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Image captioning in traffic scenes presents several challenges, including imprecise caption generation, lack of 
personalization, and an unwieldy number of model parameters. We propose a new image captioning model for 
traffic scenes to address these issues. The model incorporates an adapter-based fine-tuned feature extraction 
part to enhance personalization and a caption generation module using global weighted attention pooling to 
reduce model parameters and improve accuracy. The proposed model consists of four main stages. In the first 
stage, the Image-Encoder extracts the global features of the input image and divides it into nine sub-regions, 
encoding each sub-region separately. In the second stage, the Text-Encoder encodes the text dataset to obtain 
text features. It then calculates the similarity between the image sub-region features and encoded text features, 
selecting the text features with the highest similarity. Subsequently, the pre-trained Faster RCNN model ex-
tracts local image features. The model then splices together the text features, global image features, and local 
image features to fuse the multimodal information. In the final stage, the extracted features are fed into the 
Captioning model, which effectively fuses the different features using a novel global weighted attention pooling 
layer. The Captioning model then generates natural language image captions. The proposed model is evaluated 
on the MS-COCO dataset, Flickr 30K dataset, and BUUISE-Image dataset, using mainstream evaluation met-
rics. Experiments demonstrate significant improvements across all evaluation metrics on the public datasets 
and strong performance on the BUUISE-Image traffic scene dataset.
KEYWORDS: Contrastive learning, Deep learning, Image captioning, Traffic scene, Transformer.
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1. Introduction
The image captioning task integrates computer vision 
and natural language processing to generate descrip-
tive captions for visual inputs.  With the development 
of Artificial Intelligence, image captioning techniques 
have been increasingly applied in various fields. Such 
as medicine [5, 28], fashion and e-commerce [19], 
aided industry [36], and tourism [4]. Moreover, this 
technology shows immense potential in traffic appli-
cations. The traditional computer vision task mainly 
detects and classifies targets such as pedestrians, ob-
stacles, signage, etc. It then enables traffic monitoring 
[3], road condition analysis [24], and automated driv-
ing [9]. However, these methods lack an understand-
ing of relationships between detected entities. There-
fore, we propose converting traffic scene keyframes 
into natural language captions and using richer se-
mantic information can replace detecting individual 
entities. This approach shows promise for assisting 
visually impaired individuals [12, 23], driving safety 
[1], and describing traffic accidents [18]. 
Traditional image captioning methods rely on tem-
plate and rule-based methods, which cannot handle 
context and generate diverse captions. Most current 
mainstream image captioning methods are based on 
deep learning, commonly adopting an encoding-de-
coding framework. The earliest deep learning-based 
generalized image captioning model [33] extracts 
image features by convolutional neural networks 
and then inputs these features into recurrent neu-
ral networks to generate natural language captions, 
significantly improving over traditional methods. 
Therefore, the current mainstream image caption-
ing methods mainly focus on deep learning. We base 
on Stefanini et al. [30] the title of the point of view of 
the mainstream generalized image captioning model 
for research and base the different decoders into two 
categories, respectively, based on Long Short Term 
Memory methods and based on the Transformer 
methods. The image captioning methods mainly use 
the structure of encoder and decoder, where the en-
coder is responsible for extracting the image features, 
and the decoder is responsible for receiving the image 
features and converting them into captions corre-
sponding to the image. 
In 2015, Xu et al. [41] proposed an LSTM-based 
method incorporating a visual attention mechanism 

for the first time, which can selectively focus on the 
image preference region. The model extracts the im-
age features by CNN and generates the Caption by 
LSTM, which better solves the problem that RNN 
(Recurrent Neural Network) Series Networks can 
only maintain short-term memory. Building on prior 
work, Anderson et al. [2]extract local target features 
using a pre-trained Faster R-CNN model and com-
pute average feature representations to focus on sa-
lient image regions. Top-down Attention LSTM and 
Language LSTM are then utilized to obtain averaged 
and target-specific features for generating image cap-
tions. However, LSTM models are prone to vanishing 
and exploding gradient issues when processing long 
sequences due to the limited dimensionality of the 
LSTM memory units. Following the success of Trans-
former models [32] for natural language processing 
in 2017, numerous Transformer-based approaches 
emerged for image captioning. Unlike LSTMs, Trans-
formers can directly capture long-range dependen-
cies across the full sequence via self-attention, bet-
ter capturing contextual information. Consequently, 
most state-of-the-art image captioning methods now 
utilize Transformer-based architectures. Zhu et al. 
[45] first proposed a CNN-Transformer framework. 
However, by only using global image features as in-
put to the decoder, this method fails to capture fine-
grained contextual details, instead encoding irrele-
vant information that yields inaccurate and verbose 
captions. To address these limitations, Xian et al. [39] 
propose a Transformer-based method that optimizes 
region feature representations in the encoding stage 
using mesh features and geometric information. 
Wang et al. [37] pioneer the use of Swin Transform-
ers as encoders for image captioning, helping to ad-
dress prior limitations in this field. They incorporate 
global visual features into each decoder block to en-
hance cross-modal interactions and more effective-
ly capture global context. Cornia et al. [6] aim at this 
problem, encoding low-level and high-level object 
features as prior knowledge and using prior knowl-
edge to assist in semantic captioning at different 
levels in the decoding stage. Luo et al. [15] proposed 
another transformer-based image captioning meth-
od using a diffusion model. A cross-modal retrieval 
module first retrieves sentences highly similar to the 
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image as semantic priors. Multiple diffusion trans-
formers are then stacked in a cascade. Each diffusion 
transformer conditionally generates output based 
on the previous model’s output to better capture de-
pendencies between words. Therefore, the current 
transformer-based image captioning method calcu-
lates the interaction between each position due to 
the self-attention mechanism, leading to many pa-
rameter models. Most of the above models use a sin-
gle visual local feature or visual global feature as the 
input of the decoder, which may cause problems such 
as inaccurate captions in complex traffic scenes. This 
problem has been improved with the emergence of 
contrastive learning methods, large-scale pre-train-
ing models break through the constraints between 
text and image, and the categories of object detection 
cover a larger amount. The image vector extraction 
method based on CLIP (Contrastive Language-Image 
Pre-training) has been widely used [25].
OpenAI proposes CLIP, and its core idea is to pre-
train utilizing comparative learning, which maps im-
age and text embeddings to a common feature space 
by calculating the similarity between image and text. 
Its application areas are wide, such as image clas-
sification, image retrieval, image description, etc. 
Mokady et al. [17] first proposed a CLIP-based im-
age captioning method by extracting image features 
from CLIP and using a mapping network to connect 
the two modalities of image and language. They only 
fine-tuned the mapping network and finally generat-
ed image captions from pre-trained GPT-2. Howev-
er, this method only extracted visual feature infor-
mation through CLIP and mapped it to the textual 
space without considering the intrinsic contextual 
semantic information of the image. As a result, the 
generated captions lack details. Furthermore, using 
a single mapping network to align the two modalities 
needs further refinement. Subsequently, Nukrai et al. 
[22] addressed this problem by proposing an image 
captioning model that matches the two modalities’ 
mapping by injecting noise into the training process. 
This results in a more accurate alignment of the two 
modalities. However, their method still needs to con-
sider the contextual semantic information inherent 
in the image. On the other hand, Dai et al. [8] proposed 
a method to align CLIP’s multimodal encoder and 
BART’s text encoder to the same multimodal space. 
They used a cross-modal LM loss to harmonize the 

performance of the BART encoder and decoder. Cho 
et al. [7] proposed a training strategy to improve the 
descriptive power by maximizing the multimodal 
similarity score of CLIP and fine-tuning its text en-
coder. Current CLIP-based image captioning meth-
ods mostly use pre-trained weights directly, and the 
model is fine-tuned directly on the dataset, or only 
the final fully connected layer is trained. This could 
produce overfitting and lead to forgetting the weights 
when the dataset is too small. Therefore, the above 
methods cannot maximize CLIP’s performance on 
image captioning tasks for traffic scenes and need 
more personalization.
To address the abovementioned challenges, we pro-
pose the Traffic Scene Image Captioning model based 
on Contrastive Language-Image Pretraining (TSIC-
CLIP). The model consists of two main models. First-
ly, the feature extraction model utilizes a fine-tuned 
CLIP model to extract global image features. It also 
leverages a pre-trained Faster R-CNN to extract lo-
cal image features and a CLIP-based text retrieval 
module to obtain textual features of image sub-region 
descriptions. These feature vectors are then concat-
enated as inputs to the captioning model to combine 
the local features with the global features and tex-
tual features of image sub-regions, enhancing the 
effectiveness and efficiency of captioning. The tex-
tual features of image sub-regions enrich semantic 
information, leading to more accurate captions with 
fewer redundancies. Additionally, we freeze the CLIP 
model parameters and design a novel adapter layer for 
fine-tuning the model on both public and our traffic 
scene datasets called BUUISE-Image. This ensures 
the CLIP model’s robustness and generalizability 
while adapting it to traffic scenes, resulting in a more 
personalized model.
In the captioning model, we replace the attention 
mechanism layer in the Transformer with a Global 
Weighted Attention Pooling (WGA-Pooling) layer as 
the token mixer. First, the features extracted from the 
feature extraction model are word-embedded. These 
embedded features are then fed into the WGA-Pool-
ing layer. The WGA-Pooling layer aims to mix feature 
information while accounting for contextual depen-
dencies between sequences, which allows the model 
to better capture long-range input relationships and 
significantly reduce parameters. The pooled features 
are fed into a series of fully connected layers. Ulti-
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mately, the model generates natural language text 
captions that more closely align with the underlying 
semantic information of the traffic scene.
Finally, we constructed the BUUISE-Image dataset, 
which focuses specifically on traffic scene image cap-
tioning. We evaluated the proposed method on the 
publicly available MS-COCO and Flickr30k datasets 
and our BUUISE-Image dataset. The experimental 
results demonstrate that the method performs excel-
lently on public and proprietary datasets.
The paper is structured into five sections. Section 1 is 
the introduction, delineating the research background 
of image captioning in traffic scenes. It thoroughly ex-
plores the strengths and weaknesses of the generic and 
CLIP-based image captioning models. Furthermore, it 
offers a comprehensive summarisation and analysis 
of the encountered challenge. Lastly, the section high-
lights the innovations and enhancements incorporated 
in our work. Section 2 is the related work. It involves 
investigating and analyzing the potential and signif-
icance of image captioning techniques within traffic 
scenes. The section also encapsulates a summary of 
issues extracted from pertinent literature. In response 
to these issues, we curate the BUUISE-Image dataset 
tailored to traffic scenes, introducing the dataset itself. 
Section 3 is the methodology part. First, we summarize 
the framework of the model and outline its flow. Sec-
ond, we divide the model into feature extraction and 
captioning models. On this basis, we detail the work’s 
innovative aspects. Section 4 is the experiment and 
discussion part. In detail, we introduce the experimen-
tal environment, parameter configurations, commonly 
used datasets, evaluation metrics, and the self-built 
BUUISE-Image dataset. We also analyze and discuss 
the experimental results. Section 5 is the conclusions, 
and we summarize the contributions of our work, pres-
ent the remaining deficiencies, and provide an outlook 
on future research directions. 

2. Related Work
2.1. Research Related to Image Captioning in 
Traffic Scenes
With the rapid development of Artificial Intelligence, 
image captioning shows broad application prospects 
in many fields. Especially in the field of traffic, image 
captioning is playing an important role. In this section, 

image captioning in traffic scenes is investigated and 
analyzed regarding application scenes and methods. 
Li et al. [13] have demonstrated that image captioning 
of traffic scenes can provide richer semantic informa-
tion for Advanced Driver Assistance Systems (ADAS) 
to make decisions. Appropriate driving suggestions 
generated from captions can improve driver safety. 
Voykinska et al. [34] also suggested that a blind person 
can obtain the necessary information to understand 
the situation of an invisible target with the help of a 
trusted friend who describes the target. Thus, image 
captioning techniques can help blind people see the 
information in a traffic scene and thus avoid danger-
ous situations. Unlike previous methods, Xu et al. [40] 
proposed an end-to-end autonomous driving model. 
The model takes a sequence of video frames as input to 
train a model that maps visual information to driving 
operations. The method can observe previous self-mo-
tion state and traffic scene conditions from a monocu-
lar camera to generate image captions of the vehicle’s 
future motion behaviours. This informs the user in 
advance and enhances the user’s safety and driving ex-
perience. On the other hand, Mori et al. [20] proposed 
a method to alert drivers to risks by image captioning. 
Based on previous research, Mori et al. [21] proposed 
a method for interpreting automated driving decisions 
based on in-vehicle cameras. The method fuses the 
visual information captured by the camera and the ac-
celeration and angular velocity information from the 
vehicle sensors. It uses them as inputs to the model, 
and the output interprets the vehicle’s driving state. 
The method can effectively reduce the psychological 
burden on passengers and prevent accidents. Kim et al. 
[11] proposed an image captioning model for interpret-
ing autonomous driving planning and control. Unlike 
previous methods, their model also considers the driv-
er’s attention. It generates captions for interpreting 
vehicle behavior by acquiring information about vehi-
cle control parameters and visual information. On the 
contrary, Srihari et al. [29] proposed a semantic seg-
mentation-based model for image captioning of traffic 
scenes, which can be used for labeling video captions 
of traffic scenes and autonomous driving assistance. 
Unlike others, Wu et al. [38] applied image captioning 
to traffic scene modelling. They divided the image into 
several sub-regions and generated corresponding cap-
tions. Finally, they performed modelling based on the 
captions of each region.



Information Technology and Control 2024/1/53102

Overall, image captioning has shown great promise in 
traffic scenes, not only for assisted driving but also for 
improving the safety of the blind and the elderly and 
helping human users better understand and monitor the 
operating status of autonomous driving systems. In the 
future, the technology will be able to analyze images and 
videos taken by road surveillance cameras in real-time, 
detect traffic conditions and events, and generate text 
reports for traffic management authorities to analyze. 
This could significantly improve the efficiency of moni-
toring and managing complex traffic environments.

2.2. Image Captioning Dataset in Traffic 
Scenes
The traffic scene presents unique challenges due to 
its complexity, specificity, diversity, and uncertainty 
[16]. The complexity stems from the simultaneous 
presence of diverse vehicles, pedestrians, and traffic 
signals, variable road topologies, and highly interde-
pendent traffic flows. The specificity shows in differ-
ing traffic conditions across environments like cities, 
villages, and highways and from weather, time of day, 
and seasons. Diversity arises from the possibility of 
multiple vehicle types, pedestrian behaviours, and 
road conditions, even including unknown objects be-
yond target detection categories. Uncertainty comes 

from random factors like weather, accidents, and un-
expected events. Therefore, training models on traf-
fic scene datasets remains essential for addressing 
the unique challenges in this domain. Seifi et al. [27] 
proposed a method to select ten classes of images in 
traffic scenes and their corresponding descriptions 
in the MS-COCO dataset and use them as a separate 
dataset for model training and evaluation. Howev-
er, due to the complexity and diversity of the traffic 
scenes, using only ten classes may cause limitations 
of the model in practical applications. In contrast, Ro-
chel et al. [26] created a 5,000 images dataset of traffic 
accidents, divided into 4,000 training and 1,000 test 
images with five matched captions each. However, the 
smaller size of datasets risks limitations in capturing 
the full diversity of traffic accidents. During model 
training and evaluation, the size of the dataset and the 
richness of its samples affect generalization ability 
and model performance. 
A more extensive and diverse dataset may improve 
model robustness and accuracy for such a com-
plex and variable domain. Therefore, we built the 
BUUISE-Image dataset dedicated to image caption-
ing in traffic scenes, containing over 10,000 images, 
each with five manually generated captions. As shown 
in Figure 1, the BUUISE-Image dataset is self-col-

Figure1 
BUUISE-Image Traffic Scene Image captioning Dataset
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Annotation1: There is a traffic jam.
Annotation2: There is a car parked, with several motorcycles around it.
Annotation3: Several cars and motorcycles are driving.
Annotation4: A car is coming from the left front, and there is a car waiting straight ahead.
Annotation5: On the road, a car and a motorcycle are driving ahead, and in front of the 
motorcycle, a bicycle is riding.

Annotation1: There are many vehicles driving ahead.
Annotation2: Heading towards the highway toll station with three cars directly ahead.
Annotation3: Ahead there is a No Parking sign, with three cars in motion.
Annotation4: Many cars are heading towards the highway toll station.
Annotation5: Driving towards the highway toll station, many cars are not far ahead.

Annotation1: Many cars are waiting.
Annotation2: There is a traffic jam.
Annotation3: Five cars are waiting ahead.
Annotation4: Many cars are driving ahead.
Annotation5: There is a car at a close distance straight ahead, and four cars to the right 
front.

Annotation1: Five cars are driving ahead.
Annotation2: Many vehicles are ahead and there is a No Parking sign to the right front.
Annotation3: Many cars are turning.
Annotation4: Many vehicles are directly ahead.
Annotation5: Many vehicles are driving, and there is a No Parking sign by the road.
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Figure2 
TSIC-CLIP image captioning model

lected from Beijing, Tianjin, Vietnam, and other 
cities and is screened and cleaned. The dataset 
focuses on the accuracy and diversity of captions. 
Each image has multiple captions covering dif-
ferent aspects of information, such as objects, 
attributes, relationships, scenes, etc. In addition, 
the dataset provides rich metadata information, 
such as the time, location, and labeling of the 
images, which can be used for a broader range of 
image understanding tasks. The BUUISE-Image 
dataset can be used to evaluate the performance 
of image captioning and can also be used to devel-
op and train new image captioning algorithms.

3. Research Methodology
The feature extraction model uses a pre-trained 
Faster R-CNN as Object-Dector to extract lo-
cal image features, focusing on the target object 
efficiently and reducing irrelevant redundancy. 
The model extracts global features from the im-
age using a fine-tuned CLIP Image Encoder as 
the Image-Encoder. The CLIP text encoder as 
Text-Encoder encodes the BUUISE-Image data-
set attribute relations to obtain encoded text fea-
tures. Then, the image divides into nine sub-re-
gions, each encoded by the Image Encoder. Image 
features for each sub-region calculate similarity 
with the encoded text to obtain the most similar 
text features. Then, the most similar text features, 
global image features, and local features concate-
nate together. Finally, the concatenated features 
input into the WGA-PoolFormer captioning 
model to generate corresponding image captions. 
The methods mentioned above are shown in Fig-
ure 2, the TSIC-CLIP image captioning model.

3.1. Feature Extraction Model
The feature extraction model consists of the Ob-
ject-Detector module, the Image-Encoder mod-
ule and the Text Retrieval module.

3.1.1. Object-Detector
Object-Detector adopts the pre-trained Faster 
R-CNN model. First, the image CI R H W× ×∈  is in-
put to Object-Detector to extract local features 
such as vehicles and pedestrians in the image 
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3.1.2 Image-Encoder 
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encoder to extract global features from the 
image. The parameters of the pre-trained 
CLIP model are frozen, with only the adapter 
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Figure 3. 
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dataset, which makes the model more personalized 
and helps to generate more contextualized captions of 
the situation. For an input image I , the Image-Encod-
er first encodes it to obtain global features, as shown 
in Equation (2):
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where α  represents the residual ratio, which is used 
to adjust the original features; *

globalV  represents the 
global image features after adapter layer adjustment.

3.1.1. Text-Encoder
The text encoder utilizes the pre-trained CLIP text 
encoder, and the weights of the predictive classifi-
er are adjusted using the adapter layer as shown in 
Equation (5):
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where   is the residual ratio; Cå represents the 
weights adjusted by the adapter layer. 

Then the features encoded by Image-Encoder *
globalV  

and the classifier weights of Text-Encoder *W  are 
used to calculate the class probability of the image 
by softmax as shown in Equation (7): 

* *
i global

i N * *
j globalj 1

exp((W ) V ) /
p

exp((W ) V ) /

T

T




=

=


,         (7) 

where exp( )  represents the exponential 

function; *
iW represents the weight corresponding 

to the i th output unit; *
globalV represents the global 

image features; and   represents the temperature 
parameter used to adjust the softmax, which 
controls the smoothing degree of the probability 
distribution. Here, i  represents the i th class; N  
represents the total number of classes; ip  
represents the predicted probability of the i th 
category. 

Finally, the Image-Encoder and Text-Encoder are 
optimized by cross-entropy loss function as shown 
in Equation (8): 
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where N  represents the total number of samples; 
M  represents the number of classes; ip  represents 
the probability that the sample i  belongs to the 
predicted class p ; ipy  represents the true labeling 
of the sample i  for the class p , and if the sample 
i  belongs to the class p , then ipy 1= , else it will be 
0; L  represents the loss function. 

3.1.4 Text Retrieval Module 

The text retrieval module is used to calculate 
and get the text features that have the highest 
similarity with the nine sub-regions of the 
image, and its model is shown in Figure 4 
Text Retrieval Module. 

The input image is first split into nine sub-
regions in the text retrieval module. Each 
image sub-region is then encoded by the 
Image-Encoder, as shown in Equation (9): 

x subv ImageEncoder(I )= ,         (9) 

where the vector xv  is the x th image 
subregion feature, which is taken as the query 
key. 

Then, Text-Encoder encodes 

BUU 1 2T {T ,T ,...,T }n= , as shown in Equation 
(10): 

q BUUu TextEncoder(T )= .       (10) 

The cosine similarity is calculated between 
the query image feature xv  and each text 

feature qu  as shown in Equation (11): 
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Finally, the k  text features j,kt  with the 

highest similarity to xV  are returned, as 
shown in Equation (12): 

j, x qt topK(sim(v u ))k =  .       (12) 

The image sub-region features xv  are then 
concatenated with the caption vectors j,kt  
having the highest similarity to their 
corresponding sub-regions. This combined 
representation is processed through fully 
connected layers, layer normalization, and 
dropout, as shown in Equation (13): 
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where j,kt  is the text feature with the highest 
similarity; j  represents the numbering of the 
image sub-regions; k  represents the top k  
text descriptions with the highest cosine 
similarity; and finally the model will be fused 
by the Object-Detector to the feature vector 
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retrieval module to obtain the target with 

, (5)

where W  represents the classifier weights; contextFA  
represents the adapter layer used to fine-tune the 
CLIP text encoder.
The classifier weights are first fed into the adapter lay-
er to map the features to the new space used to obtain 
the relevant features. Then, they are fed into the resid-
ual block for adjustment, as shown in Equation (6):
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where β  is the residual ratio; Cå
 represents the 

weights adjusted by the adapter layer.
Then the features encoded by Image-Encoder *

globalV  
and the classifier weights of Text-Encoder *W  are 
used to calculate the class probability of the image by 
softmax as shown in Equation (7):
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Figure 4 
Text retrieval module
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represents the adapter layer. 

The features adjusted by the adapter layer are fed 
into the residual block, and the Equation as shown 

in Equation (4): 
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where   represents the residual ratio, which 
is used to adjust the original features; *

globalV  
represents the global image features after 
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The cosine similarity is calculated between the query 
image feature xv  and each text feature qu  as shown in 
Equation (11):

 
 

 

 
3.1.1 Text-Encoder 
The text encoder utilizes the pre-trained CLIP text 
encoder, and the weights of the predictive 
classifier are adjusted using the adapter layer as 
shown in Equation (5): 

( )context 1 2FA (W) ELU W W WC CT= ,   (5) 

where W  represents the classifier weights; contextFA  
represents the adapter layer used to fine-tune the 
CLIP text encoder. 

The classifier weights are first fed into the adapter 
layer to map the features to the new space used to 
obtain the relevant features. Then, they are fed into 
the residual block for adjustment, as shown in 
Equation (6): 

contextW FA (W) (1 )WT = + −å ,   (6) 

where   is the residual ratio; Cå represents the 
weights adjusted by the adapter layer. 

Then the features encoded by Image-Encoder *
globalV  

and the classifier weights of Text-Encoder *W  are 
used to calculate the class probability of the image 
by softmax as shown in Equation (7): 

* *
i global

i N * *
j globalj 1

exp((W ) V ) /
p

exp((W ) V ) /

T

T




=

=


,         (7) 

where exp( )  represents the exponential 

function; *
iW represents the weight corresponding 

to the i th output unit; *
globalV represents the global 

image features; and   represents the temperature 
parameter used to adjust the softmax, which 
controls the smoothing degree of the probability 
distribution. Here, i  represents the i th class; N  
represents the total number of classes; ip  
represents the predicted probability of the i th 
category. 

Finally, the Image-Encoder and Text-Encoder are 
optimized by cross-entropy loss function as shown 
in Equation (8): 

( )
N

ip ii c

M

1

1L log p
N

y
=

= −  ,    (8) 

where N  represents the total number of samples; 
M  represents the number of classes; ip  represents 
the probability that the sample i  belongs to the 
predicted class p ; ipy  represents the true labeling 
of the sample i  for the class p , and if the sample 
i  belongs to the class p , then ipy 1= , else it will be 
0; L  represents the loss function. 

3.1.4 Text Retrieval Module 

The text retrieval module is used to calculate 
and get the text features that have the highest 
similarity with the nine sub-regions of the 
image, and its model is shown in Figure 4 
Text Retrieval Module. 

The input image is first split into nine sub-
regions in the text retrieval module. Each 
image sub-region is then encoded by the 
Image-Encoder, as shown in Equation (9): 

x subv ImageEncoder(I )= ,         (9) 

where the vector xv  is the x th image 
subregion feature, which is taken as the query 
key. 

Then, Text-Encoder encodes 

BUU 1 2T {T ,T ,...,T }n= , as shown in Equation 
(10): 

q BUUu TextEncoder(T )= .       (10) 

The cosine similarity is calculated between 
the query image feature xv  and each text 

feature qu  as shown in Equation (11): 

x q
x j

x q

v u
sim(v ,u )

v u


=


.       (11) 

Finally, the k  text features j,kt  with the 

highest similarity to xV  are returned, as 
shown in Equation (12): 

j, x qt topK(sim(v u ))k =  .       (12) 

The image sub-region features xv  are then 
concatenated with the caption vectors j,kt  
having the highest similarity to their 
corresponding sub-regions. This combined 
representation is processed through fully 
connected layers, layer normalization, and 
dropout, as shown in Equation (13): 

^

j,k t j,k xt drop(fc (norm ([t , v ])))t= ,       (13) 

where j,kt  is the text feature with the highest 
similarity; j  represents the numbering of the 
image sub-regions; k  represents the top k  
text descriptions with the highest cosine 
similarity; and finally the model will be fused 
by the Object-Detector to the feature vector 

^ ^ ^ ^

1 2 nO {o ,o , ,o }= K  are concatenated with the 

fused vectors 
^ ^

j,kT {t | j, k}=   from the text 
retrieval module to obtain the target with 

(11)
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The image sub-region features xv  are then concate-
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where W  represents the classifier weights; contextFA  
represents the adapter layer used to fine-tune the 
CLIP text encoder. 

The classifier weights are first fed into the adapter 
layer to map the features to the new space used to 
obtain the relevant features. Then, they are fed into 
the residual block for adjustment, as shown in 
Equation (6): 
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where   is the residual ratio; Cå represents the 
weights adjusted by the adapter layer. 

Then the features encoded by Image-Encoder *
globalV  

and the classifier weights of Text-Encoder *W  are 
used to calculate the class probability of the image 
by softmax as shown in Equation (7): 
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where exp( )  represents the exponential 

function; *
iW represents the weight corresponding 

to the i th output unit; *
globalV represents the global 

image features; and   represents the temperature 
parameter used to adjust the softmax, which 
controls the smoothing degree of the probability 
distribution. Here, i  represents the i th class; N  
represents the total number of classes; ip  
represents the predicted probability of the i th 
category. 

Finally, the Image-Encoder and Text-Encoder are 
optimized by cross-entropy loss function as shown 
in Equation (8): 
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where N  represents the total number of samples; 
M  represents the number of classes; ip  represents 
the probability that the sample i  belongs to the 
predicted class p ; ipy  represents the true labeling 
of the sample i  for the class p , and if the sample 
i  belongs to the class p , then ipy 1= , else it will be 
0; L  represents the loss function. 

3.1.4 Text Retrieval Module 

The text retrieval module is used to calculate 
and get the text features that have the highest 
similarity with the nine sub-regions of the 
image, and its model is shown in Figure 4 
Text Retrieval Module. 

The input image is first split into nine sub-
regions in the text retrieval module. Each 
image sub-region is then encoded by the 
Image-Encoder, as shown in Equation (9): 
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where the vector xv  is the x th image 
subregion feature, which is taken as the query 
key. 

Then, Text-Encoder encodes 

BUU 1 2T {T ,T ,...,T }n= , as shown in Equation 
(10): 
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Finally, the k  text features j,kt  with the 

highest similarity to xV  are returned, as 
shown in Equation (12): 

j, x qt topK(sim(v u ))k =  .       (12) 

The image sub-region features xv  are then 
concatenated with the caption vectors j,kt  
having the highest similarity to their 
corresponding sub-regions. This combined 
representation is processed through fully 
connected layers, layer normalization, and 
dropout, as shown in Equation (13): 
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where j,kt  is the text feature with the highest 
similarity; j  represents the numbering of the 
image sub-regions; k  represents the top k  
text descriptions with the highest cosine 
similarity; and finally the model will be fused 
by the Object-Detector to the feature vector 
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where j,kt  is the text feature with the highest similarity;  
j represents the numbering of the image sub-regions;  
k represents the top k text descriptions with the high-
est cosine similarity; and finally the model will be 
fused by the Object-Detector to the feature vector 
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vectors 
^ ^

j,kT {t | j, k}= ∀  from the text retrieval module 
to obtain the target with global features, respectively. 
In order to obtain the detection feature vector and the 
text retrieval encoded feature vector with global fea-
tures, respectively, the dimension is adjusted by the 
fully connected layer and the two are concatenated 
to obtain the feature information V, which is used to 
be fed into the image captioning module. Compared 
with traditional image captioning models based on 
object detection, fine-tuning the pre-trained CLIP 
model with an adapter layer can minimize model pa-
rameters while maintaining the generalization ability 
of the pre-trained CLIP model. The CLIP model can 
quickly adapt to new downstream tasks by replacing 
task-specific adapters, enabling more effective image 
captioning for traffic scenes.

3.2. WGA-PoolFormer
3.2.1. WGA-PoolFormer Encoder
Traditional Transformer models often have a large 
number of parameters, which can lead to overfitting 
when trained on small datasets. To address this, we 
propose a model called WGA-PoolFormer (Weight-
ed Global Attention PoolFormer) based on MetaFor-
mer [42]. As shown in Figure 5, (a) is the traditional 

Transformer, and (b) is the proposed WGA-Pool-
Former. Compared to the traditional Transformer, 
we replace the original multi-head self-attention in 
the encoder with a new WGA-Pooling layer to fuse 
through token mixing. This replacement reduc-
es model parameters while retaining the ability to 
model semantic information, enabling the model to 
capture key features.
First, the feature vector V, output from the feature 
extraction model, is input into the WGA-Poolformer 
for layer normalization. Next, the weighted attention 
pooling layer (WGA-Pooling) performs token mixing 
to aggregate the spatial information between tokens 
at different locations. Subsequently, the residual con-
nection sums the weighted attention pooling features 
with the original features, followed by layer normal-
ization. Finally, the residual connection is performed 
after passing through the fully connected layer, as 
shown in Equation (14):
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connected layer, as shown in Equation (14): 

g WGApool(norm(V))+V= ,  (14) 

where, norm( ) is the layer normalization, and 
WGApool( )  represents the Weighted Global 
Attention Pooling module for mixing the spatial 
information of all word tokens within the window, 
as shown in Equation (15): 
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where K  is the pooling window size; M  is a 
learnable K K  weight matrix, which 
assigns different weights to features at 
different positions; p  and q  are the row and 
column indices of the weight matrix M , 
respectively; '

:,i, jV  is the output feature 

matrix; :,i, jV is the input feature matrix; i,j  
indicate the position of the feature mapping. 
In Equation (12), the summation goes through 
each position in the K K  pooling window, 
computing the difference between the input 
feature V  at each position and the centre 
position (i, j) , weighted by the learnable 
weight matrix M .This allows aggregating 
spatial information by obtaining a weighted 
fusion of the features around the centre 
location. 

The feature g  aggregated with spatial 
information via WGA-Pooling is fed into the 
next sub-module. First, layer normalization is 
applied. g  is then input to a fully connected 
layer for dimension adjustment, followed by 
ReLU activation to filter features. Another 
fully connected layer further adjusts 
dimensions. Finally, a residual connection is 
added with the original feature vector, as 
shown in Formula (16), generating an 
enhanced feature representation: 

1 2z Re LU(norm( )W )W gg= + , (16) 

where, 1W  and 2W  represent fully connected 
layers; norm represents the layer 
normalization operation; and g  represents 
the features obtained by WGA-Pooling. 

This paper introduces a learnable weight 
matrix M  to learn the relationships between 
neighbouring features, thereby modelling 
local spatial information. The weight 
parameters in M  can weigh different 
positional features and learn their 
importance. In the weighted summation 
process, global features are considered, and 
surrounding local features are aggregated so 
that the model can capture the mutual 
relationships between local and global 
features. This delicate spatial information 
modelling enhances the model's semantic 
judgment and key information extraction 
abilities. This method can better analyze the 
intrinsic correlations between data from 
different modalities in cross-modal tasks and 

, (14)

where, norm( )⋅  is the layer normalization, and 
WGApool( )⋅  represents the Weighted Global Atten-
tion Pooling module for mixing the spatial informa-

Figure 5
Comparison between Transformer model and WGA-PoolFormer model

  

gradients to avoid vanishing gradients. 
Furthermore, ELU's near-zero mean and constant 
variance accelerate neural network convergence 
speed and enhance model robustness. imageFA  
represents the adapter layer. 

The features adjusted by the adapter layer are fed 
into the residual block, and the Equation as shown 

in Equation (4): 
*
global global globaliV FA (V ) (1 )VT

mage = + − ,        (4) 

where   represents the residual ratio, which 
is used to adjust the original features; *

globalV  
represents the global image features after 
adapter layer adjustment. 
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tion of all word tokens within the window, as shown 
in Equation (15):
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put feature matrix;  i, j indicate the position of the fea-
ture mapping. In Equation (12), the summation goes 
through each position in the K K×  pooling window, 
computing the difference between the input feature V 
at each position and the centre position (i, j), weighted 
by the learnable weight matrix M. This allows aggre-
gating spatial information by obtaining a weighted fu-
sion of the features around the centre location.
The feature g aggregated with spatial information via 
WGA-Pooling is fed into the next sub-module. First, 
layer normalization is applied. g is then input to a fully 
connected layer for dimension adjustment, followed 
by ReLU activation to filter features. Another fully 
connected layer further adjusts dimensions. Finally, 
a residual connection is added with the original fea-
ture vector, as shown in Formula (16), generating an 
enhanced feature representation:
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where, W1 and W2 represent fully connected layers; 
norm represents the layer normalization operation; 
and g represents the features obtained by WGA-Pool-
ing.
This paper introduces a learnable weight matrix M 
to learn the relationships between neighbouring fea-
tures, thereby modelling local spatial information. 
The weight parameters in M can weigh different po-
sitional features and learn their importance. In the 
weighted summation process, global features are con-
sidered, and surrounding local features are aggregat-
ed so that the model can capture the mutual relation-
ships between local and global features. This delicate 
spatial information modelling enhances the model’s 
semantic judgment and key information extraction 
abilities. This method can better analyze the intrinsic 
correlations between data from different modalities 

in cross-modal tasks and effectively improve the mod-
el’s joint representation learning and downstream 
task performance. In summary, this paper achieves 
an adaptive fusion of local and global features through 
learnable weights, strengthening the feature expres-
sion ability of the model in cross-modal tasks.

3.2.2. WGA-PoolFormer Decoder
In the WGA-PoolFormer Decoder, the model embeds 
text captions 1 2 tt ( , , , )ω ω ω ω≤ =   to obtain embed-
ded vectors 1 2 te t (e ,e , , e )≤ =  . These vectors and the 
encoder output z are input to the model.
First, the query vector Q, key vector K, and value vec-
tor V are computed as shown in Equation (17):
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where e  is the vector by word embedding;
0QW , 

0KW , and 
0VW  are the learned weight matrices. 

The masked multi-attention mechanism is then 
employed, taking as input the vectors obtained 
from the computation, as shown in Equation (18): 

O MaskedMultiHead(Q,K,V,M)= ,               
(18) 

where Q , K , V are the Query, Key, and Value 
computed through the embedding layer and linear 
mapping, and M is the mask matrix to prevent 
information leakage; 

Next, layer normalization and residual connection 
are performed on the masked multi-attention 
output O , which is then input to the decoder's 
second sublayer, as shown in Equations (19)-(20): 
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where 'O  is the output vector of the masked 
multi-head attention mechanism. The matrices zQ  

and zK  are obtained by linear mapping of the 
encoder output feature z  as shown in Equation 
(21), where 

zQW  and 
zKW  are learnable weight 

matrices that map encoder features z  to the query 
and key vector spaces, generating the query and 
key matrices required for the attention mechanism. 

'O  is obtained from the Masked Multi-Head 

Attention output. 

Finally, the feature vector '''O  is obtained by 
FFN and residual layer processing, and after 
adjusting the length of the vocabulary list by 
a linear layer, it is inputted into the softmax 
function to generate the word probability, 
whose formula is shown in (22): 

'
output

' 'O Soft max )O(Linear( )= , (22) 

where outputO  is the word generated at the 

current timestamp, and '''O  is the vector 
output by the decoder. The model repeats the 
decoding step until generating the complete 
textual caption for the image. 

 

4. Experiment and Results 
Discussion 

4.1 Experimental Environment and 
Parameter Configuration 
The experiments were conducted using 
Ubuntu 18.04, an Intel Xeon E5-2637 v4 CPU, 
32GB Samsung RAM, and four NVIDIA Titan 
V GPUs. The software stack comprised 
PyTorch 1.10, Python 3.7, CUDA 11.4 and 
cuDNN 8.2.4. To ensure effective 
experiments, batchsize was set to 200 and 
epochs to 60 during training. Training 
proceeded in two phases: cross-entropy and 
reinforcement learning. The learning rate was 
1e-4 for cross-entropy and 5e-6 for 
reinforcement learning. Model optimization 
used the AdamW optimizer. 

4.2 General Dataset Introduction and 
Evaluation Metrics 
4.2.1 MS-COCO 
The MS-COCO (Microsoft Common Objects 
in Context) dataset [14] is widely used for 
image recognition and captioning, containing 
over 330,000 images annotated with at least 
five manually generated captions each. These 
diverse captions, created by different 
annotators, cover scenes involving people, 
animals, transportation, furniture, food, and 
more. Each caption contains about ten words 
that can describe objects, attributes, actions, 
etc., in the image. MS-COCO provides 
instance segmentation, semantic 
segmentation, and keypoint annotations, 
enabling diverse image understanding tasks. 
This rich annotation has been invaluable for 
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tention mechanism. 'O  is obtained from the Masked 
Multi-Head Attention output.
Finally, the feature vector '''O  is obtained by FFN and 
residual layer processing, and after adjusting the 
length of the vocabulary list by a linear layer, it is in-
putted into the softmax function to generate the word 
probability, whose formula is shown in (22):
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where outputO  is the word generated at the current time-
stamp, and '''O  is the vector output by the decoder. The 
model repeats the decoding step until generating the 
complete textual caption for the image.

4. Experiment and Results Discussion
4.1. Experimental Environment and 
Parameter Configuration
The experiments were conducted using Ubuntu 18.04, 
an Intel Xeon E5-2637 v4 CPU, 32GB Samsung RAM, 
and four NVIDIA Titan V GPUs. The software stack 
comprised PyTorch 1.10, Python 3.7, CUDA 11.4 and 
cuDNN 8.2.4. To ensure effective experiments, batch-
size was set to 200 and epochs to 60 during training. 
Training proceeded in two phases: cross-entropy and 
reinforcement learning. The learning rate was 1e-4 
for cross-entropy and 5e-6 for reinforcement learn-
ing. Model optimization used the AdamW optimizer.

4.2. General Dataset Introduction and 
Evaluation Metrics
4.2.1. MS-COCO
The MS-COCO (Microsoft Common Objects in Con-
text) dataset [14] is widely used for image recognition 
and captioning, containing over 330,000 images an-
notated with at least five manually generated captions 
each. These diverse captions, created by different 
annotators, cover scenes involving people, animals, 
transportation, furniture, food, and more. Each cap-
tion contains about ten words that can describe ob-
jects, attributes, actions, etc., in the image. MS-COCO 
provides instance segmentation, semantic segmen-
tation, and keypoint annotations, enabling diverse 
image understanding tasks. This rich annotation has 
been invaluable for advancing image understanding 
algorithms.

4.2.2. MS-COCO
The Flickr 30K dataset brings about 31,000 real-world 
images from the Flickr image-sharing platform, pro-
viding five high-quality text captions for each image. 
Created by human annotators, these captions capture 
not only the objects, scenes, and situations in the im-
ages but also rich information such as emotions and 
contexts. Thus, one of the features of this dataset is 
the diversity of image-text pairs covering a wide range 
of scenes, objects and situations.

4.2.3. Evaluation Metrics
We use four commonly used evaluation metrics in 
image captioning to evaluate the proposed model: 
BLEU-4, METEOR, ROUGE-L and CIDEr. 
BLEU-4 measures n-gram overlap between the gen-
erated and reference captions to evaluate accuracy, 
using up to 4-gram information. 
METEOR incorporates semantic information by 
considering synonyms and stem matching instead of 
purely exact word matching, better capturing seman-
tic consistency. 
ROUGE-L computes the longest common subse-
quence between captions, reflecting similarity. 
CIDEr leverages n-gram co-occurrence statistics 
between generated and reference captions to assess 
accuracy and diversity. Higher CIDEr scores indicate 
greater conformance to human captions.

4.3. Experimental Results Discussion and 
Comparison

The MS-COCO, Flickr 30k, and BUUISE-Image traffic 
scene datasets were utilized for training and evaluation 
to fully validate the model’s performance. The model’s 
performance was quantitatively analyzed using com-
mon evaluation metrics: BLEU-4 (B@4), METEOR 
(M), ROUGE-L (R), and CIDEr (C). To verify the model’s 
generalizability, we first evaluated it on the MS-COCO 
dataset; the results are shown in Table 1. Different algo-
rithms were evaluated on MS-COCO and compared to 
other image captioning models. The results demonstrate 
the proposed method obtained effective scores across 
all metrics, achieving the highest scores compared to 
the second-ranked S2 model. Specifically, the proposed 
method scored 40.3% for BLEU-4, 0.2% higher; 30.1% 
for METEOR, 0.5% higher; 59.6% for ROUGE-L, 0.1% 
higher; and 137.9 for CIDEr, 5.3% higher.
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Flickr 30K evaluation results are shown in Table 2, 
comparing the proposed model against other im-
age captioning methods. Our model achieves state-
of-the-art performance on BLEU-4, METEOR, 
ROUGE-L, and CIDEr, with scores of 26.8%, 23.3%, 
48.1%, and 63.4%, respectively. Compared to the sec-
ond-best TRANSKG model, our model shows im-
provements of 0.3% on BLEU-4, 1.6% on METEOR, 
0.2% on ROUGE-L, and 6.8% on CIDEr.

Table 1
Evaluation results of different algorithms on the  
MS-COCO dataset

         Metrics
Methods B@4 M R C

VLKD [8] 36.5 29.1 - 117.1

CTE [7] 38.2 28.7 58.5 124.9

LWDSFUSION [31] 31.3 25.7 54.0 99.9

GAT [35] 39.9 - 59.1 129.8

S2 [43] 40.1 29.6 59.5 132.6

TRANSKG [44] 34.4 27.7 56.3 112.6

ClipCap [17] 33.5 27.4 - 113.0

OURS 40.3 30.1 59.6 137.9

Table 2
Evaluation results of different algorithms on Flickr 30k 
dataset

         Metrics
Methods B@4 M R C

MetaLM [10] - - - 43.3

LWDSFUSION 23.8 20.5 47.0 50.8

TRANSKG 26.5 21.7 47.9 56.6

ClipCap 21.7 22.1 47.3 53.5

OURS 26.8 23.3 48.1 63.4

In order to verify the ability of the CLIP-based image 
captioning model (TSIC-Clip) proposed in this paper 
to generate image captions in traffic scenes, we trained 
and evaluated the method based on pre-trained CLIP 
on the BUUISE-Image dataset, and the results are 
shown in Table 3. The evaluation results show that, 

compared with other image captioning methods 
based on pre-trained CLIP, the methods in this paper 
have obvious advantages by adding an adapter lay-
er to CLIP to fine-tune the BUUISE-Image dataset 
for traffic scenes and by proposing a decoder based 
on WGA-Poolformer. These methods perform bet-
ter than the global image feature encoder using only 
CLIP. Specifically, the model in this paper achieves a 
score of 39.6% in BLEU-4, 29.7% in METEOR, 59.3% 
in ROUGE-L, and 136.5% in CIDEr. Compared with 
the second-ranked CTE model, the model in this pa-
per improves the BLEU-4 by 2.8%, the METEOR by 
0.1%, the ROUGE-L by 3.1%, and the CIDEr by 16.1%. 
The method proposed in this paper is more effective 
in generating image captions in traffic scenes.

Table 3
Evaluation results of different algorithms on the BUUISE-
image dataset

Metrics

Methods
Feature 

Extractor B@4 M R C

ClipCap CLIP-encoder 32.6 26.4 47.2 117.1

CTE CLIP-encoder 36.8 29.6 56.2 120.4

VLKD CLIP-encoder 35.7 29.6 53.2 114.3

OURS CLIP-encoder 39.6 29.7 59.3 136.5

The number of parameters of the WGA-PoolForm-
er model proposed in this paper is validated on the 
BUUISE-Image dataset and compared with three 
models, CTE, VLKD and Clipcap, which also use the 
Transformer structure. As shown in Table 4 demon-
strates the comparison of different decoders and 
their parameters under the CLIP-based approach. 
Under the same visual feature extractor CLIP, the 
WGA-Poolformer decoder proposed in this paper 
not only enhances the feature representation capa-
bility but also reduces the number of parameters to 
a certain extent by introducing a learnable weighted 
full-attention pooling layer for adaptive fusion of lo-
cal and global features. Specifically, the number of pa-
rameters of the model proposed in this paper is 41M, 
which is 2M lower than that of the Clipcap model with 
the smallest number of parameters. The number of 
parameters is 82M lower than that of the CTE model 
with the second highest scores in the four evaluation 
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Table 4
Comparison of different decoders and their parameters 
under the CLIP method

Metrics

Methods
Feature 

Extractor Decoder Params

CTE CLIP-encoder Transformer+GPT2 123M

VLKD CLIP-encoder BART 86M

ClipCap CLIP-encoder Transformer+GPT2 43M

OURS CLIP-encoder WGA-Poolformer 41M

indexes of BLEU-4, METEOR, ROUGE-L, and CIDEr 
in Table 3, which shows that the method of this pa-
per is effective in reducing the number of parameters 
while ensuring the quality of the caption. Reduces the 
number of parameters.
Figure 6 presents a comparison among different CLIP-
based methods in terms of parameter count, BLEU-4 
scores, and CIDEr values. The graph employs a Carte-
sian coordinate system, where the horizontal axis rep-
resents CIDEr scores, the vertical axis signifies BLEU-
4 scores, and the size of each bubble correlates with 
the corresponding parameter count. Within Figure 
4, our model is depicted by a yellow bubble, the CTE 
model by an orange one, and the CLIPcap model by a 
blue one. Notably, our model excels in both the hori-

Figure 6
Comparison of the number of parameters with BLEU4 and 
CIDEr values for different CLIP-based methods

 
 

 

perform better than the global image feature 
encoder using only CLIP. Specifically, the model in 
this paper achieves a score of 39.6% in BLEU-4, 
29.7% in METEOR, 59.3% in ROUGE-L, and 
136.5% in CIDEr. Compared with the second-
ranked CTE model, the model in this paper 
improves the BLEU-4 by 2.8%, the METEOR by 
0.1%, the ROUGE-L by 3.1%, and the CIDEr by 
16.1%. The method proposed in this paper is more 
effective in generating image captions in traffic 
scenes. 

Table 3 

Evaluation results of different algorithms on the 
BUUISE-image dataset 

Metrics 
 
 
Methods 

Feature 
Extractor 

B@4 M R C 

ClipCap CLIP-
encoder 32.6 26.4 47.2 117.1 

CTE CLIP-
encoder 36.8 29.6 56.2 120.4 

VLKD CLIP-
encoder 35.7 29.6 53.2 114.3 

OURS CLIP-
encoder 39.6 29.7 59.3 136.5 

Table 4 

Comparison of different decoders and their 
parameters under the CLIP method 

          
Metrics 

 
Methods 

Feature 
Extractor 

Decoder Params 

CTE CLIP-
encoder Transformer+GPT2 123M 

VLKD CLIP-
encoder BART 86M 

ClipCap CLIP-
encoder Transformer+GPT2 43M 

OURS CLIP-
encoder WGA-Poolformer 41M 

The number of parameters of the WGA-
PoolFormer model proposed in this paper is 
validated on the BUUISE-Image dataset and 
compared with three models, CTE, VLKD and 
Clipcap, which also use the Transformer structure. 
As shown in Table 4 demonstrates the comparison 
of different decoders and their parameters under 
the CLIP-based approach. Under the same visual 
feature extractor CLIP, the WGA-Poolformer 
decoder proposed in this paper not only enhances 
the feature representation capability but also 
reduces the number of parameters to a certain 
extent by introducing a learnable weighted full-
attention pooling layer for adaptive fusion of local 
and global features. Specifically, the number of 

parameters of the model proposed in this 
paper is 41M, which is 2M lower than that of 
the Clipcap model with the smallest number 
of parameters. The number of parameters is 
82M lower than that of the CTE model with 
the second highest scores in the four 
evaluation indexes of BLEU-4, METEOR, 
ROUGE-L, and CIDEr in Table 3, which 
shows that the method of this paper is 
effective in reducing the number of 
parameters while ensuring the quality of the 
caption. Reduces the number of parameters. 

Figure 6 presents a comparison among 
different CLIP-based methods in terms of 
parameter count, BLEU-4 scores, and CIDEr 
values. The graph employs a Cartesian 
coordinate system, where the horizontal axis 
represents CIDEr scores, the vertical axis 
signifies BLEU-4 scores, and the size of each 
bubble correlates with the corresponding 
parameter count. Within Figure 4, our model 
is depicted by a yellow bubble, the CTE 
model by an orange one, and the CLIPcap 
model by a blue one. Notably, our model 
excels in both the horizontal (CIDEr) and 
vertical (BLEU-4) coordinates. Furthermore, 
when considering bubble size (indicating 
parameter count), our proposed model boasts 
the smallest area ,and thus ,the lowest 
parameter count. 

Figure 6 

Comparison of the number of parameters 
with BLEU4 and CIDEr values for different 
CLIP-based methods 

 
In order to further evaluate and analyze the 
captioning performance of the proposed 
model in this paper on traffic scenes, four 
images were randomly selected from the 
BUUISE-Image dataset, and the manually 
labelled ground truth of each image was 
provided for evaluation. The results of 
comparing this paper's model with the same 
Transformer architecture-based approach are 
visualized in Figure 7. It can be observed that 

Figure 7
Example of image captioning in traffic scenes

 
 

 

Vit/b16 MSA Full 37.5 28.7 56.5 127.1 151M 
Vit/b16 WGA-POOL Full 37.1 28.3 55.5 126.5 116M 
Vit/b16 WGA-POOL Adapter 37.9 29.1 58.2 130.5 33.7M 

CLIP-encoder MSA Freezing 39.7 29.4 59.0 135.3 66M 
CLIP-encoder WGA-POOL Freezing 39.2 29.2 58.6 134.5 33.5M 
CLIP-encoder WGA-POOL Adapter 40.3 30.1 59.6 137.9 33.7M 

Figure 7 

Example of image captioning in traffic scenes 

CClipcap: A car is parked on the side of the road.
OURS:Five cars are parked along the road with one parked under a 
tree.
manual annotation:There are four cars parked on the roadside and 
one car parked under a tree.

Clipcap: A man and woman walking down a street with a dog.
OURS:Two people walk along a railing while another sits under a 
parasol.
manual annotation:A rail ahead, two people walking, one sitting 
under an umbrella.

Clipcap: A car driving down a street next to a highway sign. 
OURS:Three cars speed forward on the highway.
manual annotation：：Three cars driving fast on the highway

Clipcap: A busy street with cars and a lot of traffic.
OURS:A bus and cars stuck in traffic with a stoplight.
manual annotation:There is a bus and five cars parked in front of a 
stoplight.

(a)

(b)

(c)

(d)

 
 

5. Conclusions 
In this paper, we propose a CLIP-based image 
captioning model for traffic scenes to solve current 
problems of image captioning in traffic scenes, 
such as imprecise captions, large model sizes, and 
lack of personalization. In this work, by adding an 
adapter layer to the CLIP model and fine-tuning 
public and BUUISE-Image datasets, the CLIP 
model is adjusted to enable personalized traffic 
scene captioning while ensuring generalization. 
Furthermore, considering the large parameter size 
of Transformer-based image captioning models, 
we propose a new model, WGA-PoolFormer, 
replacing the self-attention mechanism in the 
Transformer with a global weighted attention 
pooling layer. This allows effective fusion of 
different features and capturing multi-level, multi-
perspective information while reducing model 
parameters, further improving performance. 

However, real-time deployment of image 
captioning models is still a problem in practical 

applications. Future work should continue to 
focus on model reduction and lightweighting 
approaches, such as knowledge distillation 
and pruning, to reduce model size and 
computation. This will help the models to be 
deployed on resource-constrained mobile or 
embedded devices. On the other hand, in 
order to enhance the generalisation ability of 
the model, future work should also continue 
to expand the size and scene coverage of the 
image captioning dataset of traffic scenes, and 
collect images containing different regions, 
time of day, weather, etc., so as to adapt the 
model to a wider range of real-world usage 
scenarios and improve robustness. The in-
depth study of these directions will help to 
advance the generation of traffic scene image 
captioning to practical applications. 

 
Appendix A 
The download addresses of the four datasets 
used in this article are as follows: 

MS-COCO: https://cocodataset.org/ 

zontal (CIDEr) and vertical (BLEU-4) coordinates. 
Furthermore, when considering bubble size (indicat-
ing parameter count), our proposed model boasts the 
smallest area ,and thus ,the lowest parameter count.
In order to further evaluate and analyze the caption-
ing performance of the proposed model in this paper 
on traffic scenes, four images were randomly selected 
from the BUUISE-Image dataset, and the manual-
ly labelled ground truth of each image was provided 
for evaluation. The results of comparing this paper’s 
model with the same Transformer architecture-based 
approach are visualized in Figure 7. It can be observed 
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that on the traffic scene dataset, the model proposed 
in this paper generates richer semantic information 
in the image captions compared to the same meth-
od based on CLIP and Transformer architectures. As 
shown in example (a) in Figure 5, Clipcap can accurate-
ly recognize “A car is parked on the side of the road” but 
ignores the details of other vehicles on the side of the 
road and a car parked under a tree, which leads to in-
accurate captions as highlighted in a yellow font in the 
figure. The method in this paper, as highlighted in red 
font, can accurately describe the number of vehicles 
in the figure and provide specific details (a car parked 
under a tree). Furthermore, as depicted in Figure 5(b), 
Clipcap’s method generates inaccurate descriptions, as 
highlighted in yellow, since no dog or woman is in the 
figure. In contrast, the method proposed in this paper 
accurately states the existence of a railing, a person 
sitting under an umbrella, and two people walking, as 
highlighted in red font.
The above analysis demonstrates that compared to 
the same method based on CLIP and Transformer ar-
chitectures, the image captioning method proposed in 
this paper benefits from fine-tuning via adapter layers 
on BUUISE-Image, which captures the key informa-
tion in the image more precisely and deepens the un-
derstanding of the image. Additionally, token mixing 
using the weighted global attention pooling module 
incorporates global and local feature information, 
making fuller use of semantic information. This en-
ables the generated descriptions to focus on the key 
parts of the image and describe them more accurately.

4.4. Ablation Experiments

Our approach has two main innovations: First, in the 
image encoder module, CLIP is adopted as the feature 

extractor with frozen model parameters, and the CLIP 
model is fine-tuned by inserting an adapter layer.
This enables learning new features from fewer traffic 
scene samples. Second, a novel WGA-Pooling layer is 
proposed in the image captioning module to replace 
the traditional multi-head self-attention layer, re-
ducing model parameters while maintaining perfor-
mance. To validate the efficacy of these innovations in 
the proposed TSIC-Clip model, ablation experiments 
were conducted on the MS-COCO dataset. The re-
sults are shown in Table 5 ablation Experiments.
In the first experiment, the feature extractor was fixed 
as Vit/b16, and the token mixer was the only variable. 
Methods using WGA-Pooling and MSA (Multi-Head 
Self-Attention) as the token mixer were compared. 
Results show that the WGA-Pooling-based method 
scores slightly lower than the MSA method on the 
B@4, M, R, and C metrics, with a value of about 1% dif-
ference. However, the WGA-Pooling had 35M fewer 
parameters than the MSA. Thus, WGA-PoolFormer 
reduces parameters while maintaining performance, 
validating WGA-Pooling. 
In the second experiment, Vit/b16 was fixed as the 
feature extractor, WGA-Pooling as the token mixer, 
and fine-tuning as the only variable. Results show 
adapter-based fine-tuning had 33.7M parameters; full 
training had 116M; thus, the adapter reduced param-
eters by 82.3M. Additionally, adapter-based fine-tun-
ing improved all metrics over full training, with 
gains of 0.8% in BLEU-4, 0.8% in METEOR, 2.7% in 
ROUGE-L and 4% in CIDEr.
In the third experiment, the CLIP encoder was fixed 
as the feature extractor with all parameters frozen, 
and the token mixer was the only variable.

Table 5
Ablation experiments

Feature Extractor Token mixer Fine tuning B@4 M R C Params

Vit/b16 MSA Full 37.5 28.7 56.5 127.1 151M

Vit/b16 WGA-POOL Full 37.1 28.3 55.5 126.5 116M

Vit/b16 WGA-POOL Adapter 37.9 29.1 58.2 130.5 33.7M

CLIP-encoder MSA Freezing 39.7 29.4 59.0 135.3 66M

CLIP-encoder WGA-POOL Freezing 39.2 29.2 58.6 134.5 33.5M

CLIP-encoder WGA-POOL Adapter 40.3 30.1 59.6 137.9 33.7M
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Results show WGA-Pooling had 33.5M parameters 
versus 66M for MSA. Thus, WGA-Pooling had 32.5M 
fewer parameters than MSA, with minimal metric 
fluctuations, maintaining performance.
In the fourth experiment, the CLIP encoder was fixed 
as a feature extractor, all parameters were frozen, 
WGA-Pooling was the token mixer, and fine-tuning 
was the only variable. Results show that adapter-based 
CLIP fine-tuning improved all metrics over direct 
CLIP freezing, with gains of 1.1% in BLEU-4, 0.9% in 
METEOR, 1% in ROUGE-L, and 3.4% in CIDEr.
In summary, ablation experiments verified the effi-
cacy of the two proposed innovations in TSIC-Clip - 
adapter fine-tuning and the WGA-Pooling layer.

5. Conclusions
In this paper, we propose a CLIP-based image caption-
ing model for traffic scenes to solve current problems 
of image captioning in traffic scenes, such as impre-
cise captions, large model sizes, and lack of personal-
ization. In this work, by adding an adapter layer to the 
CLIP model and fine-tuning public and BUUISE-Im-
age datasets, the CLIP model is adjusted to enable 
personalized traffic scene captioning while ensuring 
generalization. Furthermore, considering the large 
parameter size of Transformer-based image cap-
tioning models, we propose a new model, WGA-Pool-
Former, replacing the self-attention mechanism in 
the Transformer with a global weighted attention 
pooling layer. This allows effective fusion of different 
features and capturing multi-level, multi-perspective 
information while reducing model parameters, fur-
ther improving performance.
However, real-time deployment of image captioning 
models is still a problem in practical applications. Fu-

ture work should continue to focus on model reduc-
tion and lightweighting approaches, such as knowl-
edge distillation and pruning, to reduce model size 
and computation. This will help the models to be de-
ployed on resource-constrained mobile or embedded 
devices. On the other hand, in order to enhance the 
generalisation ability of the model, future work should 
also continue to expand the size and scene coverage 
of the image captioning dataset of traffic scenes, and 
collect images containing different regions, time of 
day, weather, etc., so as to adapt the model to a wider 
range of real-world usage scenarios and improve ro-
bustness. The in-depth study of these directions will 
help to advance the generation of traffic scene image 
captioning to practical applications.

Appendix A
The download addresses of the four datasets used in 
this article are as follows:
MS-COCO: https://cocodataset.org/
Flickr 30K: http://web.engr.illinois.edu/577~b-
plumme2/Flickr30kEntities/
BUUISE-Image: The dataset involve state-owned en-
terprise confidentiality cannot be disclosed publicly.
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