
368

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2012, Vol.41, No.4

Generation of the Secret Encryption Key Using the Signature
of the Embedded System

Algimantas Ven�kauskas

Computer Department, Kaunas University of Technology,
Student� str. 50-212, LT-51368, Kaunas, Lithuania

e-mail: algimantas.venckauskas@ktu.lt

Nerijus Jusas

Computer Department, Kaunas University of Technology,
Student� str. 50-210, LT-51368, Kaunas, Lithuania

e-mail: nerijus.jusas@ktu.lt

Irena Mikuckien�

System Analysis Department, Kaunas University of Technology,
Student� str. 50-211, LT-51368, Kaunas, Lithuania

e-mail: irena.mikuckiene@ktu.lt

Stasys Maciulevi�ius

Computer Department, Kaunas University of Technology,
Student� str. 50-209, LT-51368, Kaunas, Lithuania

e-mail: stasys.maciulevicius@ktu.lt

 http://dx.doi.org/10.5755/j01.itc.41.4.1162

Abstract. Program protection, programming code integrity and intellectual property protection are important
problems in embedded systems. Security mechanisms for embedded systems have some specific restrictions related to
limited resources, bandwidth requirements and security. In this paper we develop a secret encryption key generation
algorithm by using the signature of the embedded system. We explore the qualitative characteristic of the generated
keys - the entropy. Experiments showed that the generated secret keys have high entropy.

Keywords: embedded system, program protection, secret encryption key, hash function, entropy.

1. Introduction
It is hard to imagine most of today’s appliances

and devices, electronics, telecommunications, mecha-
tronics, etc., without using the embedded systems.
These systems face significant challenges in infor-
mation security; on the one hand, they usually have
very limited resources and, on the other hand, they
function in a physically unsafe environment. The
embedded systems usually perform critical functions:
controlling important real time objects and processing
important information. Therefore, their work is open
to sabotage.

Security requirements for the embedded systems
depend on specific areas of application [16, 26]. The

following requirements are related to the general
requirements for information security: integrity,
availability and confidentiality. However, the
specificity of the embedded systems, their mobility
and operation in real time, typically have certain
limitations such as processing gap, energy gap,
flexibility, tamper resistance, assurance gap and cost.
This is largely due to limited resources, performance
and security requirements.

An important component of the embedded system
that also influences its performance and vitality is
software. Software security has two aspects: secure
program and program protection [19]. We will explore
the protection aspect of program security. The main
program protection vulnerabilities are the following

Generation of the Secret Encryption Key Using the Signature of the Embedded System

369

[23]: violation of intellectual property (illegal copying
and distribution, improper use of licenses, reverse
engineering), disclosure of software code, theft of
algorithms and falsification of software code.

According to the study by the Business Software
Alliance (BSA) [4], the software creators lost USD
51.4 billion and the pirated software accounted for 43
% of all software with piracy growing by around 2
percent annually.

No matter what threats software is protected from,
for example copying or the theft of algorithms, the
attackers use a wide range of means to crack the
protection: reverse engineering, including disassembly
and decompilation, debuggers, disassemblers, decom-
pilers, emulators, simulators and spoofing attacks
[18].

There are many software protection methods,
which are divided into software and hardware-based.
Software-based protection mechanisms are integrated
into the software or the algorithm, which is protected
and can be added to the software code: code and data
obfuscation [6], anti-debugging method [7], code
encryption technology, self-modifying code and self-
extracting code [13]. Hardware-based methods can
significantly increase the level of protection, largely
due to the fact that they are external devices in which
the level of protection is controlled by the software
provider and not by the end-user [12, 17, 20]. A part of
the program code or data (encryption keys) required to
run the program can be stored in the additional
hardware (commonly Dongle or USB keys). However,
this protection mechanism is relatively expensive and
is generally only used for the programs which are of
great commercial value.

Intermediate software/hardware methods are also
used: tethering the program to a computer or device
signatures (CPU, RAM, ROM, BIOS, OS, etc., serial
numbers, model ID, etc.) [21, 25, 31]. Firewalls are
also used for the protection of the internet programs
[14]. These methods are usually used for anti-piracy
in personal computers.

Gelbart et al. [8] proposed a joint
compiler/hardware infrastructure for protection of the
embedded system software for fully encrypted
execution in which both program and data are in the
memory in the encrypted form. The processor is
supplemented with the Field Programmable Gate
Array (FPGA)-based secure hardware component.
Arora et al. [1] presented architecture for hardware-
assisted run-time monitoring, wherein the embedded
processor is augmented with the hardware monitor
that observes the dynamic execution trace of the
processor and checks whether the execution trace falls
within the allowed program behaviour.

In assessing the limitations of the embedded
systems [2], one of the most acceptable software
protection methods is code encryption. However, key
management faces additional issues: it requires an
additional storage medium, the encryption keys have
to be entered manually and key transfer via the

network must be protected by using SSL protocol and
others [27, 28].

Secret encryption keys are used for various
purposes in the embedded systems, such as commu-
nication, data encryption, etc. Physical characteristics
of the embedded system, such as physical unclonable
functions (PUF) are used for the generation of keys
[24, 29].

Our goal is to create a protection method of the
embedded system software that does not require
external hardware and infrastructure for key genera-
tion, storage and management and provides a suffi-
cient level of security. The code of the embedded
system software is stored in an encrypted form; secret
encryption keys are generated in real time, on demand,
before the execution of the encrypted software
module.

In the following sections, we describe the
proposed method of secret key generation by using the
signature of the embedded system and investigate its
characteristics and possibilities of its application for
the protection of the embedded system software.

2. The method for generation of the secret key
The secret encryption key of the software module

is generated from the headers of the program to be
protected and from the signatures of the embedded
system hardware and software components (CPU,
RAM, ROM, BIOS, OS, etc.), using the fastest and
simplest logical operations (XOR, OR, SHIFT). For
convenience of description, terminology and notations
used in the paper are summarized as follows:

– K = {ki}: program encrypting key.
– P = {pi}: header of the program to be protected.

The program header is an array of
structures, each describing a segment or
other information the system needs to
prepare the program for execution.

– PSN = {psni}: a serial number of the program to be
protected.

– PH = {phi}: a hash of header of the program to
be protected.

– SS = {ssi}: signature of the embedded system.
– ES = {esi}: signature of the embedded system

components.
– CV = {cvi}: component vendor identifiers (ID).
– CT = {cti}: component type ID.
– CM = {cmi}: component model ID.
– CSN = {csni}: component serial number.
– ¢: string concatenation operation.
– -: the bitwise OR operation.
– *: the bitwise exclusive OR (XOR)

operation.
– mod n: modulo n operation.
– h(.): a cryptographic one-way hashing function

(MD5, SHA-1…).

A. Ven�kauskas, N. Jusas, I. Mikuckien�, S. Maciulevi�ius

370

– eb(s, k): function for the extraction of k bytes from
the string s.

– sign(.): function for creating the signature of the
embedded system (defined below).

– key(.): function for generation of the secret
encryption key (defined below).

The process of generation of the secret key
consists of five steps (Fig. 1).

Figure 1. The process of secret key generation

Further, the method of generating a secret key by
using the signature of the embedded system is
described in detail.

1. Create the set of signatures of the components of
the embedded system �	
 ��
��� �
 ��� � �� .
The signature is created by applying the string
concatenation of Vendor ID (����, Type ID (����,
Model ID (����, and Serial Number (�
���:

�
�
 �������������������������
��.

In steps 2 – 6 a subset of the component signatures
is created. These signatures will be used for
computing of the embedded system signature.

2. Calculate the program header hash ��

���������
��.

3. Create the � �� matrix �
 !����" from the
bytes of the program header hash ����

������ �� # �� � �$ % ��, where n is the number
of the embedded system signatures, and ���

������ ����&'��.

4. Calculate the sum
� of the column elements in
the matrix MH,
�
 (����� $
 ��� ��)

�*+ .
5. Create the index array of the component

signatures ,-.
 !��'�"� /0121���'�

���&'�� and delete repetitive indices, ��'� 3
��'�� 4�� 5 ��� $ # �� .

6. Create the subset of the component signatures
�	6�.��	� �
78
 ��
��/0121�$
 ��'9� 4���'9 5
,-.� :
 ��� �� , from which the embedded
system signature will be created.

7. Create the signature of the embedded system

�

�;�<�	6=.

8. Generate the program protection key

:�>�

�
�?�� ���@���&�A�&B��� :�>A?��;��� ,
where salt, iteration_count and key_length are
defined below.

Now, we describe the set of sign functions. The
signature of the embedded system is created by
processing byte strings of the component signatures.
All sign functions can be performed using bit
operations (bitwise OR, bitwise XOR, bitwise AND,
SHIFT).

Function sign1. Bitwise XOR is used to create a
signature of the embedded system (Fig. 2).

input: ess, m // subset of m component
 // signatures
output: ss // signature of the embedded system
l := maxlength ess // max of the length of the
 // component signatures
for j = 1 to l do
 ss (j) := ess (1, j)
end for
for i = 2 to m do
 for j = 1 to l do
 ss (j) := ss (j) XOR ess (i, j)
 end for
end for

Figure 2. Function sign1

Function sign2. Bitwise OR is used to create a
signature of the embedded system (Fig. 3).

input: ess, m // subset of m component
 // signatures
output: ss // signature of the embedded system
l := maxlength ess // max of the length of the
 // component signatures
for j = 1 to l do
 ss (j) := ess (1, j)
end for
for i = 2 to m do
 for j = 1 to l do
 ss (j) := ss (j) OR ess (i, j)
 end for
end for

Figure 3. Function sign2

Function sign3. Bitwise OR and XOR are used to
create a signature of the embedded system (every
other component signature are processed by XOR and
OR operation, starting with XOR, see Fig. 4).

Creation of the set of signatures of the
embedded system components

Calculation of the program header hash

Generation of the secret encryption key

Calculation of the signature of the embedded
system

Creation of the subset of component signatures
from which the signature of the embedded

system will be formed

Generation of the Secret Encryption Key Using the Signature of the Embedded System

371

input: ess, m // subset of m component
 // signatures
output: ss // signature of the embedded system
l := maxlength ess // max of the length of the
 // component signatures
for j = 1 to l do
 ss (j) := ess (1, j)
end for
for i = 2 to m-1 step 2 do
 for j = 1 to l do
 ss (j) := ss (j) XOR ess (i, j)
 end for
 for j = 1 to l do
 ss (j) := ss (j) OR ess (i+1, j)
 end for
end for

Figure 4. Function sign3

Function sign4. Bitwise OR and XOR are used to
create a signature of the embedded system (every
other byte of the component signature are processed
by XOR or OR operation, starting with XOR, see Fig.
5).

input: ess, m // subset of m component
 // signatures
output: ss // signature of the embedded system
l := maxlength ess // max of the length of the
 // component signatures
for j = 1 to l do
 ss (j) := ess (1, j)
end for
for i = 2 to m do
 for j = 1 to l-1 step 2 do
 ss (j) := ss (j) XOR ess (i, j)
 ss (j+1) := ss (j+1) OR ess (i, j+1)
 end for
end for

Figure 5. Function sign4

The length of the signatures created using sign
functions is equal to the maximum length of the
component signature, ?
 ����?��;����
��� �
� 5
��	6 ������
 ��� ��C

The strings of signatures of the embedded system
are of a variable length. The encryption key should
contain strings of a fixed length. The length of these
strings depends on the requirements of the encryption
key length. The encryption key must have a high value
of entropy. Hash functions such as MD5 and SHA are
used to create secret keys of a fixed length from the
strings of variable length [9]. However, the keys
generated only with a hash function are not strong
enough against brute force attacks [11, 32]. Key
Derivation Functions [10] generate strong keys, where
extra data (random salt and an iteration count) are
also used alongside with byte strings. The main

problem of these functions is how to define these
additional data: salt and iteration count [15]. The
proposed method uses the number of columns of the
matrix MH as a salt, and the number of component
signatures in the subset�<�	6= as iteration count:

�?�
 ������ ����&'��,

���@���&�A�&B���
 �&B��<�	6=.
So, the function of generation of the program

protection key is defined as follows:
:
 D�>��

�
�?�� ���@���&�A�&B��� :�>A?��;���.

In the following section, we investigate the
characteristics of the method for generation of the
secret key by using the signature of the embedded
system.

3. Evaluation of the proposed method
The encryption keys have to be generated truly

randomly, to contain sufficient entropy and be of
sufficient length [30]. Since our problem is the
protection of the embedded system software, the key
generation process must be carried out without any
additional hardware and infrastructure cost [2, 26].
The proposed method generates the secret keys only
from the signature of the embedded system. Further,
we investigate whether the entropy of the key is high
enough (close to 1). The maximum value of entropy of
a bit string is 1 [30, 5, 3].

The concept of entropy is de£ned by Shannon. Let
us consider an information source described as a
sequence of instances of a random (discrete) variable
X, which can take a £nite number of possible values
x1, x2, . . ., xn with a probability respectively equal to
p1, p2, . . . , pn (in other words p(xi) = pi). Then the
source entropy is de£ned by:

 �E�
�F�(�����)
�*+ G ?&;<�����=C

In a practical way, source entropy is computed
from the observed frequency for every character by
means of the previous formula.

So, the entropy S of the string is defined as
follows:

	
�F�(�����)
�*+ G ?&;H<�����=�

�����
 �B������I����
where n is the number of possible values of character,
m is the length of the string, and num(xi) is the number
of appearances of character xi in the string.

The initial data of the experiment (the header of
the program to be protected, the signatures of the
embedded system hardware and software components
(Vendor ID, Type ID, Model ID and Serial Number),
their lengths and number) are generated by using the
random string and number generators. 20 sets of
signatures (from 2 to 7 elements) are generated. While
the entropy changes marginally when the number of
elements exceeds 7, we evaluated the signatures of the
system consisting of 2 to 7 elements.

A. Ven�kauskas, N. Jusas, I. Mikuckien�, S. Maciulevi�ius

372

The entropy of these sets of signatures is presented
in Tables 1-4 (the number of component signatures,
the length of the system signature and the entropy).

Table 1. The entropy of signatures, sign1 function

 n=2 n=3 n=4 n=5 n=6 n=7
Tes
t
N.

Bits
N.

Entro
py

Bits
N.

Entro
py

Bits
N.

Entro
py

Bits
N.

Entro
py

Bits
N.

Entro
py

Bits
N.

Entro
py

1 120 1.000 120 0.954 120 0.954 120 0.954 256 1.000 256 0.544
2 120 0.811 120 0.954 120 0.544 120 0.954 120 1.000 256 0.954
3 256 0.954 256 0.811 256 0.954 256 0.954 256 0.811 256 1.000
4 64 0.811 64 0.954 64 0.954 64 0.954 64 0.544 120 0.811
5 256 0.954 256 0.954 256 0.954 256 0.954 256 0.954 256 1.000
6 64 0.954 64 0.954 64 0.544 64 0.544 64 0.544 64 1.000
7 64 0.811 64 0.954 64 0.544 64 0.954 64 0.811 64 0.954
8 120 0.811 120 0.954 256 0.954 256 0.954 256 1.000 256 0.811
9 64 0.954 64 1.000 64 1.000 64 1.000 64 0.811 64 1.000
10 120 0.954 120 1.000 120 0.811 120 1.000 120 1.000 256 0.954
11 64 0.954 256 0.954 256 0.954 256 0.954 256 0.954 256 0.954
12 256 0.954 256 0.954 256 0.954 256 0.954 256 0.811 256 0.954
13 256 1.000 256 0.954 256 0.544 256 0.954 256 0.811 256 0.954
14 256 1.000 256 0.954 256 0.954 256 0.954 256 0.811 256 0.811
15 256 1.000 256 1.000 256 1.000 256 1.000 256 0.811 256 0.954
16 256 0.954 256 0.811 256 0.811 256 1.000 256 0.811 256 0.954
17 64 0.811 120 0.954 120 0.954 120 0.954 120 0.000 120 0.954
18 56 0.544 256 0.954 256 0.954 256 0.954 256 0.954 256 0.954
19 256 1.000 256 0.954 256 0.954 256 0.954 256 0.811 256 0.954
20 256 0.954 256 1.000 256 0.811 256 0.811 256 1.000 256 0.544

Table 2. The entropy of signatures, sign2 function

 n=2 n=3 n=4 n=5 n=6 n=7
Tes

t
N.

Bits
N.

Entro
py

Bits
N.

Entro
py

Bits
N.

Entro
py

Bits
N.

Entro
py

Bits
N.

Entro
py

Bits
N.

Entro
py

1 120 0.811 120 0.811 120 0.811 120 0.811 256 0.811 256 0.811
2 120 0.811 120 0.811 120 0.811 120 0.811 120 0.811 256 0.811
3 256 0.954 256 1.000 256 0.954 256 0.954 256 0.954 256 0.954
4 64 1.000 64 1.000 64 1.000 64 1.000 64 0.954 120 1.000
5 256 0.954 256 0.811 256 0.811 256 0.811 256 0.544 256 0.544
6 64 0.954 64 0.954 64 0.954 64 0.954 64 0.811 64 0.954
7 64 0.954 64 0.954 64 0.954 64 0.954 64 0.811 64 0.811
8 120 0.811 120 0.811 256 0.811 256 0.811 256 0.811 256 0.811
9 64 0.811 64 0.811 64 0.811 64 0.811 64 0.811 64 0.811
10 120 0.811 120 0.954 120 0.954 120 0.954 120 0.954 256 0.954
11 64 0.954 256 0.811 256 0.811 256 0.811 256 0.811 256 0.811
12 256 0.954 256 0.954 256 0.811 256 0.811 256 0.811 256 0.811
13 256 0.954 256 0.954 256 0.954 256 0.811 256 0.544 256 0.544
14 256 0.811 256 0.954 256 0.954 256 0.954 256 0.954 256 0.954
15 256 0.811 256 0.811 256 0.811 256 0.811 256 0.811 256 0.544
16 256 0.954 256 0.811 256 0.811 256 0.811 256 0.811 256 0.811
17 64 0.954 120 0.811 120 0.811 120 0.811 120 0.544 120 0.811
18 56 0.954 256 0.954 256 0.811 256 0.811 256 0.811 256 0.811
19 256 0.811 256 0.811 256 0.811 256 0.544 256 0.544 256 0.544
20 256 0.954 256 1.000 256 1.000 256 1.000 256 1.000 256 0.954

For evaluation of the entropy dependence on the
used function and on the number of component
signatures, we calculate the estimates of entropy:
average, standard deviation and prediction interval
[22]. The summarized results of the entropy of the
signature dependence on the used function are
presented in Table 5. As one can see in Table 5, the

Table 3. The entropy of signatures, sign3 function
 n=2 n=3 n=3 n=5 n=6 n=7

Tes
t

N.

Bits
N.

Entro
py

Bits
N.

Entro
py

Bits
N.

Entro
py

Bits
N.

Entro
py

Bits
N.

Entro
py

Bits
N.

Entro
py

1 120 1.000 120 0.811 120 1.000 120 0.811 256 0.954 256 1.000
2 120 0.811 120 1.000 120 0.811 120 1.000 120 0.954 256 0.811
3 256 0.954 256 0.954 256 0.811 256 1.000 256 0.954 256 0.954
4 64 0.811 64 1.000 64 0.811 64 1.000 64 0.811 120 0.954
5 256 0.954 256 0.811 256 1.000 256 0.811 256 0.811 256 0.544
6 64 0.954 64 1.000 64 0.811 64 0.954 64 0.954 64 0.954
7 64 0.811 64 1.000 64 0.811 64 1.000 64 0.954 64 0.954
8 120 0.811 120 0.811 256 0.811 256 0.954 256 0.811 256 1.000
9 64 0.954 64 0.954 64 0.954 64 0.954 64 0.954 64 0.954
10 120 0.954 120 0.954 120 0.954 120 1.000 120 1.000 256 0.954
11 64 0.954 256 0.811 256 1.000 256 0.811 256 1.000 256 0.954
12 256 0.954 256 0.954 256 0.954 256 0.954 256 0.811 256 1.000
13 256 1.000 256 0.954 256 0.544 256 0.954 256 0.811 256 0.954
14 256 1.000 256 1.000 256 0.811 256 1.000 256 0.544 256 1.000
15 256 1.000 256 0.811 256 1.000 256 0.811 256 0.811 256 0.544
16 256 0.954 256 0.811 256 0.811 256 1.000 256 0.811 256 0.811
17 64 0.811 120 0.811 120 0.811 120 1.000 120 0.544 120 0.954
18 56 0.544 256 0.954 256 0.954 256 0.954 256 0.954 256 0.811
19 256 1.000 256 0.811 256 1.000 256 0.544 256 1.000 256 0.954
20 256 0.954 256 1.000 256 0.811 256 0.954 256 0.954 256 0.954

Table 4. The entropy of signatures, sign4 function
 n=2 n=3 n=4 n=5 n=6 n=7

Test
N.

Bits N. Entro
py

Bits N. Entro
py

Bits N. Entro
py

Bits N. Entro
py

Bits N. Entro
py

Bits N. Entro
py

1 120 1.000 120 0.954 120 0.811 120 0.954 256 0.954 256 0.954
2 120 1.000 120 1.000 120 0.954 120 1.000 120 1.000 256 0.811
3 256 1.000 256 0.954 256 0.954 256 1.000 256 1.000 256 1.000
4 64 0.954 64 1.000 64 0.954 64 1.000 64 0.811 120 0.811
5 256 1.000 256 0.811 256 0.954 256 0.811 256 0.811 256 0.811
6 64 0.954 64 0.954 64 0.811 64 0.954 64 0.954 64 0.954
7 64 1.000 64 0.954 64 0.954 64 1.000 64 1.000 64 0.954
8 120 0.954 120 0.954 256 1.000 256 0.954 256 0.954 256 0.954
9 64 1.000 64 0.954 64 0.811 64 0.954 64 0.954 64 0.954
10 120 0.811 120 0.954 120 0.954 120 1.000 120 1.000 256 1.000
11 64 1.000 256 0.811 256 0.954 256 0.811 256 1.000 256 1.000
12 256 1.000 256 1.000 256 0.954 256 0.811 256 1.000 256 1.000
13 256 1.000 256 0.954 256 0.811 256 1.000 256 1.000 256 0.811
14 256 1.000 256 0.954 256 1.000 256 0.954 256 0.954 256 0.954
15 256 1.000 256 1.000 256 0.954 256 1.000 256 0.811 256 0.811
16 256 1.000 256 0.811 256 0.954 256 1.000 256 0.811 256 1.000
17 64 1.000 120 0.811 120 0.954 120 1.000 120 0.811 120 1.000
18 56 0.954 256 0.954 256 1.000 256 0.954 256 0.954 256 0.954
19 256 1.000 256 0.954 256 0.811 256 0.954 256 0.544 256 0.954
20 256 0.954 256 1.000 256 0.811 256 0.954 256 0.954 256 0.954

best quality of signature of the embedded system is
obtained by using the function sign4: the maximal
value of entropy is 1.000, the least standard deviation
is 0.078 and the lowest limit of prediction interval is
0.861. The quality of signatures generated by function
sign3 is also relatively high: standard deviation is
0,117 and the lowest limit of the prediction interval is

Generation of the Secret Encryption Key Using the Signature of the Embedded System

373

0.781. Thus, the function of signature generation has
to be constructed by using operations XOR and OR.

Table 5. Dependence of the signature entropy on the
function

Function Average Standard
deviation

Prediction interval
min Max

sign1 0.894 0.150 0.744 1.000
sign2 0.852 0.115 0.737 0.967
sign3 0.898 0.117 0.781 1.000
sign4 0.939 0.078 0.861 1.000

The secret encryption keys are generated from the
embedded system signature by using Key Derivation
Functions. These functions use hash functions, such as
MD5, SHA and SHA-2 etc. Further, we investigate the
influence of the hash function algorithm on the value
of entropy. Since the signature of the embedded
system generated by using sign4 function has the best
entropy, we investigate the key generated by this
function. The entropy of keys formatted from 2 to 7
component signatures by using sign4 function and
MD5, SHA and SHA-2 hash functions is presented in
Table 6.

Table 6. The entropy of keys generated by using sign4 function and MD5, SHA and SHA-2 hash functions

 n=2 n=3 n=4 n=5 n=6 n=7

Test
N. MD5 SHA SHA2 MD5 SHA SHA2 MD5 SHA SHA2 MD5 SHA SHA2 MD5 SHA SHA2 MD5 SHA SHA2

1 1.000 1.000 1.000 1.000 1.000 1.000 0.978 0.997 0.997 0.999 0.991 0.998 0.989 0.998 0.999 1.000 0.991 1.000
2 0.991 0.999 0.995 0.961 0.995 0.996 0.993 0.996 0.999 0.997 0.989 0.999 0.989 0.993 0.998 0.997 0.991 0.996
3 0.993 1.000 0.975 0.990 0.997 0.998 0.999 1.000 1.000 0.993 0.996 0.999 0.999 1.000 1.000 1.000 0.997 1.000
4 0.989 0.993 0.998 0.987 0.996 0.993 0.987 0.990 1.000 0.990 1.000 0.996 1.000 1.000 0.999 0.996 0.998 0.999
5 0.999 0.999 0.997 1.000 1.000 0.997 0.998 0.996 0.990 0.985 1.000 0.999 0.989 0.997 0.997 0.982 1.000 1.000
6 1.000 0.996 1.000 0.965 0.998 1.000 0.998 0.989 1.000 0.996 0.974 0.999 1.000 0.994 0.998 1.000 1.000 0.999
7 0.998 0.998 0.999 0.998 0.996 1.000 0.986 1.000 0.996 0.972 0.999 0.994 0.993 0.990 0.999 1.000 0.971 0.998
8 0.998 0.996 1.000 0.999 0.997 0.999 1.000 0.999 0.999 0.992 0.991 0.997 0.999 0.999 1.000 1.000 0.999 1.000
9 0.989 0.991 0.998 0.998 0.993 0.997 0.998 1.000 0.999 0.992 1.000 0.998 0.989 0.996 1.000 1.000 0.999 0.999
10 0.999 0.999 0.998 0.986 0.991 0.999 1.000 1.000 0.997 0.994 1.000 1.000 0.986 0.998 0.999 0.986 0.998 0.999
11 1.000 0.994 0.999 0.996 0.998 1.000 0.974 0.996 0.999 1.000 0.999 1.000 0.996 0.997 1.000 0.998 0.996 0.997
12 0.999 0.999 0.997 0.986 0.989 0.999 0.992 1.000 0.990 1.000 0.995 1.000 1.000 1.000 0.993 0.996 1.000 0.999
13 1.000 1.000 1.000 0.997 0.987 1.000 0.999 0.995 0.998 0.986 0.994 0.999 1.000 0.998 0.998 0.999 0.991 0.999
14 1.000 1.000 1.000 0.998 1.000 0.994 0.994 0.993 0.996 1.000 1.000 0.999 0.987 1.000 1.000 1.000 1.000 0.998
15 0.978 1.000 1.000 1.000 1.000 0.999 1.000 0.998 1.000 0.996 0.999 0.995 0.999 1.000 1.000 0.998 0.995 1.000
16 0.999 0.999 0.997 0.994 1.000 0.995 0.998 0.996 0.999 0.989 0.991 0.996 1.000 0.999 0.999 1.000 0.999 0.999
17 0.998 0.998 0.999 0.954 0.994 0.993 0.997 0.976 1.000 0.999 0.999 1.000 1.000 0.999 0.994 0.998 0.997 0.978
18 0.997 0.991 1.000 0.999 1.000 0.998 0.967 1.000 1.000 0.976 0.999 0.999 0.995 1.000 0.999 0.997 0.999 0.999
19 0.978 1.000 1.000 0.982 0.993 1.000 0.999 0.999 1.000 0.997 0.986 0.997 1.000 0.997 0.997 0.986 1.000 0.993
20 1.000 0.998 0.998 1.000 0.996 0.999 1.000 0.997 0.999 0.996 0.999 1.000 1.000 1.000 0.997 0.985 0.991 0.996

Entropy estimates – average, standard deviation

and prediction interval, dependence on the used hash
function are presented in Table 7.

Table 7. Dependence of the entropy of keys on the used
hash function

Function Average Standard
deviation

Prediction interval

MD5 0.994 0.008 0.985 1.000
SHA 0.995 0.007 0.988 1.000

SHA-2 0.998 0.003 0.994 1.000

All hash functions generate high-entropy

cryptographic keys. However, the keys, generated by
using function SHA-2, have the least standard
deviation (0.003) and the highest of the lowest limit of
the prediction interval (0.994).

To summarize, it can be stated that the entropy of
the secret encryption key generated by using the

signature creation functions based on OR and XOR
operations and SHA-2 hash function is highest.

4. Conclusions
In this paper, we present the method for generation

of the secret encryption key by using signature of the
embedded system and evaluate the entropy of keys
and the efficiency of hash functions.

The proposed method effectively generates high-
entropy keys (entropy value close to 1) without any
additional hardware and infrastructure cost, which is
vital for the embedded systems with limited resources.

The entropy of the secret encryption key generated
by using the signature creation functions based on OR
and XOR operations and SHA-2 hash function is
highest.

In future, we are going to develop a prototype tool
of the software protection of the embedded system
using the proposed method for generation of the secret

A. Ven�kauskas, N. Jusas, I. Mikuckien�, S. Maciulevi�ius

374

encryption key and investigate the possibilities of its
use.

References
[1] D. Arora, S. Ravi, A. Raghunathan, N. J. Jha.

Secure Embedded Processing through Hardware-
assisted Run-time Monitoring. In: Proceedings of
Design, Automation and Test in Europe Conference
and Exhibition (DATE’05), IEEE Computer Society,
2005, 178–183.

[2] S. Babar, A. Stango, N. Prasad, J. Sen, R. Prasad.
Proposed embedded security framework for Internet of
Things (IoT). Wireless Communication, Vehicular
Technology, Information Theory and Aerospace &
Electronics Systems Technology (Wireless VITAE),
2nd International Conference, 2011, 1–5.

[3] J. B. Bedrune, F. Eric, R. Frederic. Cryptography:
all-out attacks or how to attack cryptography without
intensive cryptanalysis. Journal in Computer Virology,
2010, Vol.6, Issue 3, 207–237. Available at:
http://dx.doi.org/10.1007/s11416-008-0117-x.

[4] BSA. Seventh Annual BSA and IDC Global Software
Piracy Study. May 2010.

[5] E. Carrera. Scanning data for entropy anomalies.
2007. http://blog.dkbza.org/2007/05/scanning-data-for-
entropy-anomalies.html.

[6] C. Collberg, C. Thomborson, D. Low. A taxonomy
of obfuscating transformations. Technical Report 148,
Department of Computer Sciences, the University of
Auckland, July 1997.

[7] M. N. Gagnon, S. Taylor, A. K. Ghosh. Software
Protection through Anti-Debugging. IEEE Security
and Privacy, May 2007, Vol.5(3), 82–84. Available at:
http://dx.doi.org/10.1109/MSP.2007.71.

[8] O. Gelbart, P. Ott, B. Narahari, R. Simha,
A. Choudhary, J. Zambreno. CODESSEAL: Compi-
ler/FPGA Approach to Secure Applications. In:
Proceedings of IEEE International Conference on
Intelligence and Security Informatics, 2005, 530–536.

[9] Ch. Henke, C. Schmoll, T. Zseby. Empirical
evaluation of hash functions for multipoint
measurements. SIGCOMM Comput. Commun., July
2008, Rev.38(3), 39–50.

[10] International Organization for Standardization.
ISO/IEC FCD 18033–2, IT Security techniques—En-
cryption Algorithms—Part 2: Asymmetric Ciphers,
2004.

[11] A. Joux, T. Peyrin. Hash functions and the (ampli-
fied) boomerang attack. Proceedings of the 27th annual
international cryptology conference on Advances in
cryptology (CRYPTO'07), 2007, 244–263.

[12] I. J. Jozwiak, A. Liber, K. Marczak. A Hardware-
Based Software Protection Systems-Analysis of
Security Dongles With Memory. Proceedings of the
International Multi-Conference on Computing in the
Global Information Technology (ICCGI'07), IEEE
Computer Society, 2007, 28–38.

[13] Y. Kanzaki, A. Monden, M. Nakamura,
K. Matsumoto. Exploiting self-modification mecha-
nism for program protection. Proceedings of the 27th
Annual International Computer Software and Applica-
tions Conference, IEEE Computer Society, 2003,
170-179.

[14] E. Kazanavicius, R. Paskevicius, A. Venckauskas,
V. Kazanavicius. Securing Web Application by
Embedded Firewall. Electronics and Electrical
Engineering, 2012, No.3(119), 65–68.

[15] A. D. Kent, L. M. Liebrock. Secure Communication
via Shared Knowledge and a Salted Hash in Ad-Hoc
Environments. Computer Software and Applications
Conference Workshops (COMPSACW), IEEE 35th
Annual, July 2011, 122–127.

[16] P. Kocher, R. Lee, G. McGraw, A. Raghunathan.
Security as a new dimension in embedded system
design. Proceedings of the 41st annual Design Auto-
mation Conference (DAC '04), ACM, 2004, 753–760.

[17] A. Liutkevicius, A. Vrubliauskas, E. Kazanavicius.
Assessment of Dongle-based Software Copy
Protection Combined with Additional Protection
Methods. Electronics and Electrical Engineering,
2011, No.6 (112), 111–116.

[18] A. Main, P. C . Oorschot. Software protection and
application security: Understanding the battleground.
International Course on State of the Art and Evolution
of Computer Security and Industrial Cryptography,
June 2003.

[19] G. McGraw. Software security. IEEE Security &
Privacy, Vol. 2 (2), 2004, 80–83. Available at:
http://dx.doi.org/10.1109/MSECP.2004.1281254.

[20] L. MeiHong, L. JiQiang. USB Key-Based Approach
for Software Protection. International Conference on
Industrial Mechatronics and Automation, 2010,
151-153.

[21] S. Mumtaz, S. Iqbal, I. Hameed. Development of a
Methodology for Piracy Protection of Software
Installations. 9th International Multitopic Conference,
IEEE INMIC 2005, 24-25 Dec.. 2005, 1–7.

[22] W. Navidi. Statistics for engineers and scientists.
McGraw-Hill, New York, 2011.

[23] NIST. National Vulnerability Database Version 2.2.
http://nvd.nist.gov/home.cfm.

[24] E. Papoutsis, G. Howells, K. McDonald-Maier,
A. Hopkins. Key Generation for Secure Inter-satellite
Communication. Adaptive Hardware and Systems,
AHS 2007, Second NASA/ESA Conference, 2007, 671–
681.

[25] PC GUARD. Professional software protection and
licensing system. http://www.sofpro.com.

[26] S. Ravi, A. Raghunathan, S. Hattangady, P. Kocher.
Security in embedded systems: Design challenges.
ACM Trans. Embed. Comput. Syst. 3, 3, August 2004,
461–491.

[27] E. Sakalauskas, A Katvickis, G Dosinas. Key
Agreement Protocol over the Ring of Multivariate
Polynomials. Information Technology and Control,
2010, Vol. 39(1), 51–54.

[28] Ting-Yi Chang, Min-Shiang Hwang, Wei-Pang Yang.
An Improved Multi-stage Secret Sharing Scheme
Based on the Factorization Problem. Information
Technology and Control, 2011, Vol.40(3), 246–251.

[29] G. E. Suh, S. Devadas. Physical unclonable functions
for device authentication and secret key generation.
Proceedings of the 44th annual Design Automation
Conference, June 2007, 9–14. Available at:
http://dx.doi.org/10.1145/1278480.1278484.

[30] H. C. Tilborg (Ed). Encyclopedia of Cryptography
and Security. Springer, 2005. Available at:
http://dx.doi.org/10.1007/0-387-23483-7.

Generation of the Secret Encryption Key Using the Signature of the Embedded System

375

[31] A. Venckauskas, N. Jusas, L. Kizauskien�,
E. Kazanavicius, V. Kazanavicius. Security method
of embedded software for mechatronic systems.
Mechanika, 2012, Vol.18(2), 196–202. Available at:
http://dx.doi.org/10.5755/j01.mech.18.2.1572.

[32] X. Y. Wang, H. B Yu. How to break MD5 and other
hash functions. Advances in Cryptology, EUROCRYPT
2005, Lecture Notes in Computer Scince, 2005,
Vol. 3494, pp. 19–35. Available at:
http://dx.doi.org/10.1007/11426639_2.

Received February 2012.

