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Abstract. This work describes a novel scheme that applies a Sprott master/slave chaotic synchronization system to 
secure transmission. A sliding plane is chosen to design a sliding mode controller to ensure robustness. In the presence 
of an external disturbance and system uncertainty, the slave chaotic circuit system is then synchronized with the master. 
The Lyapunov theorem verifies that the proposed controller is stable and robust. Simulation results indicate that the 
synchronization error state asymptotically converges to the origin of the phase plane, implying that the master/slave 
chaotic system synchronization is achieved while the sliding mode controller is in operation. While consisting of 
operational amplifiers, resistors, capacitors and diodes, the chaotic circuit system together with a sliding mode 
controller is subsequently implemented to validate the system synchronization. Finally, the chaotic system combined 
with cryptography is embedded into a chaotic synchronization cryptosystem to resolve secure communications-related 
problems. 
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1. Introduction 

Based on atmospheric simulation, Lorenz 
pioneered the chaos theory, a seemingly disordered 
phenomenon [1]. Until the general theory of 
Feigenbaum in 1978, chaos received scarce scientific 
attention. As a complex and aperiodic nonlinear 
system, the time response of chaotic system is 
extremely sensitive to initial conditions. Otherwise, it 
also has a wide range of the Fourier spectrum and is 
characterized by the fractal geometry on the phase 
plane. That is, even with an identical system, the 
system response varies significantly with various 
initial conditions, a phenomenon referred to as the 
butterfly effect. Having been extensively studied, 
chaos can be found in a diverse array of research 
fields, including electrical engineering, electronics, 
communications, biology, mathematics, physics, 
chemistry, and economics. The Lorenz system has 
been applied to atmospheric science, the Duffing 
system to mechanics, the Rössler system to chemical 
engineering, and Chua's circuit [2-3] to circuitry. 

Chaotic synchronization has been extensively 
studied in recent decades [4-8]. While normally 
consisting of a master system, slave system, and 
synchronization controller, this system transmits a 

state signal to the controller, followed by processing 
and subsequent application to the slave system, as an 
alternative approach to locus synchronization between 
both systems. The concept of chaotic synchronization 
has not, until recently, been applied to the 
communications field [9-16], in which the signal 
intended for delivering a chaotic signal in the 
transmitter is modulated and the received signal in the 
receiver is then demodulated into the original one. 
However, transmission security is of priority concern 
[17], largely owing to that an individual familiar with 
the chaotic theory can easily intercept information 
during transmission. To resolve such security 
concerns, a scheme [18-21] based on the original 
chaotic system in combination with encryption skills 
utilizes the chaotic system to encrypt the transmitted 
data by an encryption function, followed by 
modulation by a chaotic signal to increase the 
complexity and security of such transmitted signals. 

This work develops a novel scheme that ensures 
robustness of the controlled system to external 
disturbances. Additionally, system uncertainties 
incorporate systematic design processes to enable the 
designer to easily implement the controller. Moreover, 
the proposed control scheme, in which a continuous 
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function is used to replace the discontinuous sign 
function in the final design process step, can eliminate 
chattering in the control input to ensure feasibility for 
an actual physical system. However, to our 
knowledge, no previously developed scheme can 
obtain such a robust continuous controller for chaos 
synchronization control in a secure communications 
system, necessitating the development of a sliding 
mode control scheme. Therefore, based on a sliding 
mode controller [22], this work addresses the 
synchronization issue of a chaotic system, while 
devising a sliding mode control criterion. While 
implemented with electronic components, system 
synchronization is validated using the chaotic system 
and the controller. Finally, by using LabView, the 
chaotic synchronization system, integrated with 
cryptography, is applied to secure communication i.e. 
the encryption and decryption of audio and image 
signals. 

2. System descriptions 

This work focuses on a Sprott chaotic system, 
where the governing equation is expressed in a 
differential form [23-24] as 

 xGxxax i  , (1) 

where  xGi
 denotes any of the underlying functions 
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where  max  refers to a maximum value function, as 

well as  sign  the sign function. While considering 

the circuit implementation, the system state variables 

are assumed to be xx 1 , xx 2 , xx 3 . A state 

equation is subsequently derived as 
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Consider a situation in which      14 xGxGi

 11 22.1 xsignx   and a=0.6 are selected since it is 

easily implemented by electronic circuits and chaotic 
motion has been proven to exist [23]. The dynamic 
response is then simulated with Matlab and IsSpice 
software packages as shown in Figs. 1 and 2. Figure 3 
summarizes the implementation results of the 
electronic circuits indicating that the Sprott system has 
complex dynamics. 
 
 

 

 
(a) (b) (c) 

Figure 1. Given initial condition         0.1 ,1.0 0.1,0 ,0 ,0 321 xxx , the simulated time response  

by MATLAB to (a) x1, (b) x2, (c) x3 

   
(a) (b) (c) 

Figure 2. Given initial condition          0.1 , 1.0 , 0.1 0, 0, 0 321 xxx , the simulated time response  

by IsSpice to (a) x1, (b) x2, (c) x3 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f)  

Figure 3. Circuit hardware responses to (a) x1, (b) x2, (c) x3, and phase plane of (d) x1 versus x2,  
(e) x1versus x3, (f) x2versus x3 

The dynamic equations of both the master and 
slave chaotic systems in the Sprott circuit addressed 
here, are expressed as  
Master: 
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Slave: 
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where Δ  denotes system uncertainty,  td  external 

disturbance, and u the controller added. The control 
target is specified as 

    0lim 


txtx ms
t

 (5) 

indicating that the slave synchronizes with the master. 

3. Robust synchronization controller design 

This section discusses the sliding mode controller 
designed for the system synchronization, which is 
simulated with MATLAB software. Following 
Eqs. (3) and (4), the master-slave system’s error states 
are defined as  
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From Eq. (6), it then follows that 
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First, a sliding plane is chosen as 

332211 ecececs  . (8) 

In the sliding mode, 0s  holds true, and the 
equivalent controller is expressed as 
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For simplicity, by allowing 13 c , Eq. (9) is 

rewritten as 
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Subsequently, the approaching law is designed as
 ssignWusw  , where the sign function  sign  is 

defined as 
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With a lack of knowledge concerning uncertainty 
Δ  and external disturbance  td , the system 

implemented in practice can be expressed as 
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Remark: The controller in (11) demonstrates 
discontinuous control laws and chattering occurs as 
well. From reference [25], chattering is eliminated by 
modified the controller as 
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where   denotes a sufficiently small design constant. 

Here, constant  is selected as 0.05. Therefore, the 
controllers can be implemented in a real world system. 
Next, the stability and robustness of the controller of 
Eq. (11) are proven in the following. 

Via the Lyapunov theorem, the system stability is 
verified as  
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The first order time derivative is written as 
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The physical meanings of external disturbances 
and system uncertainties  td and Δ denote models 

of the unstructured system models and uncorrected 
system parameters of Sprott systems. Otherwise, the 
system states of the Sprott system are also attracted to 
a bounded attractor. Therefore, they can be assumed to 

be bounded that is 
1,sx ,  Δ ,   td . 

Then Eq. (13) can be rewritten as 
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If  

  W ,  (15) 

then 0V  ensures a stable system. By using Matlab 
software, feasibility of the controller in Eq. (12) is 
verified, with the parameters 101c , 102 c , 9.0W , 

while those in Eq. (4) are  tsin1.0Δ  , 

   ttd cos1.0 , i.e. 1.0,1.0   . Therefore, 
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according to Fig. 4, 4.331, sx , a substitution of 

which into Eq. (14) yields 533.0W . To maintain a 
stable system, a choice of 9.0W  is made accordingly. 

 

Figure 4. Time response to 11 ,s,m x,x . The control 

 is active at t=25 sec 

4. Applications in secure communication 

This section describes the application of a 
cryptosystem, constructed based on the Sprott chaotic 
synchronization system integrated with cryptography 

to secure communications. The transmission link is 
established via the Internet and National Instruments 
LabView, with the information encrypted and 
decrypted in the transmitter and the receiver, 
respectively, by computers. The audio signal is 
transmitted as follows. First, the initial conditions of 
the system and the sampling amount are determined.  
An identical number of keys are then generated, with 
which the audio signal is mixed accordingly. Figures 5 
to 7 display the audio processing system, as well as 
summarize the experimental results. The image 
counterpart is described as follows. The encryption 
process is divided into two phases. The first one is the 
image itself, with both the symmetric key 
cryptosystem (SKC) and the master/slave system as 
the key, through  which the image signal is encoded 
despite the same set of initial values. The initial values 
subsequently vary with the master/slave system status. 
The second one is the encryption of the master/slave 
system signal, with a Lorenz system as the key, as a 
means of removing the interception likelihood during 
data transmission. Figure 8 illustrates the image 
encryption/decryption system, where the Lorenz 
system is of invariant initial conditions; meanwhile, 
the master chaotic system randomly generates the 
initial conditions. Figures 9 to 11 summarize the 
experimental results. An entity photo of a Sprott 
master/slave system and a sliding mode controller are 
shown in Fig. 12. 

 

 

Figure 5. An audio encryption/decryption flow in a chaotic synchronization cryptosystem 
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(b) 

 
(c) 

Figure 6. An audio signal zoomed in. (a) The original audio zoomed in; (b) An encrypted version of (a);  
(c) A decrypted version of (b). 

 
(a) The spectrum of the original right channel audio 

 
(b) The spectrum of the encrypted right channel audio 

 
(c) The spectrum of the decrypted right channel audio 

 
(d) The spectrum of the original left channel audio 
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(e) The spectrum of the encrypted left channel audio 

 
(f) The spectrum of the decrypted left channel audio

Figure 7. The Spectrum of the original and encrypted audio 

 

Figure 8. Image encryption/decryption flow of a chaotic synchronization cryptosystem 

 

 
(a) 

 
(b)  

Figure 9. The original image Lenna and its spectrum. (a) An original image; (b) The spectrum of (a) 
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(a)  

 
(b)  

Figure 10. The encrypted image of Lenna and its spectrum. (a) An encrypted image; (b) The spectrum of (a) 

 
(a)  

 
(b) 

Figure 11. The decrypted image of Lenna and its spectrum. (a) A decrypted image; (b) The spectrum of the decrypted image

 

Figure 12. An entity photo of a Sprott master/slave system 
and a sliding mode controller 

5. Conclusion 

This work presents a novel robust controller 
scheme which operates in the sliding mode.  The 
proposed scheme is also applied to a chaotic circuit 
system in order to derive a solution to the 

synchronization problem. Based on MATLAB and 
IsSpice software, simulation results indicate that the 
adequately designed sliding mode controller is robust 
and stable. This study schematically depicts the circuit 
hardware, implemented with OP amplifiers and RC 
elements. Highly promising for communications-
related applications, the encryption/decryption system 
of audio and image signals exhibits elevated security 
and confidentiality during data transmission. 
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