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Abstract. The importance of classification algorithms in the context of risk assessment is briefly explained. As an 
alternative to the popular support vector machines fault tolerant perceptron learning is suggested. In order to achieve 
better generalization properties the additional use of an iterative large margin perceptron algorithm is investigated. In 
particular it is shown that care has to be taken when initializing the algorithm. Some preliminary experimental results 
are briefly discussed. 

 
 

1. Introduction 

In the context of risk assessment for financial insti-
tutions, insurance agencies and the likes sophisticated 
classification algorithms have become increasingly 
important since large competitive advantages may be 
achieved, cf. e.g. [16], [18], [1], [10]. In the simplest 
case, the problem to be solved consists of classifying 
customers into bad, respectively, good risks according 
to data characterizing them. Usually these data are 
contained in vectors (“patterns”) in a Euclidean space 
whose entries typically contain information concer-
ning income, age, etc. Then, using suitable training 
data (i.e. vectors characterizing customers together 
with their a posteriori known risk classification), fre-
quently a (generalized) linear discriminant is construc-
ted which allows the computation of a weighted 
average that is then compared with a cut-off and thus a 
decision good/bad risk is arrived at according to 
whether the cut-off is exceeded or not. 

The weights for this cut-off may be obtained by 
various methods: Classical statistical techniques (in 
particular Bayes theorem and logistic regression) may 
be employed as well as neural network techniques, cf. 
e.g. [6], [7], [2]. Recently so-called support vector 
machines (SVMs) have received much attention, cf. 
[5],[17], [11]. However, although these SVMs are 
large margin algorithms ( in the sense that the 
separating hyperplane that constitutes the discriminant 
achieves a maximal separating margin, which pro-
mises good generalization capabilities, cf. [17]) they 
have some disadvantages. In particular, they are rather 
demanding from a programming point of view and 
their fault-tolerant version (the soft margin SVM) 
makes use of some approximations that are difficult to 
justify in general, cf. [17]. Hence as an alternative 
fault tolerant perceptron learning, cf. e.g. [8], [6], [7] 
has been investigated. Unfortunately,this algorithm 

does not possess the large margin property. Hence in 
this paper the additional use of  an iterative large mar-
gin perceptron algorithm as proposed by Krauth and 
Mezard, cf. [13] is treated. The algorithm was origi-
nally devised in a physics context and needed some 
slight modifications since it was applied to rather spe-
cialized training data. Thus it became necessary to re-
work the complete proof using in particular a non-
trivial initialization. Since during this process it turned 
out that a modified Krauth/Mezard algorithm as pre-
sented in [9] without proof contained a statement that 
could not be verified this did seem entirely justified 
though. 

2. The Problem   

Assume that suitable training data are available. In 
abstract terms, then p vectors x1, x2, …, xp from ℜn 
together with their risk classification (“good” respec-
tively “bad” vectors associated to customers corres-
ponding to class C1, respectively, class C2) are given, 
where no special restrictions on the vectors are 
assumed. Hence implicitly a preference relation 
(partial order)  “〉”  is determined for these vectors by 

 xi 〉 xj if xi ∈ C1 and xj ∈ C2  
It is then required to find a map mw: ℜn →ℜ that 

preserves this preference relation, where the index w 
of course denotes a weight vector. More precisely, one 
must have 

 xi 〉 xj ⇒ mw (xi) > mw (xj) 
If one now specializes by setting mw (x):= <ϕ(x), 

w>, denoting the scalar product by <.,.> and an 
embedding of x in a generally higher dimensional 
feature space by ϕ, then a linear discriminant is ob-
tained. Here the weight vector w and a cut-off α (if 
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3. Generalization of the Krauth/Mezard 
Algorithm 

both exist) may be computed e.g. by applying the 
perceptron learning algorithm, cf. e.g. [14], such that 
 x ∈ C1  if  <ϕ (x), w> > α  Given samples (patterns) x1, x2, ..., xp, find a vector 

w* such that  x ∈ C2  if  <ϕ (x), w> < α. 
Note here that this problem can be reduced by a 

standard trick as follows. 
 < w*, xj >  ≥ c  forj = 1, 2, …, p  and a fixed con-
stant c > 0. 

Embed the vectors  in a space whose dimension is 
one higher than that of the feature space by defining ϕ 
(x) → y:= [ϕ (x), -1] respectively [-ϕ (x), 1] if  x ∈ C1  
respectively x ∈ C2 and map the weight vector w to 
w1:= [w, α]. Then clearly the problem is reduced to 
finding a weight vector w1 such that <y, w1> > 0 in the 
higher dimensional space. In the sequel, it is this re-
duced problem that will be considered. 

Assume throughout that such a vector exists with  
|| w* || =  c/∆opt, where ∆opt denotes the maximal 
distance of separation of  the samples from zero. 

3.1. Algorithm 

Set x:= maxj||xj||2. 
At t = 0 set w0 = λ1x1 + λ2x2  + … + λpxp  where all 
the λs are arbitrary but nonnegative. Of course, it must be admitted that the existence of 

a suitable weight vector is by no means guaranteed. 
However, at least in theory, the map ϕ may be chosen 
such that the capacity of the perceptron is large 
enough for a solution to exist with high probability.  

At t = 0, 1, ... determine a pattern xj(t) by 
 < wt, xj(t) > := minj < wt, xj > 
and if  
 < wt, xj(t) > < c  (c is a fixed positive 
number) In order to see this, note that the number of diffe-

rent monomials of degree i in x1, x2, …, xn is given by 
B(n+i-1,i), where B denotes the binomial coefficient, 
cf. e.g. [12], p. 488. Hence an easy induction proof 
shows that the number of different monomials of 
degree less than or equal to i in x1, x2, …, xn is given 
by B(n+i,i). Thus ϕ may be defined by 

use it to update wt by 

  wt+1 = wt + (1/x)xj(t)  (1) 

If < wM, xj(M) >   ≥  c stop. 
The properties of the algorithm are a consequence 

of the following considerations, the first part of which 
is concerned with general convergence properties 
whilst the second part shows that a maximal margin of 
separation may be achieved by letting c tend to 
infinity. The arguments used in the first part are essen-
tially well-known from perceptron learning whilst the 
method utilized in the second part is somewhat more 
complicated. In either case, clearly the Krauth/Mezard 
paper provided essential guidance. 

ϕ (x) = (1, x1, x2, …, xn, x1
2, x1x2, …, xn

i) 
as a map from ℜn to ℜB(n+i,i) and hence the separating 
capacity of the corresponding hyperplanes may be 
increased with i, for details see e.g. [4]. 

The price one has to pay for this increased sepa-
rating capacity consists of larger computation times 
and, perhaps more importantly, loss of generalization 
capabilities due to a higher VC-dimension of the sepa-
rating hyperplanes, cf. e.g. [17], [15]. Hence the im-
portance of this procedure is of a more theoretical 
nature. 

3.2. General Convergence Properties 

After M updates according to  the rule (1) 
assuming that pattern xj has been used mj times where 
Σj mj = M  one has the following 

Indeed, in practical situations fault tolerant lear-
ning such as soft margin SVMs or Gallant’s pocket 
algorithm will be preferred. For reasons given in the 
introduction here the latter will be further investigated. 
In particular, it will be of interest how, given the 
correctly classified patterns, large margin separation 
can be achieved. To this end, it was intended to em-
ploy a slightly modified version of the Krauth/Mezard 
algorithm initializing it with the discriminant weights 
obtained by Gallant’s algorithm, since this seemed a 
good approximation to the optimal weights. This ap-
peared immediately feasible, since in [9] it was 
claimed without proof that an arbitrary initialization is 
possible. However, a close investigation of the origi-
nal paper of Krauth and Mezard where an initializa-
tion with the zero vector was used, revealed that in 
case of an arbitrary initialization there is a gap in the 
proof that at least the present author could not close. 
Hence a new proof (following the original one quite 
closely in most places but removing the restriction on 
the vectors ) is presented below. 

c*(M+Λ)/x ≤ (1/x) Σj (mj +λj)<w*, xj> = <w*, 
wM> ≤ (c/∆opt)*||wM|| (2) 

where Λ := Σj λj. 
On the other hand, an upper bound on ||wM|| is 

given by considering 
 ||wt+1||2 - ||wt||2 = (2/x) < wt, xj(t) > + (1/x2)|| xj(t)||2

    ≤ (2/x)*c + 1/x = (2c + 1)/x 
which implies      

  ||wM||2 ≤ M* (2c + 1)/x + ||w0||2 (3) 

Now (2) and (3) together give an upper bound on 
M, namely 

  M  ≤  (x2/∆opt
2)*{ (2c + 1)/x + ||w0||2) (4) 

Hence the algorithm converges in a finite number 
of steps (note that the upper bound given is not tight!).  
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   ≤ (x-1/2)*(1/||w*||)     
      =  ∆opt /(c*x1/2) 

Indeed, even more can be said by considering the 
margin of separation ∆c determined by this algorithm: 

Thus using (11) one obtains ∆c ≥ c/||wM|| ≥  [∆opt*c* 
      *(M+Λ)/x]/ ||wM||2 = ∆opt / A (5) a(M) ≤ {c + [(M-1) + x*|| k0||2]1/2}/c + 

  + ∆opt /(c*x1/2)  (12) Finally the A, which clearly is a performance 
guarantee factor, can be bounded using (3) and(4) 
above by 

and exploiting (11) and (12) that ||wM|| is bounded by 
 ||wM|| ≤ a(M)* ||w*|| + || kM||    
  ⇒  A = ||wM||2 /[c*(M+Λ)/x] ≤ [M* (2c + 1)/x + 

||w0||2]/(c*M/x)  ⇒ 

  A ≤ (x/c)*[ (2c + 1)/x +||w0||2/M] (6) 
||wM|| ≤ ||w*||*{[c + [(M-1) + x*|| k0||2]1/2]/c + ∆opt 

/(c*x1/2) + (∆opt /c)*[M/x + || k0||2]1/2}. (13) 
Note here that (6) implies that for large M the 

bound for A given in [13] namely A ≤ (2+1/c) is 
recovered. 

Finally it follows from (13) that 

c/∆opt  ≤  c/∆c  ≤  ||wM|| → ||w*|| = c/∆opt    
      as c → ∞ (14) 

since M grows at most linearly with c, see (4). 3.3. Optimal margin of separation 

In order to prove that for c → ∞  ∆c approaches 
∆opt

 following [13] wt is decomposed as 4. Conclusion 

  wt = a(t)w* + kt   where  <kt, w*> = 0. (7) 

The reasoning is analogous to the one employed 
above but one reasons separately for w* and kt by 
decomposing the term (1/x)xj(t) accordingly. 
First note that  

  a(t) = < wt, w* >/||w*|| (8) 

and hence that a(t) > 0 for t > 1 and a(0) ≥ 0 since wt is 
nonnegative linear combination of patterns xj. 

Next observe that xj(t) always has a negative 
projection on kt i.e.      

< kt, xj(t) >  < 0. (9) 

This is so since the condition minu [<w* + u*kt, 
xj(t) >/||w* + u*kt||] < ∆opt for all u ≥ 0 would be 
violated. This in turn can be seen since f(u) := minu 
[<w* + u*kt, xj(t) >/||w* + u*kt||] satisfies this in-
equality by exploiting the positivity of a(t) and taking 
u = 1/a(t). However, if  < kt, xj(t) >  >  0 would hold, 
then a simple differentiation shows that the minimum 
for f(u) is given for u = 0 and this is greater than or 
equal to ∆opt. 

Now (9) can be exploited by arguing on kt as for 
(3) to get 

  || kt|| ≤ [t/x + || k0||2]1/2 (10) 

Note that the nonnegativity of a(t), cf. (8), seems 
to be essential for the second part of the correctness 
proof, whilst for the first part (using mainly classical 
perceptron convergence arguments) this is not neces-
sary. Hence it seems that after fault tolerant learning 
the weight vector obtained by Gallant‘s pocket algo-
rithm cannot be exploited to initialize the Krauth/Me-
zard algorithm since it will contain samples that are 
not correctly classified in general. On the other hand, 
seeing that a suitable initialization might shorten com-
puting times (this is suggested, for example, by the 
slick perceptron convergence proof given in [3]) it 
might be helpful to compute a solution of the in-
equality system by the usual perceptron learning first 
and then use this weight vector as initialization. No 
problems would occur in this case since the coef-
ficients of the weight vector would satisfy the positi-
vity condition. It seems that extensive experiments are 
required to resolve the issue and it is intended to 
conduct these as soon as suitably large realistic 
samples become available. At any rate, preliminary 
tests with approximately 360 “real life data” provided 
by a German financial institution showed that chosing 
c large enough (approximately 50) can increase the 
margin of separation quite significantly ( > 50%) 
when compared to standard perceptron learning whilst 
using still negligible CPU times (1 to 2 minutes) when 
initializing with the zero vector. Incidentally, in [19] a 
method was suggested that was claimed to convert the 
pocket algorithm (or rather its dual) into a large 
margin algorithm. However, again the proof seems to 
contain a gap: In certain cases (which are not all that 
special) fault tolerant learning is still finite state and 
thus convergence cannot be guaranteed. Details 
concerning this statement will be reported elsewhere. 

If learning stops after M steps as assumed above, 
then a(M-1) can be bounded as follows 
 < wM-1, xj(M-1) > = a(M-1)< w*, xj(M-1) >  + < kM-1, 
xj(M-1) > < c ⇒ 
 a(M-1) < [c + |< kM-1, xj(M-1)>|]/c   
  ⇒ 

a(M-1)≤ {c + [(M-1) + x*|| k0||2]1/2}/c (11) 

A bound on a(M) is obtained from the learning rule 
in the algorithm using (8): 

Acknowledgement: The presentation in the paper 
was improved following up the hints of three ano-
nymous referees.   a(M) – a(M-1) = < wM - wM-1, w* >/||w*||2 

   =  (1/x) |< xj(M-1), w*>| /||w*||2 
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