
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2006, Vol.35, No.3A

MATCHING SEMANTICALLY DESCRIBED WEB SERVICES
USING ONTOLOGIES

Kim Christensen, Thorbjørn Højgaard Olesen, Lone Leth Thomsen
Department of Computer Science, Aalborg University

Fredrik Bajersvej 7, DK-9220 Aalborg, Denmark

Abstract. The theme for this article is Semantic Web Services. The motivation is the propagation of web services
and the demand for dynamically exchanging web services in business processes (BPs). To achieve such dynamic
exchange, it is necessary to be able to easily find web services that match a given set of requirements. Such
requirements are best described with semantics, so it is necessary to develop a semantic UDDI repository (from now on
denoted Sem-UDDI) for publishing of and searching for semantically described web services. Sem-UDDI is UDDI V2
compliant and uses a common interface based on UDDI categoryBags for publishing both OWL-S and WSDL-S
described web services, and has a similar interface for searching. In order to sort the returned web services with respect
to the search requirements, Sem-UDDI uses match score calculation rules based on commonalities between object
properties in an OWL ontology concept hierarchy. Sem-UDDI is implemented as a layer to be put on top of a
conventional UDDI repository, which gives companies the possibility of getting semantic functionality, while conti-
nuing to use their existing UDDI repository.

1. Introduction

According to [4], in the future web services will no
longer be designed to function solely as distributed
object oriented computing systems. Instead web servi-
ces that utilise the Semantic Web[3] will make it pos-
sible for clients (users) to dynamically discover and
use web services without a priori negotiations with the
providers of the web service. This goal is certainly
important to achieve for companies that deal with
commercial web environments, be it business-to-
business or business-to-consumer. This is due to the
high level of market changes that exist in that parti-
cular area. Similarly, it is highly important to com-
panies that provide web services, to be able to adapt
their interfaces without interrupting and changing the
programs their clients use. Furthermore, companies
that want to compare prices or use alternate services
within each transaction would like the possibility of
flexible adaption of the interfaces presented by alter-
native services. This would be very beneficial in
connection with interchanging services within their
BPs. Currently, services that perform similar functions
often have different interaction protocols and inter-
faces. This article proposes a solution to overcome the
problem of determining whether one service seamless-
ly can be exchanged with another.

In the following we present our solution to annota-
ting web services with semantics and the matching of

such semantically described web services. Section 2
presents what a semantically described web service
consists of, how the ontology should be represented,
and the patterns that make it possible to publish and
search for semantic web services described in either of
the two standards, OWL-S[10] and WSDL-S[14].
Section 3 covers the matching of semantically descri-
bed web services. Section 4 presents a brief explana-
tion of how the solution is implemented. Section 5
relates our work to other projects covering the same
area. Finally section 6 gives a conclusion on our
proposed solution.

2. Combining OWL-S and WSDL-S

An ontology that describes the concepts used for
annotating the operations of web services must be
represented in order to use the patterns presented in
the following.

2.1. Representation of an Ontology

The representation of an ontology for use here
must be a so called world ontology. Furthermore,
Burstein et el. [4] also argue that there is a need for a
world ontology. A world ontology is characterised by
describing virtually the entire world, i.e. it does not
only contain information from one specific application
domain, but covers all application domains. Having

267

K. Christensen, T. H. Olesen, L. L. Thomsen

world ontology ensures a non-redundant definition of
concepts.

Using such an ontology, companies must describe
their services by the concepts defined in this world
ontology, an example of this type of ontology is
shown in Figure 1. Such a world ontology is very
comprehensive and should be created by gathering
information from domain experts to ensure its cor-
rectness. Furthermore it would be beneficial if the
ontology was shared publicly and only one single
world ontology existed. Due to the enormous amount
of work in standardizing such a world ontology, it
would ideally be developed and administered by a
W3C working group with members from different
commercial companies. Currently, a world ontology
does not exist, but the existence of taxonomies like
NAICS[13] and UNSPSC[16] gives reason to believe
that a world ontology will be developed.

There are a number of alternative approaches for
representing the ontology, a discussion of these can be
found in [6].

Figure 1. Shared-world Ontology

Given the assumption that such an ontology exists,
it is possible to define patterns for publishing of and
searching for semantically described web services. As
shown in Figure 1, an ontology can be represented
graphically in a tree structure. This is similarly shown
in the matching example in Figure 8.

2.2. The Publish and Search Patterns

This section presents the patterns for publishing of
and searching for semantically described web services.
According to [4], the current trend is that web services
are described using either OWL-S or WSDL-S. The
patterns we present are thereby highly relevant due to
the possibility of using both these standards in
publishing and searching for semantically described
web services.

2.2.1. Semantically Described Web Services
In this article, the meaning of a semantically

described web service is a web service where every
operation has a semantic description of its inputs and
outputs. This information is required to determine
whether a specific web service can be integrated
seamlessly into a BP. The different parts of a BP have
formal definitions, the most important of these are
denoted service templates and service objects. For a
full description, see [6].

Service Template (ST) An ST defines a web ser-
vice that a company needs for its BP. An ST consists
of a number of sub-components of which only the
inputs and outputs are considered here. Naturally these
are needed to define the flow of data within the BP.

Service Object (SO) An SO is a web service can-
didate that might be suitable to fit in a BP. This is
determined by matching it with an ST. Therefore, an
SO consists of the same sub-components as an ST.

2.2.2. Publish
The pattern for publishing a web service described

in e.g. OWL-S requires the user to describe the web
service by an OWL-S service profile which has
references to concepts defined in the world ontology.
The pattern is shown in Figure 2.

Figure 2. The publish pattern for OWL-S described web services

The information in the OWL-S service profile is
used to create a businessService able to contain the in-
formation from the service profile. This data structure

is sent to Sem-UDDI which handles the publish
request by simply storing the businessService, making
it available for future searches.

268

Matching Semantically Described Web Services Using Ontologies

269

A businessService contains a categoryBag that
holds a number of keyedReferences. Each keyedRefe-
rence contains a tModelKey, a keyName, and a key-
Value. The tModelKey contains a reference to a spe-
cial tModel, which can be either uddi:INPUT_
CONCEPTS or uddi:OUTPUT_CONCEPTS.

Note that Figure 2 contains no references to
WSDL and the mapping between WSDL and the
OWL-S service profile. Such a mapping exists and is
called a service grounding, however it is not consi-
dered in this article since it has no relevance in
connection with neither publishing nor searching.

The publish pattern just described is for OWL-S
described web services, but the same pattern applies
for WSDL-S.

2.2.3. Search
In order to obtain the semantics of the input and

output types, the semantically described web services

must be published in the manner described in Section
3.

If a service has been published in Sem-UDDI
accordingly, it is possible to make a more specific
search, compared to the conventional UDDI search
method using NAICS or UNSPSC categories. The
specific search is performed by using categoryBags
containing the semantic input and output require-
ments.

To search for a semantically described web service
a find_ service must be created from the ST. The
structure of a find_service resembles the structure of a
businessService, and is used when searching for web
services. In the ST, a number of input and output
parameters are defined. These parameters are the ideal
parameters for the BP because if they match exactly
only little work is needed for integrating the found
web service.

Figure 3. The search pattern for semantically described web services

The ST in Figure 3, which shows the overall
search pattern, resembles the OWL-S service profile
in Figure 2. In reality this is not the case as an ST only
contains references to the input and output parameters,
whereas an OWL-S service profile also contains
references to concepts that define communication
protocols etc. These are left out of Figure 2 for sim-
plicity.

Some problems might arise using the search
pattern though, imagine an example where averagely
two web services are published per concept in the
world ontology. If a search were performed using the
concept Date (see Figure 8), only two web services
would be matched for semantic similarity. If the
search were extended to include the TimePoint, Calen-
darDate and the Event concepts, the matching would
averagely be done on eight (four times two) web ser-
vices. Six of these web services would be capable of
fulfilling the specifications of the searched concept,
because CalendarDate and Event subsume Date. The
two web services described by TimePoint would

however only be capable of partly fulfilling the speci-
fications. The web services published with TimePoint,
CalendarDate and Event as input concept would not
be considered if only Date were used when searching.

This problem is solved by widening the search
results to contain not only the searched concept itself,
but also its parents and children. This is done by using
inferred data, which is described in the following.

2.2.4. Searching with Inferred Data

The notion of an inferred search means that a
search for a given concept will be widened when the
search is performed in Sem-UDDI. This fact should
though be hidden to the user, as the overall result of a
search is a list of matching SOs ranked according to
their match score.

In [8] methods for fetching the parents and
children of a semantically described concept are
suggested. These methods can be adapted to solve the
problem with too few search results. This is done by
adding extra keyedReferences to the categoryBag

K. Christensen, T. H. Olesen, L. L. Thomsen

270

created by the user. These extra keyedReferences are
references to the immediate parents and children of
the searched concept. Figure 4 shows the structure of
the find_service after the addition of the inferred data
for Date. If the immediate parents or children do not
suffice, it is possible to follow the relations further out
and thereby find additional concepts from the
ontology. In General, it is difficult to estimate how
large the increase in the number of web service hits is,
as this depends on the number of parents and children
and the number of published web services associated
with each of them.

Figure 4. The new find_service containing inferred data

With this widened search in Sem-UDDI there are
more results (SOs) to match than with a normal search
using NAICS or UNSPSC categories.

3. Matching Rules

This section explains how matching between an
ST and SO is performed, and describes Sem-UDDI’s
matching rules for both single and multiple
parameters.

When a match must be done, the input and output
parameters of the web service operation must be
identified. This is done as explained in the previous
section.

3.1. Matching STs and SOs

This section describes the matching of the
semantics in STs and SOs. This includes a description
of a number of functions that combined makes it
possible to determine the degree to which an ST and
SO are equivalent. The functions described in this sec-
tion require the ontology describing the ST to be the
same ontology that describes the SO. We consider
such a world ontology to be a prerequisite. However a
description of functions that match STs and SOs
described by different ontologies can be found in [5].
Furthermore, the inspiration for calculating the
geometric distance between different concepts is also
found in [5].

In the example in Figure 6, an ST for the travel
reservation service of the Request Conference BP
must be matched against a number of more or less
matching SOs. The ST must not violate internal
functions already defined in the BP (the other puzzle
bits). Thereby an ST for the Request Conference BP
could look as described in Figure 5.

Figure 5. Composition of an ST

Figure 6. A BP that needs a travel service

Matching Semantically Described Web Services Using Ontologies

When the ST is created as in Figure 5 it must be
matched against a number of SOs. This matching must
be done on the ontology concepts that describe them.
To do this, a matching algorithm is needed.

The idea behind the matching algorithm is based
on the notion of inheritance from object oriented prog-
ramming. To determine whether two concepts are
similar it is considered whether they subsume each
other. If concept “A” subsumes concept “B”, “A” has
all the functionality of “B” and possibly even more.
Thereby “A” is able to take over the role of “B”. If the
case is the opposite (“B” subsumes “A”) then “A”
cannot entirely take over the role of “B”, but they have
some properties in common.

The matching algorithm takes an ST and an SO as
input parameters and returns a floating point number
between 0 and 1, which represents the semantic simi-
larity. Figure 7 shows how the algorithm works, it is
based on Tversky’s feature-based similarity model
[15]. This model is based on the idea that common
features tend to increase the similarity of two con-
cepts. In this way the matching algorithm in Figure 7
computes the semantic similarity by how many com-
mon concepts they share.

Figure 7. The matching algorithm

The function semantic_similarity() re-
turns a floating point number between 0 and 1,
depending on the ratio of common properties between
the ST and the SO. To make this computation, the
function divides the problem in four cases:

1) The ST and SO concept are the same:
This is the simplest case. The two services have

the exact same properties described, which means that
the inputs of the ST and SO match exactly. Thereby
the match score is evaluated to 1.

2) The SO concept subsumes the ST concept:
In this case all the properties (including the

derived) of the ST also exist in the SO. Therefore the
match score is evaluated to 1 as well.

3) The ST concept subsumes the SO concept:
This case handles the scenario where the SO

concept is subsumed by the ST concept. This means
that some of the properties of the ST could be missing
in the SO. Therefore the match score is evaluated to

|)(Pr|
|)(Pr|

STop
SOop

4) The concepts do not subsume each other at all:
In the most complicated case the concepts do not

subsume each other in any way. Therefore the
geometric distance between the ST and SO must be
calculated. This way of calculating the similarity was
originally proposed in [5]. The geometric distance is
calculated in the last else-clause in Figure 7 and is
described mathematically by

|)(Pr|
|)(Pr)(Pr|

*
|)(Pr)(Pr|
|)(Pr)(Pr|

SOop
SOopSTop

SOopSTop
SOopSTop I

U
I

3.1.1. An Ontology Matching Example

To illustrate the idea of the matching functions an
example of ontology is in place. This example builds
upon the general example presented in this article. As
mentioned earlier, the ST is obliged to take as input
whatever the internal functions of the BP dictates.
According to Figure 9 this is a Date in this case.

Figure 8. The Time ontology in a matching situation

271

K. Christensen, T. H. Olesen, L. L. Thomsen

Figure 9. The matching of one ST to four different SOs

If the matching algorithm above should be invoked
on this example, the match scores for the ST and the
SOs will look as in Figure 9. This example assumes
that the number of input parameters for
MyTravelST is one. Furthermore the properties of
the respective concepts are described in curly brackets
under the concept. The calculation of case 4 is made
using the following four equations:
• s1 = Prop(Date) = {absolute_time, year, month,

day}, size = 4
• s2 = Prop(Time) = {absolute_time, hour, minute,

second}, size = 4
• s3 = Prop(Date) ∩ Prop(Time) =

{absolute_time}, size = 1
• s4 = Prop(Date) ∪ Prop(Time) = {absolute_time,

year, month, day, hour, minute, second}, size = 7
Using these four equations (s1 is used as an

intermediate result for s3 and s4), the match score for
case 4 is:

matchScore =
||
||*

||
||

2

3

4

3

s
s

s
s =

4
1*

7
1 = 0,189

The match score mentioned in this section consi-
ders the case where the similarity between two con-
cepts should be calculated. The cases where parame-
ters of a categoryBag are void, or not known in the
world ontology, are presented in the following section.

3.2. Single Parameter Rules

Generally for single parameters, there are three
possible cases to handle. These are the cases where the
concept received in the categoryBag (containing the
parameters from the operation) are Known or
Unknown to the world ontology used, or if the
parameter is Void.

The following example shows an ST and an SO
with a maximum of one parameter for input and
output. The example takes outset in a scenario where a
company needs a web service that books a conference
ticket for a conference that takes place at a certain
time.

Figure 10. Example of an ST and an SO with single

parameters

The three possible cases (Known, Unknown, and
Void) should be handled differently. In this example,
the concept TimeDuration is Unknown, thus the match
score between Time and TimeDuration will be set to 0.
The Void case must be handled according to the rules
in Figure 11, and thereby in this case the match score
must be set to 1. If the concepts to be matched are
both Known, the matching algorithm described in
Figure 7 is used.

Pseudo code for the rules to calculate the match
score for each type of concept is given in Figure 11.
These rules only handle input concepts, but the rules
are similar for output concepts.

Figure 11. The rules for calculating match scores

3.3. Multiple Parameter Rules

The match score algorithm presented in Section 3
leaves multiple parameters out of consideration, thus
the following matching rules were designed due to the
fact that the match score must cover an entire service
and not just one ontology concept.

When matching is to be performed between an ST
and an SO with more than one input parameter, all
possible matching combinations of both the input and
output parameters must be considered. This means
that each input parameter in the ST must be matched
against all possible input parameters in the SO, and
similarly for output parameters.

The following example shows how the calculation
of the match score is done with multiple parameters.
This example also takes outset in the scenario where a
company needs a web service that is able to book a
ticket for a conference that takes place at a certain
time.

Figure 12. Example of an ST and an SO with multiple

parameters

272

Matching Semantically Described Web Services Using Ontologies

273

This example shows how the match score of the
input concepts is calculated for the case where the
inputs of the ST are (Known, Known) and the inputs of
the SO are (Unknown, Known, Known).

In general, this gives a total of n×m combinations
(in this example 2×3), each with one match score.
Each of the parameters in the ST is matched against
all parameters in the SO. From these match scores, the
highest is extracted and used to calculate the overall
match score. The overall match score is calculated by
adding these highest match scores and dividing the
result with the number of parameters of either the ST
or SO. The choice between these depends on the one
having the most parameters.

Figure 13. Match score calculation example with multiple

input parameters

The example only handles the input parameters,
but the calculation regarding multiple output
parameters is similar. The input match score is
calculated as follows:

inputMatchScore =
3
189,0+1 = 0,396

Similarly the output match score is calculated:
outputMatchScore =

1
0 = 0

Thus the overall match score for the above
example is calculated to be:

matchScore =
3
189,0+1 * 0,5 + 0 * 0,5 = 0,198

The match score in this case is weighted equally
for input and output, therefore the weight is set to 0.5.
The match score calculation is all quite straightfor-
ward, but some twists are worth mentioning. For
instance, the Void case will naturally never occur if
multiple parameters are defined. Furthermore, when
two parameters are matched and one of them is Un-
known, the match score is determined to be 0. The
example only handles one single case (2×3 parame-
ters), but the calculation rules are similar no matter
how many parameters the ST or SOs consist of.

4. Implementation

The theories behind the publish and search patterns
described in Section 2 along with the matching rules
described in Section 3 have been implemented as a
prototype of the semantic UDDI repository called
Sem-UDDI.

Sem-UDDI is implemented as a layer to be put on
top of an existing version 2 compliant UDDI reposi-
tory, denoted as X-UDDI. The advantage of having
Sem-UDDI as a layer instead of a self-contained

UDDI repository is that companies can continue to use
their existing repository while getting semantic func-
tionality.

UDDI clients such as UDDI4J[7] or Microsoft
Visual Studio[11] will communicate with Sem-UDDI
like any other UDDI repository because it has the
same interface as described in the UDDI version 2
API specification[2]. The API contains several func-
tions divided in two categories, those used for inqui-
ring and those used for publishing in a repository. Of
all these, only the find_service function from the
inquire API is of special interest, since the rest of the
inquire functions and all of the publish functions are
forwarded unchanged by Sem-UDDI to X-UDDI.
Figure 14 shows how Sem-UDDI lies as an interme-
diate layer between the UDDI client and X-UDDI.

Figure 14. Sem-UDDI as a layer

When a UDDI client sends a find_service
request, containing an ST, Sem-UDDI modifies the
request to contain more ontology concepts with the
purpose of increasing the search results. The idea
behind and the method for finding additional related
concepts to widen the search, i.e. the use of
inferencing, are described in Section 3. For each of the
concepts used as search requirements in the ST in the
find_service request, the Inference module
finds the parents and children concepts from the world
ontology. These extra concepts are added, enclosed in
keyedReferences, to the categoryBag of the
find_service request. After modifying the ST in
the find_service request, Sem-UDDI sends it
further to X-UDDI which is responsible for the actual
data storage and data retrieval. X-UDDI responds with
a service_list, containing a list of web services
(SOs) matching any of the concepts used in the ST in
the find_service request as search requirements.
For each of the SOs contained in the servi-
ce_list, the Match module calculates a match
score indicating similarity of the SO, compared to the
ST. Finally, Sem-UDDI sorts the SOs with respect to
the calculated match score, before sending the ser-
vice_list back to the UDDI client.

5. Related Work

Sem-UDDI’s publish and search patterns are
inspired by the OWL-S approach described in [9] and

K. Christensen, T. H. Olesen, L. L. Thomsen

the WSDL-S approach described in [12]. Both use
categoryBags to contain keyedReferences to ontology
concepts for semantically describing input and output
parameters. [9] suggests that additional information
contained in the OWL-S service profile should be
stored with the businessService in UDDI, however
this is not considered by Sem-UDDI, since it only
bases its searches on input and output requirements.
Similarly, [12] suggests to annotate operations with
semantic concepts, but this is not considered by Sem-
UDDI either.

The matching algorithm used in Sem-UDDI is in-
spired by [5] that suggests using ontology property
inheritance for calculating the match score for a
Service Template and a Service Object. However, [5]
considers only STs and SOs with a single parameter,
where the matching rules in Sem-UDDI can handle
STs and SOs with multiple input and output para-
meters.

The recent work in [1] takes outset in earlier work
of the WSDL-S approach. One of the new ideas is to
give web service developers the freedom to choose
which semantic language to use for annotating input
and output parameters, i.e. they can use e.g. OWL,
UML, or WSMO[17]. Currently, Sem-UDDI can use
OWL ontologies only, but could be extended to sup-
port additional languages, given that they are com-
patible with Sem-UDDI’s search and publish patterns.

6. Conclusion

To be able to conduct business faster and more
efficient, companies need to optimise their business
processes to be able to handle dynamic exchanges of
web services. This cannot be achieved with the con-
ventional web service technologies available today,
thus a new means for easily finding web services that
match a given set of requirements must be found.

The considerations of how the optimal representa-
tion of an ontology should be, revealed that the need
for a world ontology is significant. Furthermore, our
work has shown that it is possible to design and
implement a semantic UDDI repository that provides
functionality for publishing of and searching for both
non-semantically and semantically described web
services. The repository was developed to be capable
of handling both of the two standards OWL-S and
WSDL-S for semantically describing web services.
Even though OWL-S and

WSDL-S have different ways of describing web
services semantically, a common interface combining
the two approaches was developed. This interface was
built upon the notion of ontologies written in OWL to
define semantic concepts.

To compare semantic search requirements with
published semantically described web services, a set
of rules for calculating a match score was developed.

An important design choice was to develop the se-
mantic UDDI repository as a layer to be put on top of

a conventional UDDI repository. Hereby companies
can get semantic functionality while still using their
existing UDDI repositories. This also makes the se-
mantic UDDI repository flexible, since it is not depen-
dent on a specific UDDI implementation.

The current implementation of the semantic UDDI
repository is functional, but limited in that when pub-
lishing a web service, it is only possible to define one
operation for it.

The future of semantic UDDI repositories highly
depends on other technologies like the Semantic Web
and the propagation of web services in high value
application areas. Currently, the Semantic Web is in a
preliminary state, but web services are in constant
growth. If this trend continues it is likely that the need
for dynamically exchanging web services in business
processes will become significant, and semantic
UDDI repositories will ease the process of binding
companies together.

References
 [1] R. Akkiraju et al. Web Service Semantics - WSDL-S.

http://lsdis.cs.uga.edu/projects/meteor-s/wsdl-s, 2005.
 [2] T. Bellwood et al. UDDI Version 2.04 API Specifica-

tion. http://uddi.org/pubs/ProgrammersAPI_v2.htm,
2002.

 [3] T. Berners-Lee. Semantic Web Roadmap.
http://www.w3.org/DesignIssues/Semantic.html, 1998.

 [4] M. Burstein, C. Bussler, T. Finin, M.N. Huhns,
M. Paolucci, A.P. Sheth, S. Williams, M. Zaremba.
A Semantic Web Services Architecture. http://
ebiquity.umbc.edu/get/a/publication/208.pdf, 2005.

 [5] J. Cardoso, A. Sheth. Semantic e-Workflow Compo-
sition. LSDIS, Department of Computer Science,
University of Georgia, http://lsdis.cs.uga.edu/lib/
download/TM02-004-Cardoso-Sheth.pdf, 2003.

 [6] K. Christensen and T.H. Olesen. Sem-Uddi: A Se-
mantic UDDI Repository combining OWL-S and
WSDL-S. Department of Computer Science, Aalborg
University, http://www.cs.aau.dk/∼tho/sem-uddi.pdf,
2005.

 [7] K. Jagger et al. UDDI4J.
http://uddi4j.sourceforge.net, 2005.

 [8] Jena. Jena Semantic Web Framework - Inference En-
gine. http://jena.sourceforge.net/inference, 2004.

 [9] T. Kawamura, M. Paolucci, T.R. Payne, K.P. Syca-
ra. Importing the semantic web in uddi. CAiSE’02/
WES’02: Revised Papers from the International Work-
shop on Web Services, E-Business, and the Semantic
Web, Springer-Verlag, 2002, 225–236..

[10] D. Martin et al. OWL-S: Semantic Markup for Web
Services. http://www.w3.org/Submission/OWL-S,
2005.

[11] Microsoft. Microsoft Visual Studio.
http://msdn.microsoft.com/vstudio, 2005.

[12] J. Miller, A. Sheth, K. Sivashanmugam, K. Verma.
Adding semantics to web service standards. 1st Inter-
national Conference on Web Services, LSDIS, Depart-
ment of Computer Science, University of Georgia,
June 2003, 395–401.

274

Matching Semantically Described Web Services Using Ontologies

[13] NAICS. North American Industry Classification Sys-
tem. http://naics.org, 2005.

[14] A. Sheth et al. Web Service Semantics - WSDL-S.
http://www.w3.org/2005/04/FSWS/Submissions/17/WS
DL-S.htm, 2005.

[15] A. Tversky. Wikipedia (Features of Similarity).
http://en.wikipedia.org/wiki/Amos_Tversky, 2005.

[16] UNSPSC. United Nations Standard Product and Ser-
vices Classification (UNSPSC) Homepage.
http://www.unspsc.org, 2005.

[17] WSMO. Web Service Modelling Ontology.
http://www.wsmo.org, 2005.

Received August 2006.

