used for exchanging
information among the entities. The communication
could be realized using interfaces. These interfaces
will be described in the component-based system
model (Figure 1).

Workflow model reflects the traditional view of
the implementation of the processes in the enterprise.
In the workflow model, the modelling of the business
processes are sequences of activities that may be split

345

S. Gudas, E. Pakalnickas

into the parallel sequences and partitioned into
subsequences or elementary activities.

BPM approaches provide an end-to-end view on
the functional units of the system, but typically they
do not reach into the architecture and implementation
domain.

The enterprise architecture frameworks such as
DoDAF, TOGAF, Zachman are used in architecture
modelling for IS development. The frameworks
provide structured and systematic data and knowledge
for designing of the information systems.

The definition of ‘architecture’ used in ANSI/IEEE
Std 1471-2000 is: “the fundamental organization of a
system, embodied in its components, their relation-
ships to each other and the environment, and the
principles governing its design and evolution” [3].

An architecture framework helps to improve the
understanding of the problem domain, but some
aspects of the architecture remain not clear. There are
some ambiguities [2]:
• Should the scope of the architecture encompass

software components only or include other as-
pects of information system development?

• Architecture activities involve design and model-
ling, but which level of detail belongs to the ar-
chitecture and when do the detailed design
activities start?

• What is the relationship between the enterprise ar-
chitecture and the information system architec-
ture?

The proposed component-based modelling approach
seeks to eliminate these ambiguities.

The Object-Oriented Analysis and Design on the
applications’ level enables efficient design and
development of applications.

The main problems are that the OOAD approach is
used on the applications level mainly, but not on the
BPM level, and OOAD design level of granularity is
at the class level, which is too low at the level of
abstraction for the modelling of the business proces-
ses. A strong association such as inheritance creates a
tight coupling and dependency between the OOAD
entities, therefore it is difficult to maintain or extend
system without breaking the code of the existing IS
[10].

The OOAD models are used to model the software
systems, a technical specification of software. BPM
and OOAD are related, the business processes model
can be a specification of the OOAD model, which is a
specification of the information system.

The OOAD is a very valuable approach for design
of the underlying class structure within a developed
IS.

3.1. Model driven architecture (MDA).

Figure 3 depicts the MDA process, which starts
with the creation of a computation-independent model

(CIM). This model depicts the system for the business
domain project members. The requirements are
captured in the CIM. The CIM facilitates the commu-
nication between the domain experts and the system
designers.

Platform
independent
model (PIM)

Platform specific
model (PSM) Code

Computation-
independent
model (CIM)

manual
transformation

generate

map

Figure 3. MDA process

After the CIM model is created, system designers
build object-oriented models. These models are repre-
sented by the platform-independent model (PIM)
where system requirements are represented by the
UML diagrams. The PIM should capture the domain’s
semantics. The platform-independent models are map-
ped to the PSM models. A mapping between the models
is assumed to take one or more models as its input and
produce one output model. The rules for the mapping
are described within a mapping function. The mapping
functions enable the construction of the target models
that are synchronized with their source models. The
mapping functions alone are not always sufficient to
transform a source model completely and additional
inputs may be needed to perform the mapping, there-
fore marks are used. The marks are extensions to the
models that capture the information required for the
model transformation.

The key feature of the model-driven architecture is
its ability to transform automatically the platform-in-
dependent model into the platform-specific model
(PSM). Designers create the transformation rules,
which automatically convert the model into the code.
The UML modelling gives a high-level representation
of the software system. The generated code creates a
skeleton of the software system to be implemented
[13].

4. The Component-based system model

Referring to the issues of the contemporary IS
development approaches, there was developed a com-
ponent-based system development approach, which
enables to apply different elements from temporary IS
development methods in order to accelerate and to
simplify the process of IS engineering. It is generally
acknowledged that the IT architecture should be
aligned with the business processes. This approach
allows aligning the IT architecture with the business
processes.

The component-based view is used in all IS deve-
lopment phases. This lets assemble the information
system from the distributed components or services

346

Component-Based Modelling at the System Design Stage

and to use the service-oriented view in the information
system development process [3,5].

The developed approach uses ideas from the
component and model-driven architecture and integ-
rates the business requirements and the information

system implemented to support the business pro-
cesses.

Figure 4 depicts proposed component-based sys-
tem model (CBSM) is a graphical notation for the
identification of the information system components
and their inter-relationships.

Figure 4. Component-based system model

The CBSM helps to break an overall IS into a
number of related areas (domains) and to relate the
enterprise architecture with the IS architecture [7].
This model describes IS as a set of interacting com-
ponents or services and includes a clear definition of
the collaboration between these components or ser-
vices. The CBSM enables to create an interfaces mo-
del, which specifies for each component, what the
component expects from the environment and what
provides to the environment.

The CBSM lets decide how the components can be
grouped, how they interact with the systems and
between each other, how the components are shared
across IS.

The components in the CBSM are displayed as a
rounded rectangular, the interfaces are displayed using
arrows marked with type of component’s interface.

The meanings of the tracks of the component-
based system model from the business viewpoint are
as follows [12]:
• business processes domain (BPD) – includes the

business processes, critical to the enterprise’s
functionality and development, for marketing,
operation strategy, manufacturing planning, and
human resources management;

• information processing domain (IPD) – iden-
tifies the major information processing activities
that the enterprise performs to produce business
driven decisions and products;

• information domain (ID) – includes the activi-
ties aimed to organize data and knowledge, neces-
sary for the enterprise management and product
development; for example quality control

standards, products and process definitions,
inventory files and etc.;

• product technology domain (PTD) – includes
the technological processes and facilities for the
development of the enterprise products and servi-
ces; for example product design, materials proces-
sing and handling;

• external environment domain (EED) – includes
the activities aimed to organize the processes with
the enterprise suppliers and clients.

The meanings of the CBSM tracks from the infor-
mation technology viewpoint are as follows:
• user interface for business applications – in-

cludes the components, which the enterprise users
will use for the interaction in the system. For
example windows, screens and menus;

• logic – includes the components of the application
logic. These components embody the business
rules;

• data structures – includes the data structures;
• interface for raw data – includes the data from

the technological processes or control systems;
• interface for external users – includes the

interface for the external users or the information
systems of the clients and the suppliers.

The business domains interact between each other.
The purpose of the interfaces is to integrate the do-
mains’ interaction. Interfaces are grouped in such
types:
• S0_x – an interface between the components

within the same domain;

347

S. Gudas, E. Pakalnickas

• S1_x – an interface between the business process
domain and the information processing domain;

• S2_x – an interface between the information
processing domain and the information domain;

• S3_x – an interface between the information
processing domain and the product technology
domain;

• S4_x – an interface between the product techno-
logy domain and the information domain;

• S5_x – an interface between the external environ-
ment domain and the information domain;

• S6_x – an interface between the external environ-
ment domain and the information processing do-
main.

The index “x” shows the number of the interface’s
instance.

In order to use knowledge gathered in component-
based system model, CBSM UML profile was created.
This profile contains five stereotypes - <<BPD>>,
<<IPD>>, <<ID>>, <<PTD>>, and <<EED>>. Ste-
reotypes are used for components marking. When
component is placed in particular CBSM track, it is
automatically marked with track’s stereotype. For
example, for component from Business domain will
be applied stereotype BPD.

5. Information system design - a case study

Figure 5 depicts the main roles and activities in the
component-based development approach.

Figure 5. IS development process with CBSM

The first step is to perform the business process
modelling (Figure 6) in order to capture the business
requirements. For the business modelling it is used the
MagicDraw tool and the Business Process Modelling
Notation (BPMN) [4]. The BPMN is the standard for
the modelling business processes. The BPMN is the
most recognized standard used by the business users
for the end-to-end business process modelling. The
BPMN specifies a business process diagram (BPD).
The BPD is easily understandable by non-IT users.
The model is a description of how the business
operates. From the MDA viewpoint, the BPD is a
computation-independent model.

The second step is to perform the mapping from
the computation-independent model to the platform-
independent model. The mapping rules are applied
when the designer performs the component-based
analysis – analysing the BPD in order to create the

component-based system model. From the MDA
viewpoint this model, is a platform-independent mo-
del. The designer applies the following mapping rules:
1. the computational processes are transformed into

the components of the information processing
domain;

2. the management processes and the gateways are
transformed into the components of the business
processes domain;

3. the information flows connecting processes in the
workflow model are transformed into the
information domain components;

4. the material processes are transformed into the
components of the technological processes
domain;

5. the processes from or to an external business
environment are transformed into the components
of the external environment domain.

348

Component-Based Modelling at the System Design Stage

Figure 6. Ordering business process diagram

Figure 7. Component-based system model of the ordering process

The discovered components are placed in the
CBSM (Figure 7). The interaction relationships bet-
ween the components are considered as components’
interfaces. The designer draws the interfaces as arrows
between the components. There are several types of
interfaces. The type of the interface depends on the
fact, from which domains are the interconnected
components. There are also constraints imposed on the
interconnection of the components:
• the components of the business process domain

can only talk to the components of the informa-
tion processing and the information domains;

• the components of the information processing
domain can talk to the business processes, the
information domain components and the compo-
nents of the product technology domain;

• the components of the product technology domain
can talk to the information domain components
and to the components of the information proces-
sing domain;

• the external environment components can talk to
the information domain components and to the
components of the information processing do-
main.

The major result of the CBSM development is the
refinement of the main components (Table 1) of the IS

and the identification of their interfaces (interactions)
(Table 2).
Table 1. Components of ordering process

Domain Components
BPD Receive order, Approve order, Send

invoice, Accept Payment
IPD Scheduling, Calculate discount
ID Order, Invoice, Payment
PTD Ship Order
EED Fill order, Make Payment

Table 2. Interfaces between components

Interface Component Component
S0_1 Approve Order Close Order
S1_1 Approve Order Scheduling
S2_1 Receive Order Order
S2_2 Approve Order Order
S2_3 Send Invoice Invoice
S3_1 Scheduling Order
S3_2 Calculate discount Order
S3_3 Order Close Order
S4_1 Scheduling Ship Order
S5_1 Order Ship Order
S6_1 Order Fill Order
S6_2 Payment Make Payment

349

S. Gudas, E. Pakalnickas

The information system specification, developed
using the CBSM, identifies the IS components’ inter-
faces, the components and their relationships, bridging
with the definite business model (i.e. with BPD in this
case).

The third step of the component-based application
development approach is detailed IS design – a
specification of the components of all CBSM domains
(tracks) using the object-oriented approach and the
UML. In this step a sequence diagram of the ordering

process is created. This diagram helps to specify the
components’ interactions. Figure 8 depicts part of the
sequence diagram, derived from the component-based
system model. For components specified in CBSM,
are marked with stereotypes. Components in the BPD
domain became GUI forms. For example component
Approve Order became Approve Order Form. Si-
milar component Fill Order became Fill Order
WebService.

Figure 8. Part of sequence diagram

Figure 9. Part of UML class diagram

After the sequence diagram creation, will be crea-
ted a class diagram for the components and their inter-
faces. Figure 9 depicts a part of detailed components’
specification.

To exemplify the specification process of the com-
ponents, detailed specification of components FillOr-
der and Order will be depicted. These components
are interconnected by the interface S6_1. According to
the CBSM (Figure 7) specification and the sequence
diagram (Figure 8). The IS designer creates a detailed
specification of the Order and FillOrder components
(Figure 9). From the MDA viewpoint, in this step, the
platform independent model (PIM) is created.
In the fourth step IS design UML models is converted
to the platform specific models (Figure 5), applying a
platform specific code patterns. For each component
specification is applied a code pattern, which depends
on which track component resides in the CBSM. The
compiler “knows” which pattern to apply on

component specification, because every component is
marked with stereotype.
The fifth step is to perform code generation activities.
In this step, information system component’s program
code is generated from the platform-specific
specification of components. The following .NET
program code (Table 3) is generated for the Fill Order
Webservice and Order components.

Table 3 depicts the Fill Order Webservice and
Order components’ code. For Fill Order Webservice
component program code generation, was applied
external environment domain code pattern. That pat-
tern modifies the external environment domain com-
ponent design. If it is developed a .NET based applica-
tion, the required properties for .NET WebServices are
added, because information exchange with the clients
and the suppliers will be performed through the
WebServices. After the code generation, in the com-
ponent signature automatically is added a code

350

Component-Based Modelling at the System Design Stage

required for the Webservices. The code, which de-
pends on the component stereotype, is different for the
components Fill Order Webservice and Order, be-
cause these components are from different CBSM
domains – the Fill Order Webservice is from the
external environment domain, whereas the Order
component is from the information domain. The Fill
Order Webservice component will be used in the
Webservices implementation. The Order component

will be used in the application server for the com-
munication with the DBMS for storing data in the
database.

Table 3 shows that both the Fill Order Webser-
vice component and the Order component implement
the same interface S6_1. This ensures the application
code integrity, because all changes in the IS design
transform automatically into the components’ code.

Table 3. Code generation results

Generated Fill Order Webservice component code for
WebServices

Generated Order component code for Application server

(CBSM domain specific code)
Option Explicit On
Option Strict On
Imports System
Imports Systm.Web
Imports System.Web.Services

(CBSM domain specific code)
Option Explicit On
Option Strict On
Imports System
Imports System.Data
Imports System.Data.SqlClient

(interface S6_1 code)
Public Class Fill Order Webservice
 Implements S6_1
...
 Public Sub Request(ByRef customer As
String, ByRef quantity As String, ByRef price
As String) Implements S6_1.Request
 End Sub
...

(interface S6_1 code)
Public Class Order
 Implements S6_1
...
 Public Sub Request(ByRef customer As
String, ByRef quantity As String, ByRef price
As String) Implements S6_1.Request
 End Sub
...

After the code generation the .dll libraries is

created (they could be used as components) using the
VB.NET command line compiler vbc.exe.

In the sixth step the compiled components is used
in the system implementation process.

6. Conclusions

The proposed approach enables to use the compo-
nent-based view in the applications’ development and
helps to refine and to specify the main IS components
and the interfaces between them.

The key benefit of this component-based approach
is the integration of the model-driven architecture and
the component-based development principles with the
elements from the BMP, the EA and the OOAD
approaches. The integration of the application’s deve-
lopment activities narrows the gap between the busi-
ness requirements and the system implemented to sup-
port the business processes.

There are three major features of the presented
component-based system model aimed to improve the
IS development quality. First, the graphical modelling
makes the process of the application’s specification
easier to understand. Second, the CBSM displays the
results in a suitable form that is easy to understand for
the system developers. Third, the CBSM relates the
business requirements with the information system
architecture and enables the requirements’ traceability
from business to software artifacts.

Creating an environment that supports the CBSM
will enable developers to capture benefits from the
model-driven architecture and the component-based
applications design.

References
 [1] I. Crnkovic, M. Larsson. A Case Study: Demands on

Component-Based Development. Proceedings of 22nd
conference Software Engineering, Limerick, Ireland,
ACM Press, 2000.

 [2] A.Tang, J. Han, P. Chen. A comparative Analysis of
ArchitectureFrameworks.
http://mercury.it.swin.edu.au/ctg/weekly/tang1511.pdf.

 [3] M. Owen, J. Raj. BPMN and Business Process Ma-
nagement. http://www.bpmn.org/Documents/
6AD5D16960.BPMN_and_BPM.pdf.

 [4] R. Wuyts, S. Ducasse. Composition Languages for
BlackBox Components. http://www.iam.unibe.ch/~scg
/Archive/Papers/Wuyt01c.pdf.

 [5] C. Szyperski. Component Software.Beyond Object-
Oriented Programming. Addison-Wesley, 1998

 [6] A. Macaulay. Enterprise Architecture Design and the
Integrated Architecture Framework. http://www.
itarchitect.co.uk/articles/display.asp?id=34.

 [7] E. Pakalnickas, S. Gudas. Informacijos sistemos
projektavimas ir realizavimas komponentiniu metodu.
Informacijos mokslai, t. 24, 2003, 59-68.

 [8] A.W. Brown. Large-Scale Component-Based Deve-
lopment. Prentice Hall PTR, ISBN: 0-13-088720-X,
2000.

351

S. Gudas, E. Pakalnickas

 [9] T. Takeshita. Metrics and Risks of CBSE. Proc. 5th
Int. Symp. Software Tools and Technologies, Pitts-
burg, PA, IEEE Computer Society, 1997.

[10] E. Pakalnickas, S. Gudas. Sąsajomis grįstas IS
projektavimas. Konferencijos “Informacinės technolo-
gijos 2006” pranešimų medžiaga.

[11] R. Butkienė, R. Butleris, T. Danikauskas. The
approach of consistency check-ing of functional
requirements specification. Proceedings of 6th World
Multi-conference on Systemics, Cybernetics and Infor-
matics, Vol.XVIII, Information Systems Development
III, Orlando, USA, 2002, 67-72.

[12] S. Gudas. The component-based information system
requirements modeling. Business operation and its
legal environment: processes, tendencies and re-sults.
Riga "Biznesa augstskola Turiba" SIA, 2002, 98-102.

[13] T.Meservy, K.D. Fenstermacher. Transforming Soft-
ware Development: An MDA Road Map.
http://www.compuware.com/dl/mdaroadmap.pdf.

[14] A. Brown, S. Johnston, K. Kelly. Using Service-
Oriented Architecture and Component-Based Deve-
lopment to Build Web Service Applications. Internet:
http://www-128.ibm.com/developerworks/rational
/library/content/03July/2000/2169/2169.pdf.

Received August 2006.

