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This paper presents a new control strategy for uncertain upper-limb exoskeleton systems, which are known 
to have high nonlinearities, unmodeled dynamics, and uncertainties. The proposed technique is based on the 
terminal sliding mode control algorithm and its non-singular design method and incorporates an adaptive con-
trol approach to estimate the upper bounds of the unknown system uncertainties, which helps to improve the 
accuracy of the control and reduce the effects of disturbances. The stability of the proposed control strategy 
is confirmed using Lyapunov theory, and its effectiveness is tested on a two-degrees-of-freedom upper-limb 
exoskeleton. The results demonstrate that the proposed control scheme provides robust, fast, and finite-time 
convergence as well as an effective control approach capable of dealing with the disturbances and uncertainties 
that such systems are prone to.
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1. Introduction
In recent years, the field of robotics and assistive tech-
nology has undergone a profound transformation, 
marked by remarkable advancements. Among these 
innovations, exoskeletons have emerged as a ground-
breaking solution poised to enhance the quality of 
life for individuals living with mobility impairments. 
These wearable robotic devices are meticulously de-
signed to augment the physical abilities of their users, 
offering a vast spectrum of applications that extend 
far beyond conventional boundaries. From aiding in 
medical rehabilitation to providing invaluable sup-
port in industrial contexts and military operations, 
exoskeletons hold the promise of transforming lives 
[3, 22].
Indeed, the study of exoskeletons has become a 
prominent focus of scientific research, driven by the 
ambition to unravel the intricacies of human physi-
ology through the replication of its mechanisms, re-
flexes, and physical capabilities [16, 17]. Among the 
myriad functions these remarkable devices fulfil, the 
achievement of a stable and efficient walking cycle 
has emerged as a central area of investigation. Real-
izing a robotic walking cycle involves the pursuit of 
three fundamental objectives: ensuring unwavering 
stability, generating precise reference trajectories, 
and devising effective control strategies that optimize 
the desired trajectory.
At its core, an exoskeleton represents the epitome of 
the fusion between engineering ingenuity and human 
potential. These wearable marvels typically consist 
of a robust frame or structure, worn externally on 
the body, and are powered by motors or comparable 
mechanisms. These mechanisms are meticulously 
engineered to bestow augmented strength, endur-
ance, and mobility upon the wearer [7, 23]. The appli-
cations of exoskeletons span a diverse array of fields, 
from their invaluable role in medical rehabilitation, 
where they enable individuals with mobility impair-
ments to walk and engage in daily tasks, to their indis-
pensable presence in industrial settings, where they 
empower workers to lift heavy objects and perform 
physically demanding tasks.
Yet, as we venture into the realm of robotic manipula-
tors, a distinct and formidable challenge takes center 
stage, particularly in the domain of tracking control. 
This challenge has garnered increasing attention 

over the years, owing to the exigencies of achieving 
pinpoint accuracy in manipulating these multifacet-
ed machines. The pursuit of flawless tracking hinges 
upon an intimate understanding of the dynamic char-
acteristics that define these manipulators, a task ren-
dered exceptionally challenging due to the highly in-
terlinked, nonlinear, and ever-evolving nature of their 
dynamics [31]. Furthermore, the stakes are amplified 
in scenarios where robotic manipulators are deployed 
in tasks requiring a level of precision akin to welding, 
painting, and assembling, where even the most mi-
nor tracking errors can exert a deleterious influence 
on the final product’s quality. As a result, researchers 
have fervently dedicated themselves to pioneering 
advanced control methodologies. These methodolo-
gies chart a course toward the attainment of impec-
cable tracking control, steadfastly navigating through 
the intricate labyrinth of complexities that shroud the 
dynamics of these manipulators [4, 5, 23-25, 27, 29].

The main contributions of this paper are listed as follows:
 _ A nonlinear uncertain exoskeleton system 

subjected to different forms of uncertainties and 
disturbances (dynamic parameter variations, 
friction losses, payload variation, external 
disturbances, and dynamic model uncertainties) is 
studied.

 _ An improved, robust NTSMC is established where 
the uncertainties affecting the system are assumed 
to be unknown, time-varying, yet norm-bounded. 
For this purpose, an adaptive law is constructed 
in order to estimate the upper limits of system 
uncertainties.

 _ Fast and finite-time convergence of the proposed 
control technique has been demonstrated for two-
DOF upper-limb exoskeleton applications.

This paper is organized as follows: In Section 2, a lit-
erature review of related work is presented. Section 3 
the robotic exoskeleton design and a reminder of its 
classical dynamic model are presented. The design of 
the adaptive non-singular terminal sliding mode con-
trol algorithm and its stability and robustness analy-
sis are discussed in Section 4. Section 5 is devoted to 
the experimental validation of the proposed control-
ler on a two-link upper-limb exoskeleton. Finally, the 
results and conclusions are drawn in Section 6. 
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2. Related Work
In the field of robotics and exoskeleton control, sig-
nificant research efforts have been directed towards 
achieving precise control of wearable exoskeleton de-
vices, particularly in contexts where user interaction 
and uncertainties play pivotal roles. This related work 
section provides an overview of relevant research en-
deavors and advanced control techniques.
Numerous advanced control strategies have been 
proposed to attain satisfactory tracking performance 
for robotic manipulators. These include backstep-
ping control, adaptive control [4, 5, 16, 17, 29, 36], 
fuzzy control approach [15], neural network [18], and 
disturbance observers [13, 38], among others. Among 
the widely used techniques is sliding mode control 
(SMC), lauded for its design simplicity and robust-
ness when dealing with dynamic uncertainty and 
disturbances [1-3]. SMC operates based on sliding 
surfaces, which are functions of the system states, 
and endeavors to maintain the system states on these 
surfaces, chosen to remain invariant over time. It has 
found application in linear and nonlinear systems 
across industries such as aerospace, automotive, elec-
trical, and mechanical. SMC is renowned for its ro-
bustness against uncertainties and disturbances and 
its ability to achieve stable control systems with fast 
convergence [9, 26]. However, one of its drawbacks is 
the occurrence of high-frequency oscillations known 
as the “chattering phenomenon,” which can result in 
suboptimal performance and increased wear on the 
system. Additionally, SMC ensures only asymptotic 
convergence to the desired state of the system and 
cannot compensate for variations in model parame-
ters caused by human arm movements. Consequently, 
there is a need to develop more effective and advanced 
control techniques to address these limitations. 
Various approaches have been explored to allevi-
ate the high-frequency switching problem in sliding 
mode control systems. The authors in [10] opted for 
the saturation function (sat) instead of the signum 
function (sign), while the authors in [34, 36, 38] em-
ployed high-order sliding mode controllers, intro-
duced non-ideal sliding surfaces, utilized smooth 
control inputs, and designed a boundary layer control 
law.
Terminal sliding mode control (TSMC) has been de-
veloped as a variation of the traditional SMC tech-

nique. It distinguishes itself by employing nonlinear 
switching hyperplanes to achieve finite-time con-
vergence of the system’s states, in contrast to SMC, 
which employs linear switching surfaces for asymp-
totic convergence of the system’s states. TSMC utiliz-
es a nonlinear switching hyperplane, termed the ter-
minal sliding surface, designed to bring the system’s 
states to the desired equilibrium point in finite time. 
The control law for TSMC is designed to drive the sys-
tem’s states to slide along the terminal sliding surface 
and converge to the desired equilibrium point with-
in a finite time. TSMC offers the advantage of fast-
er convergence of the system’s states and improved 
robustness against disturbances and uncertainties. 
Studies on terminal sliding mode controllers applied 
to robotic manipulators have demonstrated their ro-
bustness and insensitivity to matched uncertainties 
[37]. Nevertheless, TSMC suffers from a singularity 
problem, prompting the development of fast termi-
nal sliding mode control (FTSMC) as an extension of 
TSMC, which achieves higher convergence rates and 
stronger robustness despite significant initial system 
errors. FTSMC utilizes a modified terminal sliding 
surface that facilitates faster convergence of the sys-
tem’s states [34, 36, 37].
The conventional TSMC and FTSMC techniques in-
volve control inputs that include negative fractional 
power terms, which may lead to infinite control inputs 
near the equilibrium point, creating the singularity 
problem. This issue can adversely affect the control 
system’s performance and, in some cases, even dam-
age the system. To address this challenge, non-sin-
gular terminal sliding mode control (NTSMC) has 
been proposed [6, 7, 10-12, 14, 20, 21, 28]. NTSMC 
modifies the control law used in TSMC to ensure the 
control input remains bounded near the equilibrium 
point, thereby eliminating the singularity problem 
and enhancing the control system’s performance [8, 
13]. NTSMC enables fast finite-time tracking control 
for practical devices and successfully eliminates the 
singularity problem present in conventional FTSMC 
techniques [33, 39]. It finds application in control sys-
tems for fast-moving systems, such as robots, aircraft, 
and automobiles, where rapid response times and 
dealing with significant initial system errors are crit-
ical [23-25, 27, 29].
In industrial and medical applications, exoskeleton 
devices interact closely with the user’s body and the 



Information Technology and Control 2024/1/53174

external environment, leading to uncertainties with-
in the systems. These uncertainties may arise from 
sensor noise, variations in the user’s body mechanics, 
changes in the external environment, and limitations 
in the exoskeleton’s design or control systems [10, 
39]. Addressing these uncertainties is essential to en-
sure the performance and safety of the exoskeleton. 
Although various research studies have addressed 
non-linear systems with known uncertainties, re-
al-world applications involve uncertainties arising 
from time-varying and unknown factors, making it 
challenging to determine their precise values in ad-
vance. Hence, techniques like adaptive control [4] or 
adaptive law with sliding mode control [19, 27, 28, 31, 
38] are used to estimate these uncertainties. 
In the work of Li and Huang [15], they outline a tech-
nique for designing MIMO adaptive fuzzy TSMC 
systems for robotic manipulators. This approach ef-
fectively mitigates chattering while preserving the 
benefits of traditional TSMC. It is specifically ap-
plied to address chattering in SMC and enhance its 
performance with respect to finite-time control. On 
the other hand, in the study by Mondal and Mahanta 
[25], they introduce an adaptive second-order TSM 
controller that effectively eliminates chattering when 
controlling robotic manipulators. Their approach in-
volves employing an adaptive tuning method to han-
dle uncertainties, even when the upper bounds of 
these uncertainties are unknown.
In this work, a robust adaptive non-singular termi-
nal sliding mode controller is presented to effective-
ly control the movements of an exoskeleton’s wearer 
during activities, while considering system uncer-
tainties and non-linearities to improve its dynamic 
performance.

3. System Description and Its 
Dynamic Model
3.1. System Description
An exoskeleton is a wearable device that can assist 
individuals with physical disabilities or provide ad-
ditional support to workers engaged in physically de-
manding tasks. The exoskeleton typically includes a 
frame or structure that is worn externally and is pow-
ered by motors or other means to provide additional 

strength, endurance, or mobility. It can be customized 
based on the user’s needs, taking into account factors 
such as body size and shape, range of motion, and 
joint flexibility. The design of the exoskeleton must 
consider the kinematics and dynamics of the human 
body to ensure that it is a suitable and realistic solu-
tion for enhancing the user’s physical abilities.
In this study, concern is given to an upper-limb ortho-
sis performing shoulder and elbow movements con-
nected by a revolute joint, as shown in Figure 1. This 
device uses a combination of mechanical, electrical, 
and control systems to amplify the movement of the 
wearer’s arm, allowing them to perform a range of 
motions including extension, flexion, abduction, and 
adduction (Figure 2). They can help to improve the 
function of the affected limb, allowing the wearer to 
perform daily activities with greater ease and inde-
pendence.

Figure 1
2 DOF upper-limb system configuration

Figure 2
Movements of the human upper extremity
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In Figure 3, the biomechanical model of the exoskel-
eton’s upper limb is presented. It describes the struc-
ture of the human arm in relation to the exoskeleton. 
The model includes the actuated joints at the shoul-
der, elbow, and wrist, which are the focus of the study. 
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performance [8, 13]. NTSMC enables fast finite-time tracking 
control for practical devices and successfully eliminates the 
singularity problem present in conventional FTSMC 
techniques [33, 39]. It finds application in control systems for 
fast-moving systems, such as robots, aircraft, and automobiles, 
where rapid response times and dealing with significant initial 
system errors are critical [23-25, 27, 29]. 

In industrial and medical applications, exoskeleton devices 
interact closely with the user's body and the external 
environment, leading to uncertainties within the systems. 
These uncertainties may arise from sensor noise, variations in 
the user's body mechanics, changes in the external 
environment, and limitations in the exoskeleton's design or 
control systems [10, 39]. Addressing these uncertainties is 
essential to ensure the performance and safety of the 
exoskeleton. Although various research studies have 
addressed non-linear systems with known uncertainties, real-
world applications involve uncertainties arising from time-
varying and unknown factors, making it challenging to 
determine their precise values in advance. Hence, techniques 
like adaptive control [4] or adaptive law with sliding mode 
control [19, 27, 28, 31, 38] are used to estimate these 
uncertainties.  
In the work of Li and Huang [15], they outline a technique for 
designing MIMO adaptive fuzzy TSMC systems for robotic 
manipulators. This approach effectively mitigates chattering 
while preserving the benefits of traditional TSMC. It is 
specifically applied to address chattering in SMC and enhance 
its performance with respect to finite-time control. On the 
other hand, in the study by Mondal and Mahanta [25], they 
introduce an adaptive second-order TSM controller that 
effectively eliminates chattering when controlling robotic 
manipulators. Their approach involves employing an adaptive 
tuning method to handle uncertainties, even when the upper 
bounds of these uncertainties are unknown. 
In this work, a robust adaptive non-singular terminal sliding 
mode controller is presented to effectively control the 
movements of an exoskeleton's wearer during activities, while 
considering system uncertainties and non-linearities to 
improve its dynamic performance. 

3. System Description and its Dynamic 
Model 

3.1 System Description 
An exoskeleton is a wearable device that can assist individuals 
with physical disabilities or provide additional support to 
workers engaged in physically demanding tasks. The 
exoskeleton typically includes a frame or structure that is worn 
externally and is powered by motors or other means to provide 
additional strength, endurance, or mobility. It can be 
customized based on the user's needs, taking into account 
factors such as body size and shape, range of motion, and joint 
flexibility. The design of the exoskeleton must consider the 
kinematics and dynamics of the human body to ensure that it 
is a suitable and realistic solution for enhancing the user's 
physical abilities. 
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3.2 Dynamic Model of the Upper-limb Orthosis 
The dynamics of the upper-limb exoskeleton can be 

described by a set of nonlinear equations that take into account 
the various components of the system, such as the joints, 
actuators, and sensors, as follows: 
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where: 
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Mechanical model of the upper-limb exoskeleton in 
Solidworks

The prototype of the upper extremity system of the 
exoskeleton embodies a simplified rendition of the 
upper limb of the exoskeleton, intended for testing 
and refining the control law designed to enable the 
exoskeleton to track the wearer’s movements.

3.2. Dynamic Model of the Upper-limb 
Orthosis
The dynamics of the upper-limb exoskeleton can be 
described by a set of nonlinear equations that take 
into account the various components of the system, 
such as the joints, actuators, and sensors, as follows:
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where:
 _ τdyn ∈ ℝn is a vector of the dynamic forces due to 

inertial, centripetal, Coriolis, and gravitational 
effects.

 
 
 
 

 
n

dyn   is a vector of the dynamic forces due to 
inertial, centripetal, Coriolis, and gravitational effects. 

 .. . .
( ) ( , ) ( )dyn M q q C q q q G q    , (2) 

where ( ) n nM q   is the positive symmetric inertia matrix, 
.

( , ) nC q q   relates to the Coriolis and centrifugal matrix, and 

( ) nG q   is the gravity vector of joint torques. 
nq , 

.
nq  

and 
..

nq  refers respectively to the joint position vector, 
velocity vector and joint acceleration vector. 

 f  is a vector of forces expressing friction losses.  

In general, friction force is a function of Coulomb friction force 
and viscous friction force. 

  
. .

( )f c vF sign q F q   , (3) 

where cF  is the diagonal matrix of the Coulomb friction 
forces, sign designates the sign function, and vF  is the 
diagonal matrix of the viscous friction coefficients. 
 in  is the vector of the motor torque at the input of the 

transmission mechanism, defined on the motor side. 

 
in off    . (4) 

The system is controlled by the input torque ,which is the 

input torque of the gearbox, shifted by the amplifier offset off  

 e tx  is the vector of bounded external forces applied to the 
exoskeleton and expressed in the joint space. 

In the following, we state some assumptions that will be used 
later in the exoskeleton's stability analysis. 

Assumption 1. We assume that the inertia matrix M(q) is 
invertible and has an upper bound defined by a positive 
constant: 0( )M q  . 

Assumption 2. The sum of Coriolis and centripetal torque 
vector and the gravity vector is enclosed by the following 
inequation:  

. 2

2

. .

1 3( , ) ( )C q q qq G qq      , (5) 

where 1 , 2  and 3 are positive numbers. 
The dynamic model of the robotic exoskeleton is highly 
nonlinear, time-variant, and presents uncertainty from 
parameter variations, friction losses, and external disturbances 
and perturbations. Therefore, Equation (2) can be written as: 

.. . . .

0 0 0( ) ( ) ( , ) ( , ) ( ) ( )dyn M q q M q C q q q C q q G q G q       , (6) 

where 0 ( )M q ,
.

0 ( , )C q q and 0 ( )G q  are the nominal parts and 

while ( )M q ,
.

( , )C q q and ( )G q  stand for uncertain parts 
in the dynamic model matrices. 

Let d  be the lumped vector of input and external disturbances 
and non-modelled dynamics. 

.
( ) ( ) ( , ) ( )d off ef xtt M q C q q G q         . (7) 

Therefore, (1) can be written in the form of the inverse dynamic 
model (IDM) that calculates the vector of input torque τ as a 
function of generalized coordinates of the exoskeleton in 
presence of friction, unknown interference and unmatched 
disturbances. 

.. . .

0 0 0( ) ( , ) ( ) ( )dM q q C q q q G q t     . (8) 

Assumption 3. Dynamic model uncertainty depends not only 
on external disturbances but also on the input signal. Therefore, 
if the acceleration signal is not involved in the control input, the 
lumped orthosis uncertainty will be enclosed by the following 
function relying on joints position and velocity such that: 

 
2.

0 1 2d t d d q d q    , (9) 

where 0d , 1d  and 2d  are positive constants. 
The inverse dynamic model (8) can be expressed in the 
following form: 

.. . .
1

0 0 0( )( ( , ) ( ))( )dq M q C q q q G qt     . (10) 

4. Control of the Exoskeleton Upper-limb 
In this section, a robust non-singular terminal sliding mode 
(NTSM) technique is designed in the first part to control the 
exoskeleton's upper-limb movement. This technique can 
improve the system's performance by ensuring a stable and 
robust control system with fast convergence and singularity 
annulment. The algorithm can also provide improved 
robustness to system uncertainties and disturbances.  

In the second part, a new robust adaptive non-singular terminal 
sliding mode (ANTSM) technique is developed by introducing 
a boundary layer around the sliding surface. This technique is 
based on the adaptive control and sliding mode approaches, 
and it is able to estimate the bounds of the uncertainties online 
and adjust the control input accordingly. This means that the 
control system can adapt to changes in the system dynamics, 
improving robustness, tracking performance, and chattering 
suppression in the presence of disturbances and uncertainties. 

4.1 Robust Non Singular Terminal Sliding Mode 
Control (RNTSMC) 

In this subsection, a robust NTSMC scheme is developed to 
avoid the TSMC technique's singularity problem. 
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where 1 , 2  and 3 are positive numbers. 
The dynamic model of the robotic exoskeleton is highly 
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Therefore, (1) can be written in the form of the inverse dynamic 
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In this section, a robust non-singular terminal sliding mode 
(NTSM) technique is designed in the first part to control the 
exoskeleton's upper-limb movement. This technique can 
improve the system's performance by ensuring a stable and 
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sliding mode (ANTSM) technique is developed by introducing 
a boundary layer around the sliding surface. This technique is 
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4.1 Robust Non Singular Terminal Sliding Mode 
Control (RNTSMC) 

In this subsection, a robust NTSMC scheme is developed to 
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Therefore, (1) can be written in the form of the inverse 
dynamic model (IDM) that calculates the vector of in-
put torque τ as a function of generalized coordinates 
of the exoskeleton in presence of friction, unknown 
interference and unmatched disturbances.
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n

dyn   is a vector of the dynamic forces due to 
inertial, centripetal, Coriolis, and gravitational effects. 
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( ) nG q   is the gravity vector of joint torques. 
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and 
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nq  refers respectively to the joint position vector, 
velocity vector and joint acceleration vector. 

 f  is a vector of forces expressing friction losses.  

In general, friction force is a function of Coulomb friction force 
and viscous friction force. 
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where cF  is the diagonal matrix of the Coulomb friction 
forces, sign designates the sign function, and vF  is the 
diagonal matrix of the viscous friction coefficients. 
 in  is the vector of the motor torque at the input of the 

transmission mechanism, defined on the motor side. 
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The system is controlled by the input torque ,which is the 

input torque of the gearbox, shifted by the amplifier offset off  

 e tx  is the vector of bounded external forces applied to the 
exoskeleton and expressed in the joint space. 

In the following, we state some assumptions that will be used 
later in the exoskeleton's stability analysis. 

Assumption 1. We assume that the inertia matrix M(q) is 
invertible and has an upper bound defined by a positive 
constant: 0( )M q  . 

Assumption 2. The sum of Coriolis and centripetal torque 
vector and the gravity vector is enclosed by the following 
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where 1 , 2  and 3 are positive numbers. 
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Assumption 3. Dynamic model uncertainty depends not only 
on external disturbances but also on the input signal. Therefore, 
if the acceleration signal is not involved in the control input, the 
lumped orthosis uncertainty will be enclosed by the following 
function relying on joints position and velocity such that: 
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where 0d , 1d  and 2d  are positive constants. 
The inverse dynamic model (8) can be expressed in the 
following form: 
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4. Control of the Exoskeleton Upper-limb 
In this section, a robust non-singular terminal sliding mode 
(NTSM) technique is designed in the first part to control the 
exoskeleton's upper-limb movement. This technique can 
improve the system's performance by ensuring a stable and 
robust control system with fast convergence and singularity 
annulment. The algorithm can also provide improved 
robustness to system uncertainties and disturbances.  

In the second part, a new robust adaptive non-singular terminal 
sliding mode (ANTSM) technique is developed by introducing 
a boundary layer around the sliding surface. This technique is 
based on the adaptive control and sliding mode approaches, 
and it is able to estimate the bounds of the uncertainties online 
and adjust the control input accordingly. This means that the 
control system can adapt to changes in the system dynamics, 
improving robustness, tracking performance, and chattering 
suppression in the presence of disturbances and uncertainties. 

4.1 Robust Non Singular Terminal Sliding Mode 
Control (RNTSMC) 

In this subsection, a robust NTSMC scheme is developed to 
avoid the TSMC technique's singularity problem. 
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In this section, a robust non-singular terminal sliding 
mode (NTSM) technique is designed in the first part 
to control the exoskeleton’s upper-limb movement. 
This technique can improve the system’s perfor-
mance by ensuring a stable and robust control system 
with fast convergence and singularity annulment. 
The algorithm can also provide improved robustness 
to system uncertainties and disturbances. 
In the second part, a new robust adaptive non-sin-
gular terminal sliding mode (ANTSM) technique is 
developed by introducing a boundary layer around 
the sliding surface. This technique is based on the 
adaptive control and sliding mode approaches, and 
it is able to estimate the bounds of the uncertainties 
online and adjust the control input accordingly. This 
means that the control system can adapt to changes in 
the system dynamics, improving robustness, tracking 
performance, and chattering suppression in the pres-
ence of disturbances and uncertainties.

4.1. Robust Non Singular Terminal Sliding 
Mode Control (RNTSMC)
In this subsection, a robust NTSMC scheme is devel-
oped to avoid the TSMC technique’s singularity prob-
lem.
We define qd  as the desired reference state of the exo-
skeleton to be reached so that the tracking error be-
tween the actual and desired trajectory and the track-
ing velocity error are expressed as follows:
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Assumption 4. The dynamic model of the exoskeleton (8) can 
be expressed in the following form: 
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where 0f  denotes the known bounded function as presented 
previously in Section 2. 
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0( ) ( ) ( )dD t M q t . 

By combining Equations (9) and (11), we get the following 
exoskeleton’s nonlinear second order system: 
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A non-singular terminal sliding (NTS) surface that ensures the 
convergence of the variable to the desired value in a finite time 
is introduced as: 

/
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1( .... )nd gai   in which   is a positive constant; 

a and b are positive odd numbers satisfying 2b a b  [7, 10, 
39]; 

 1( ) ... ... T
nS t s s . 

When the sliding manifold S=0 is achieved, the actual position 
of the orthosis qd attains the desired position q. 
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The NTS surface (15) can be rewritten: 

1 2( )a bS e sign e  . (17) 

The time derivative of the NTS sliding surface S is then 

expressed as: 
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Substituting Equations (11) and (13) in Equation (18) results in: 
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After selecting the sliding surface, one determines the control 
law that satisfies the terminal sliding condition. The control law 
applied to the orthosis is a sum of two control input functions, 
ueq and un, where ueq corresponds to the equivalent command 
proposed while un is designed to guarantee the convergence 
condition. 
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The discontinous command is defined by: 

( )n Ksign S   , (22) 

where K is the gain chosen in order to ensure stability and sign 
is the signum function. 

In fact, the use of the signum function in the high-frequency 
control term of SMC can lead to a chattering phenomenon 
characterized by rapid, small oscillations in the control input, 
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Assumption 4. The dynamic model of the exoskele-
ton (8) can be expressed in the following form:
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law that satisfies the terminal sliding condition. The control law 
applied to the orthosis is a sum of two control input functions, 
ueq and un, where ueq corresponds to the equivalent command 
proposed while un is designed to guarantee the convergence 
condition. 
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The discontinous command is defined by: 

( )n Ksign S   , (22) 

where K is the gain chosen in order to ensure stability and sign 
is the signum function. 

In fact, the use of the signum function in the high-frequency 
control term of SMC can lead to a chattering phenomenon 
characterized by rapid, small oscillations in the control input, 

(12)

(10) can be formulated as follows:

 
 
 
 

We define dq  as the desired reference state of the exoskeleton 
to be reached so that the tracking error between the actual and 
desired trajectory and the tracking velocity error are expressed 
as follows: 
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where 0f  denotes the known bounded function as presented 
previously in Section 2. 
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A non-singular terminal sliding (NTS) surface that ensures the 
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is introduced as: 
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The NTS surface (15) can be rewritten: 
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After selecting the sliding surface, one determines the control 
law that satisfies the terminal sliding condition. The control law 
applied to the orthosis is a sum of two control input functions, 
ueq and un, where ueq corresponds to the equivalent command 
proposed while un is designed to guarantee the convergence 
condition. 
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The discontinous command is defined by: 

( )n Ksign S   , (22) 

where K is the gain chosen in order to ensure stability and sign 
is the signum function. 

In fact, the use of the signum function in the high-frequency 
control term of SMC can lead to a chattering phenomenon 
characterized by rapid, small oscillations in the control input, 

(13)

where f0 denotes the known bounded function as pre-
sented previously in Section 2.

. ..
1

0 0 0 0( )( ( , ) ( ))( , ) M q C q q q G qq qf − − −=  and 1
0( ) ( ) ( )dD t M q tτ−= .

By combining Equations (9) and (11), we get the fol-
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where 0f  denotes the known bounded function as presented 
previously in Section 2. 
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expressed as: 
. ./ 1

2 2 2 2( )baS e e e sign e
b
a   . (18) 

Substituting Equations (11) and (13) in Equation (18) results in: 
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After selecting the sliding surface, one determines the control 
law that satisfies the terminal sliding condition. The control law 
applied to the orthosis is a sum of two control input functions, 
ueq and un, where ueq corresponds to the equivalent command 
proposed while un is designed to guarantee the convergence 
condition. 

   eq n    . (20) 

eq  corresponds to the reaching phase of the command with 
nonexistence of different forms of uncertainties ( ( )D t =0) from 
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The discontinous command is defined by: 

( )n Ksign S   , (22) 

where K is the gain chosen in order to ensure stability and sign 
is the signum function. 

In fact, the use of the signum function in the high-frequency 
control term of SMC can lead to a chattering phenomenon 
characterized by rapid, small oscillations in the control input, 

(14)

A non-singular terminal sliding (NTS) surface that 
ensures the convergence of the variable to the desired 
value in a finite time is introduced as:

 
 
 
 

We define dq  as the desired reference state of the exoskeleton 
to be reached so that the tracking error between the actual and 
desired trajectory and the tracking velocity error are expressed 
as follows: 

1

1
. . .

2

d

d

e e
e q q

e e q q

   

   

. (11) 

Assumption 4. The dynamic model of the exoskeleton (8) can 
be expressed in the following form: 

. ...
1

0 0 0( )( ( , ) ( ) )dq M q C q q q G q     . (12) 

(10) can be formulated as follows: 
. .

.

..
1 1 1

0 0 0 0 0

1
0 0

( )( ( , ) ( )) ( ) ( ) ( )

( )( , )

)

( )

q M q C q q q G q M q M q d t

M qq qf D t





  



    

 

, 

(13) 

where 0f  denotes the known bounded function as presented 
previously in Section 2. 

. ..
1

0 0 0 0( )( ( , ) ( ))( , ) M q C q q q G qq qf     and 1
0( ) ( ) ( )dD t M q t . 

By combining Equations (9) and (11), we get the following 
exoskeleton’s nonlinear second order system: 
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After selecting the sliding surface, one determines the control 
law that satisfies the terminal sliding condition. The control law 
applied to the orthosis is a sum of two control input functions, 
ueq and un, where ueq corresponds to the equivalent command 
proposed while un is designed to guarantee the convergence 
condition. 

   eq n    . (20) 

eq  corresponds to the reaching phase of the command with 
nonexistence of different forms of uncertainties ( ( )D t =0) from 
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The discontinous command is defined by: 

( )n Ksign S   , (22) 

where K is the gain chosen in order to ensure stability and sign 
is the signum function. 

In fact, the use of the signum function in the high-frequency 
control term of SMC can lead to a chattering phenomenon 
characterized by rapid, small oscillations in the control input, 
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When the sliding manifold S=0 is achieved, the actual 
position of the orthosis qd attains the desired position q.
Given the fact that:

 
 
 
 

We define dq  as the desired reference state of the exoskeleton 
to be reached so that the tracking error between the actual and 
desired trajectory and the tracking velocity error are expressed 
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where 0f  denotes the known bounded function as presented 
previously in Section 2. 

. ..
1

0 0 0 0( )( ( , ) ( ))( , ) M q C q q q G qq qf     and 1
0( ) ( ) ( )dD t M q t . 

By combining Equations (9) and (11), we get the following 
exoskeleton’s nonlinear second order system: 

.

.

1 2
. ..

1
2 0 0 ( )( , ) ( ) dM qq q

e e

e f D t q 

 

   

. (14) 

A non-singular terminal sliding (NTS) surface that ensures the 
convergence of the variable to the desired value in a finite time 
is introduced as: 

/
1 2 2( )baS e e sign e  . (15) 

where: 
1

. .

2 2 2 2... ... ,
n i

T

i ide e e e q q     ,
.

dq is the 
desired velocity trajectory; 

1( .... )nd gai   in which   is a positive constant; 

a and b are positive odd numbers satisfying 2b a b  [7, 10, 
39]; 

 1( ) ... ... T
nS t s s . 

When the sliding manifold S=0 is achieved, the actual position 
of the orthosis qd attains the desired position q. 

Given the fact that: 

 
1

1

1 1

( ) ( .. .. (

( )

) )

) )( .. .. (n

T

n

T

n

n

sign sign sign

sign sign sign

x x x

x x x x x 



   

. 

(16) 

The NTS surface (15) can be rewritten: 

1 2( )a bS e sign e  . (17) 

The time derivative of the NTS sliding surface S is then 

expressed as: 
. ./ 1

2 2 2 2( )baS e e e sign e
b
a   . (18) 

Substituting Equations (11) and (13) in Equation (18) results in: 

.. ../ 1 1
2 2 0 0 ( )( , )( ( ) )b

d
a

M qq qS e e f Dt q
b
a

       . (19) 

After selecting the sliding surface, one determines the control 
law that satisfies the terminal sliding condition. The control law 
applied to the orthosis is a sum of two control input functions, 
ueq and un, where ueq corresponds to the equivalent command 
proposed while un is designed to guarantee the convergence 
condition. 
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The discontinous command is defined by: 

( )n Ksign S   , (22) 

where K is the gain chosen in order to ensure stability and sign 
is the signum function. 

In fact, the use of the signum function in the high-frequency 
control term of SMC can lead to a chattering phenomenon 
characterized by rapid, small oscillations in the control input, 
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The discontinous command is defined by: 

( )n Ksign S   , (22) 

where K is the gain chosen in order to ensure stability and sign 
is the signum function. 

In fact, the use of the signum function in the high-frequency 
control term of SMC can lead to a chattering phenomenon 
characterized by rapid, small oscillations in the control input, 
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After selecting the sliding surface, one determines the control 
law that satisfies the terminal sliding condition. The control law 
applied to the orthosis is a sum of two control input functions, 
ueq and un, where ueq corresponds to the equivalent command 
proposed while un is designed to guarantee the convergence 
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The discontinous command is defined by: 

( )n Ksign S   , (22) 

where K is the gain chosen in order to ensure stability and sign 
is the signum function. 

In fact, the use of the signum function in the high-frequency 
control term of SMC can lead to a chattering phenomenon 
characterized by rapid, small oscillations in the control input, 
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control law that satisfies the terminal sliding condi-
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is designed to guarantee the convergence condition.
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The discontinous command is defined by: 

( )n Ksign S   , (22) 

where K is the gain chosen in order to ensure stability and sign 
is the signum function. 

In fact, the use of the signum function in the high-frequency 
control term of SMC can lead to a chattering phenomenon 
characterized by rapid, small oscillations in the control input, 
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After selecting the sliding surface, one determines the control 
law that satisfies the terminal sliding condition. The control law 
applied to the orthosis is a sum of two control input functions, 
ueq and un, where ueq corresponds to the equivalent command 
proposed while un is designed to guarantee the convergence 
condition. 

   eq n    . (20) 

eq  corresponds to the reaching phase of the command with 
nonexistence of different forms of uncertainties ( ( )D t =0) from 
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The discontinous command is defined by: 

( )n Ksign S   , (22) 

where K is the gain chosen in order to ensure stability and sign 
is the signum function. 

In fact, the use of the signum function in the high-frequency 
control term of SMC can lead to a chattering phenomenon 
characterized by rapid, small oscillations in the control input, 

(21)

The discontinous command is defined by:

 
 
 
 

We define dq  as the desired reference state of the exoskeleton 
to be reached so that the tracking error between the actual and 
desired trajectory and the tracking velocity error are expressed 
as follows: 
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Assumption 4. The dynamic model of the exoskeleton (8) can 
be expressed in the following form: 
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where 0f  denotes the known bounded function as presented 
previously in Section 2. 
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By combining Equations (9) and (11), we get the following 
exoskeleton’s nonlinear second order system: 
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A non-singular terminal sliding (NTS) surface that ensures the 
convergence of the variable to the desired value in a finite time 
is introduced as: 

/
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dq is the 
desired velocity trajectory; 

1( .... )nd gai   in which   is a positive constant; 

a and b are positive odd numbers satisfying 2b a b  [7, 10, 
39]; 
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nS t s s . 

When the sliding manifold S=0 is achieved, the actual position 
of the orthosis qd attains the desired position q. 
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The NTS surface (15) can be rewritten: 

1 2( )a bS e sign e  . (17) 

The time derivative of the NTS sliding surface S is then 

expressed as: 
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Substituting Equations (11) and (13) in Equation (18) results in: 
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After selecting the sliding surface, one determines the control 
law that satisfies the terminal sliding condition. The control law 
applied to the orthosis is a sum of two control input functions, 
ueq and un, where ueq corresponds to the equivalent command 
proposed while un is designed to guarantee the convergence 
condition. 

   eq n    . (20) 

eq  corresponds to the reaching phase of the command with 
nonexistence of different forms of uncertainties ( ( )D t =0) from 

.
0S : 

 

. .

.

.

. ../ 1 1
2 2 0 0

../ 1
2 0 2 0 0

../ 1
2 0 2 0 0 0

( )

( ) ( )(

( ) ( ) ( , ) ( )

( , )

( , )

( ( ) ) 0

1 )

1

a

a

a

b
d

b
eq d

b
d

M q

M q M q

M q M q C q q q G q

q q

q q

S e e f D t q
b
b e e f q

b

a

a

a
e e q















 







 

    

  

    

. 

(21) 

 

 

 

 

  

The discontinous command is defined by: 

( )n Ksign S   , (22) 

where K is the gain chosen in order to ensure stability and sign 
is the signum function. 

In fact, the use of the signum function in the high-frequency 
control term of SMC can lead to a chattering phenomenon 
characterized by rapid, small oscillations in the control input, 

(22)

where K is the gain chosen in order to ensure stability 
and sign is the signum function.
In fact, the use of the signum function in the high-fre-
quency control term of SMC can lead to a chattering 

phenomenon characterized by rapid, small oscilla-
tions in the control input, which causes reduced con-
trol precision and stability issues. To overcome this 
problem, one can use an alternative expression, such 
as the “sat” function. The saturation function limits 
the magnitude of the sliding variable within a certain 
range, preventing the rapid oscillations caused by the 
signum function, such as:

 
 
 
 

which causes reduced control precision and stability issues. To 
overcome this problem, one can use an alternative expression, 
such as the "sat" function. The saturation function limits the 
magnitude of the sliding variable within a certain range, 
preventing the rapid oscillations caused by the signum 
function, such as: 
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Thus, according to Equations (17) and (21), the total terminal 
sliding mode command of the exoskeleton (18) can be written 
as follows: 
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Theorem1. For the exoskeleton system (10) in which the 
lumped uncertainty fulfils the constraint (9) and suppose that 
the parameters 0d , 1d  and 2d  are unknown. 
If the NTS surface is chosen as (18) and the global NTSMC 
control law is proposed as (24), then, the tracking error of the 
exoskeleton system converges to zero in finite time. 

4.2 Adaptive Non Singular Terminal Sliding Mode 
Control(ANTSMC) 

A robust ANTSMC scheme is developed in order to control 
the motion of the exoskeleton and track desired trajectories 
such as: 

2
1

2
1

2.

0 1 2

2.

0 1 2

))

)

( ( 0

( )( 0
n

S if S
S

S

d d q d q

d if Sd q d q







 


 
 
  

 






. 

(25) 

The discontinuous control in Equation (23) will excite high-
frequency dynamics. To address this issue, a new robust 
adaptive NTSMC technique can be used for tracking the 
exoskeleton upper-limb, where we replace the sign function 
with a boundary layer with a very small constant width  
(improving gain). 
Based on the non-singular terminal sliding mode surface 
expression (15), we define the following control law with the 
boundary layer concept to ensure fast tracking and solve the 
singularity problem: 
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The ANTSMC technique is based on the adaptive control 
approach, and it is able to estimate the bounds of the 
uncertainties online and adjust the control input accordingly. 
This means that the control system can adapt to changes in the 
system dynamics, providing improved robustness and tracking 
performance in the presence of disturbances and uncertainties. 
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The adaptive variables corresponding to 0 1 2, ,d d d  in Equation 

(25) are 0 1 2
ˆ ˆ ˆ, ,d d d , 

where the adaptation law used for estimating the control law 
upper bound parameters is defined as:  
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0 , 1  , 2  are positive constants. 
The adaptation errors are expressed as: 
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Theorem2. For the exoskeleton system (10) in which the 
lumped uncertainty fulfils the constraint (9), suppose that the 
parameters 0d , 1d  and 2d  are unknown. 

If the NTS surface is chosen as (18) and the global adaptive 
NTSMC control law is developed as: 
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(23)

Thus, according to Equations (17) and (21), the total 
terminal sliding mode command of the exoskeleton 
(18) can be written as follows:

 
 
 
 

which causes reduced control precision and stability issues. To 
overcome this problem, one can use an alternative expression, 
such as the "sat" function. The saturation function limits the 
magnitude of the sliding variable within a certain range, 
preventing the rapid oscillations caused by the signum 
function, such as: 
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Theorem1. For the exoskeleton system (10) in which the 
lumped uncertainty fulfils the constraint (9) and suppose that 
the parameters 0d , 1d  and 2d  are unknown. 
If the NTS surface is chosen as (18) and the global NTSMC 
control law is proposed as (24), then, the tracking error of the 
exoskeleton system converges to zero in finite time. 

4.2 Adaptive Non Singular Terminal Sliding Mode 
Control(ANTSMC) 

A robust ANTSMC scheme is developed in order to control 
the motion of the exoskeleton and track desired trajectories 
such as: 
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(25) 

The discontinuous control in Equation (23) will excite high-
frequency dynamics. To address this issue, a new robust 
adaptive NTSMC technique can be used for tracking the 
exoskeleton upper-limb, where we replace the sign function 
with a boundary layer with a very small constant width  
(improving gain). 
Based on the non-singular terminal sliding mode surface 
expression (15), we define the following control law with the 
boundary layer concept to ensure fast tracking and solve the 
singularity problem: 
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The ANTSMC technique is based on the adaptive control 
approach, and it is able to estimate the bounds of the 
uncertainties online and adjust the control input accordingly. 
This means that the control system can adapt to changes in the 
system dynamics, providing improved robustness and tracking 
performance in the presence of disturbances and uncertainties. 
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The adaptive variables corresponding to 0 1 2, ,d d d  in Equation 

(25) are 0 1 2
ˆ ˆ ˆ, ,d d d , 

where the adaptation law used for estimating the control law 
upper bound parameters is defined as:  
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0 , 1  , 2  are positive constants. 
The adaptation errors are expressed as: 
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Theorem2. For the exoskeleton system (10) in which the 
lumped uncertainty fulfils the constraint (9), suppose that the 
parameters 0d , 1d  and 2d  are unknown. 

If the NTS surface is chosen as (18) and the global adaptive 
NTSMC control law is developed as: 
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(24)

Theorem 1. For the exoskeleton system (10) in which 
the lumped uncertainty fulfils the constraint (9) and 
suppose that the parameters d0, d1 and d2 are unknown.
If the NTS surface is chosen as (18) and the global 
NTSMC control law is proposed as (24), then, the 
tracking error of the exoskeleton system converges to 
zero in finite time.

4.2. Adaptive Non Singular Terminal Sliding 
Mode Control(ANTSMC)
A robust ANTSMC scheme is developed in order to 
control the motion of the exoskeleton and track de-
sired trajectories such as:

 
 
 
 

which causes reduced control precision and stability issues. To 
overcome this problem, one can use an alternative expression, 
such as the "sat" function. The saturation function limits the 
magnitude of the sliding variable within a certain range, 
preventing the rapid oscillations caused by the signum 
function, such as: 
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Thus, according to Equations (17) and (21), the total terminal 
sliding mode command of the exoskeleton (18) can be written 
as follows: 
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Theorem1. For the exoskeleton system (10) in which the 
lumped uncertainty fulfils the constraint (9) and suppose that 
the parameters 0d , 1d  and 2d  are unknown. 
If the NTS surface is chosen as (18) and the global NTSMC 
control law is proposed as (24), then, the tracking error of the 
exoskeleton system converges to zero in finite time. 

4.2 Adaptive Non Singular Terminal Sliding Mode 
Control(ANTSMC) 

A robust ANTSMC scheme is developed in order to control 
the motion of the exoskeleton and track desired trajectories 
such as: 
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(25) 

The discontinuous control in Equation (23) will excite high-
frequency dynamics. To address this issue, a new robust 
adaptive NTSMC technique can be used for tracking the 
exoskeleton upper-limb, where we replace the sign function 
with a boundary layer with a very small constant width  
(improving gain). 
Based on the non-singular terminal sliding mode surface 
expression (15), we define the following control law with the 
boundary layer concept to ensure fast tracking and solve the 
singularity problem: 
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The ANTSMC technique is based on the adaptive control 
approach, and it is able to estimate the bounds of the 
uncertainties online and adjust the control input accordingly. 
This means that the control system can adapt to changes in the 
system dynamics, providing improved robustness and tracking 
performance in the presence of disturbances and uncertainties. 
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The adaptive variables corresponding to 0 1 2, ,d d d  in Equation 

(25) are 0 1 2
ˆ ˆ ˆ, ,d d d , 

where the adaptation law used for estimating the control law 
upper bound parameters is defined as:  
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0 , 1  , 2  are positive constants. 
The adaptation errors are expressed as: 
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Theorem2. For the exoskeleton system (10) in which the 
lumped uncertainty fulfils the constraint (9), suppose that the 
parameters 0d , 1d  and 2d  are unknown. 

If the NTS surface is chosen as (18) and the global adaptive 
NTSMC control law is developed as: 
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(25)

The discontinuous control in Equation (23) will ex-
cite high-frequency dynamics. To address this issue, 
a new robust adaptive NTSMC technique can be used 
for tracking the exoskeleton upper-limb, where we re-
place the sign function with a boundary layer with a 
very small constant width δ (improving gain).
Based on the non-singular terminal sliding mode sur-
face expression (15), we define the following control 
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law with the boundary layer concept to ensure fast 
tracking and solve the singularity problem:

 
 
 
 

which causes reduced control precision and stability issues. To 
overcome this problem, one can use an alternative expression, 
such as the "sat" function. The saturation function limits the 
magnitude of the sliding variable within a certain range, 
preventing the rapid oscillations caused by the signum 
function, such as: 
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Thus, according to Equations (17) and (21), the total terminal 
sliding mode command of the exoskeleton (18) can be written 
as follows: 
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Theorem1. For the exoskeleton system (10) in which the 
lumped uncertainty fulfils the constraint (9) and suppose that 
the parameters 0d , 1d  and 2d  are unknown. 
If the NTS surface is chosen as (18) and the global NTSMC 
control law is proposed as (24), then, the tracking error of the 
exoskeleton system converges to zero in finite time. 

4.2 Adaptive Non Singular Terminal Sliding Mode 
Control(ANTSMC) 

A robust ANTSMC scheme is developed in order to control 
the motion of the exoskeleton and track desired trajectories 
such as: 
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(25) 

The discontinuous control in Equation (23) will excite high-
frequency dynamics. To address this issue, a new robust 
adaptive NTSMC technique can be used for tracking the 
exoskeleton upper-limb, where we replace the sign function 
with a boundary layer with a very small constant width  
(improving gain). 
Based on the non-singular terminal sliding mode surface 
expression (15), we define the following control law with the 
boundary layer concept to ensure fast tracking and solve the 
singularity problem: 
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(26) 

The ANTSMC technique is based on the adaptive control 
approach, and it is able to estimate the bounds of the 
uncertainties online and adjust the control input accordingly. 
This means that the control system can adapt to changes in the 
system dynamics, providing improved robustness and tracking 
performance in the presence of disturbances and uncertainties. 
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The adaptive variables corresponding to 0 1 2, ,d d d  in Equation 

(25) are 0 1 2
ˆ ˆ ˆ, ,d d d , 

where the adaptation law used for estimating the control law 
upper bound parameters is defined as:  
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0 , 1  , 2  are positive constants. 
The adaptation errors are expressed as: 
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Theorem2. For the exoskeleton system (10) in which the 
lumped uncertainty fulfils the constraint (9), suppose that the 
parameters 0d , 1d  and 2d  are unknown. 

If the NTS surface is chosen as (18) and the global adaptive 
NTSMC control law is developed as: 
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The ANTSMC technique is based on the adap-
tive control approach, and it is able to estimate the 
bounds of the uncertainties online and adjust the 
control input accordingly. This means that the con-
trol system can adapt to changes in the system dy-
namics, providing improved robustness and track-
ing performance in the presence of disturbances and 
uncertainties.

 
 
 
 

which causes reduced control precision and stability issues. To 
overcome this problem, one can use an alternative expression, 
such as the "sat" function. The saturation function limits the 
magnitude of the sliding variable within a certain range, 
preventing the rapid oscillations caused by the signum 
function, such as: 
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Thus, according to Equations (17) and (21), the total terminal 
sliding mode command of the exoskeleton (18) can be written 
as follows: 
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Theorem1. For the exoskeleton system (10) in which the 
lumped uncertainty fulfils the constraint (9) and suppose that 
the parameters 0d , 1d  and 2d  are unknown. 
If the NTS surface is chosen as (18) and the global NTSMC 
control law is proposed as (24), then, the tracking error of the 
exoskeleton system converges to zero in finite time. 

4.2 Adaptive Non Singular Terminal Sliding Mode 
Control(ANTSMC) 

A robust ANTSMC scheme is developed in order to control 
the motion of the exoskeleton and track desired trajectories 
such as: 
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(25) 

The discontinuous control in Equation (23) will excite high-
frequency dynamics. To address this issue, a new robust 
adaptive NTSMC technique can be used for tracking the 
exoskeleton upper-limb, where we replace the sign function 
with a boundary layer with a very small constant width  
(improving gain). 
Based on the non-singular terminal sliding mode surface 
expression (15), we define the following control law with the 
boundary layer concept to ensure fast tracking and solve the 
singularity problem: 
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(26) 

The ANTSMC technique is based on the adaptive control 
approach, and it is able to estimate the bounds of the 
uncertainties online and adjust the control input accordingly. 
This means that the control system can adapt to changes in the 
system dynamics, providing improved robustness and tracking 
performance in the presence of disturbances and uncertainties. 
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The adaptive variables corresponding to 0 1 2, ,d d d  in Equation 

(25) are 0 1 2
ˆ ˆ ˆ, ,d d d , 

where the adaptation law used for estimating the control law 
upper bound parameters is defined as:  
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0 , 1  , 2  are positive constants. 
The adaptation errors are expressed as: 
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Theorem2. For the exoskeleton system (10) in which the 
lumped uncertainty fulfils the constraint (9), suppose that the 
parameters 0d , 1d  and 2d  are unknown. 

If the NTS surface is chosen as (18) and the global adaptive 
NTSMC control law is developed as: 
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(27)

The adaptive variables corresponding to 0 1 2, ,d d d  in 
Equation (25) are 0 1 2

ˆ ˆ ˆ, ,d d d ,
where the adaptation law used for estimating the con-
trol law upper bound parameters is defined as: 

 
 
 
 

which causes reduced control precision and stability issues. To 
overcome this problem, one can use an alternative expression, 
such as the "sat" function. The saturation function limits the 
magnitude of the sliding variable within a certain range, 
preventing the rapid oscillations caused by the signum 
function, such as: 
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Thus, according to Equations (17) and (21), the total terminal 
sliding mode command of the exoskeleton (18) can be written 
as follows: 
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Theorem1. For the exoskeleton system (10) in which the 
lumped uncertainty fulfils the constraint (9) and suppose that 
the parameters 0d , 1d  and 2d  are unknown. 
If the NTS surface is chosen as (18) and the global NTSMC 
control law is proposed as (24), then, the tracking error of the 
exoskeleton system converges to zero in finite time. 

4.2 Adaptive Non Singular Terminal Sliding Mode 
Control(ANTSMC) 

A robust ANTSMC scheme is developed in order to control 
the motion of the exoskeleton and track desired trajectories 
such as: 
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(25) 

The discontinuous control in Equation (23) will excite high-
frequency dynamics. To address this issue, a new robust 
adaptive NTSMC technique can be used for tracking the 
exoskeleton upper-limb, where we replace the sign function 
with a boundary layer with a very small constant width  
(improving gain). 
Based on the non-singular terminal sliding mode surface 
expression (15), we define the following control law with the 
boundary layer concept to ensure fast tracking and solve the 
singularity problem: 
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(26) 

The ANTSMC technique is based on the adaptive control 
approach, and it is able to estimate the bounds of the 
uncertainties online and adjust the control input accordingly. 
This means that the control system can adapt to changes in the 
system dynamics, providing improved robustness and tracking 
performance in the presence of disturbances and uncertainties. 

2.

0 1 2

2.

0 1 2

2
1

2
1

ˆ ˆ ˆ ))

ˆ ˆ ˆ ))

( (

( (
n

S if S
S

d d q d

S ifd d q q S

q

d

 




 
 


 
 
  

 






. (27) 

The adaptive variables corresponding to 0 1 2, ,d d d  in Equation 

(25) are 0 1 2
ˆ ˆ ˆ, ,d d d , 

where the adaptation law used for estimating the control law 
upper bound parameters is defined as:  
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0 , 1  , 2  are positive constants. 
The adaptation errors are expressed as: 
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Theorem2. For the exoskeleton system (10) in which the 
lumped uncertainty fulfils the constraint (9), suppose that the 
parameters 0d , 1d  and 2d  are unknown. 

If the NTS surface is chosen as (18) and the global adaptive 
NTSMC control law is developed as: 
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σ0, σ1, σ2 are positive constants.
The adaptation errors are expressed as:

 
 
 
 

which causes reduced control precision and stability issues. To 
overcome this problem, one can use an alternative expression, 
such as the "sat" function. The saturation function limits the 
magnitude of the sliding variable within a certain range, 
preventing the rapid oscillations caused by the signum 
function, such as: 
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Thus, according to Equations (17) and (21), the total terminal 
sliding mode command of the exoskeleton (18) can be written 
as follows: 
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Theorem1. For the exoskeleton system (10) in which the 
lumped uncertainty fulfils the constraint (9) and suppose that 
the parameters 0d , 1d  and 2d  are unknown. 
If the NTS surface is chosen as (18) and the global NTSMC 
control law is proposed as (24), then, the tracking error of the 
exoskeleton system converges to zero in finite time. 

4.2 Adaptive Non Singular Terminal Sliding Mode 
Control(ANTSMC) 

A robust ANTSMC scheme is developed in order to control 
the motion of the exoskeleton and track desired trajectories 
such as: 
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(25) 

The discontinuous control in Equation (23) will excite high-
frequency dynamics. To address this issue, a new robust 
adaptive NTSMC technique can be used for tracking the 
exoskeleton upper-limb, where we replace the sign function 
with a boundary layer with a very small constant width  
(improving gain). 
Based on the non-singular terminal sliding mode surface 
expression (15), we define the following control law with the 
boundary layer concept to ensure fast tracking and solve the 
singularity problem: 

2
1

2
1

2.

0 1 2

2.

0 1 2

))

)

( (

)( (
n

S if S
S

S

d d q d q

d if Sd q d q

 




 
 


 
 
  

 






. 
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The ANTSMC technique is based on the adaptive control 
approach, and it is able to estimate the bounds of the 
uncertainties online and adjust the control input accordingly. 
This means that the control system can adapt to changes in the 
system dynamics, providing improved robustness and tracking 
performance in the presence of disturbances and uncertainties. 
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The adaptive variables corresponding to 0 1 2, ,d d d  in Equation 

(25) are 0 1 2
ˆ ˆ ˆ, ,d d d , 

where the adaptation law used for estimating the control law 
upper bound parameters is defined as:  
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0 , 1  , 2  are positive constants. 
The adaptation errors are expressed as: 
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Theorem2. For the exoskeleton system (10) in which the 
lumped uncertainty fulfils the constraint (9), suppose that the 
parameters 0d , 1d  and 2d  are unknown. 

If the NTS surface is chosen as (18) and the global adaptive 
NTSMC control law is developed as: 
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Theorem 2. For the exoskeleton system (10) in which 
the lumped uncertainty fulfils the constraint (9), sup-
pose that the parameters d0, d1 and d2 are unknown.
If the NTS surface is chosen as (18) and the global 
adaptive NTSMC control law is developed as:

 
 
 
 

which causes reduced control precision and stability issues. To 
overcome this problem, one can use an alternative expression, 
such as the "sat" function. The saturation function limits the 
magnitude of the sliding variable within a certain range, 
preventing the rapid oscillations caused by the signum 
function, such as: 
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Thus, according to Equations (17) and (21), the total terminal 
sliding mode command of the exoskeleton (18) can be written 
as follows: 
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Theorem1. For the exoskeleton system (10) in which the 
lumped uncertainty fulfils the constraint (9) and suppose that 
the parameters 0d , 1d  and 2d  are unknown. 
If the NTS surface is chosen as (18) and the global NTSMC 
control law is proposed as (24), then, the tracking error of the 
exoskeleton system converges to zero in finite time. 

4.2 Adaptive Non Singular Terminal Sliding Mode 
Control(ANTSMC) 

A robust ANTSMC scheme is developed in order to control 
the motion of the exoskeleton and track desired trajectories 
such as: 
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The discontinuous control in Equation (23) will excite high-
frequency dynamics. To address this issue, a new robust 
adaptive NTSMC technique can be used for tracking the 
exoskeleton upper-limb, where we replace the sign function 
with a boundary layer with a very small constant width  
(improving gain). 
Based on the non-singular terminal sliding mode surface 
expression (15), we define the following control law with the 
boundary layer concept to ensure fast tracking and solve the 
singularity problem: 
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The ANTSMC technique is based on the adaptive control 
approach, and it is able to estimate the bounds of the 
uncertainties online and adjust the control input accordingly. 
This means that the control system can adapt to changes in the 
system dynamics, providing improved robustness and tracking 
performance in the presence of disturbances and uncertainties. 
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The adaptive variables corresponding to 0 1 2, ,d d d  in Equation 

(25) are 0 1 2
ˆ ˆ ˆ, ,d d d , 

where the adaptation law used for estimating the control law 
upper bound parameters is defined as:  
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0 , 1  , 2  are positive constants. 
The adaptation errors are expressed as: 
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Theorem2. For the exoskeleton system (10) in which the 
lumped uncertainty fulfils the constraint (9), suppose that the 
parameters 0d , 1d  and 2d  are unknown. 

If the NTS surface is chosen as (18) and the global adaptive 
NTSMC control law is developed as: 
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where 0 1 2
ˆ ˆ ˆ, ,d d d  are the estimates of 0 1 2, ,d d d  respec-

tively and updated with the adaptative law (28), then, 
the tracking error of the exoskeleton system converg-
es to zero in finite time.

4.3. Stability Analysis
The nonlinear system faces uncertainties (7) with the 
control command (30) and based on the adaptive NTS 
surface (15) and the adaptation law (28) it can achieve 
the switching surface in a finite time.
Proof. To prove the stability of the considered sys-
tem, we refer to the following Lyapunov function: 

 
 
 
 

where 0 1 2
ˆ ˆ ˆ, ,d d d  are the estimates of 0 1 2, ,d d d  respectively 

and updated with the adaptative law (28), then, the tracking 
error of the exoskeleton system converges to zero in finite 
time. 
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command (30) and based on the adaptive NTS surface (15) and 
the adaptation law (28) it can achieve the switching surface in 
a finite time. 

Proof. To prove the stability of the considered system, we refer 
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The time derivative of Equation (31) gives: 
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(32) 

Substituting Equations (19) and (29) into Equation (32), we 
get: 
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Replacing the adaptation law by its expression (28) in the latter 
equation, we obtain: 
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Inserting the expression of the control law (30) for S   
into Equation (34) gives: 
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All the calculations are done; we get: 
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Equation (37) becomes: 

.
0 1 2

1 2 0 3 1 4 2
0 1 2

2 2 22
2 2 22

V d
S

d d  
   

  
       (38) 

Then we get: 
.

0 1 2
1 2 3 4 0 1 2

0 1 2

.
" 1/2

2 2 2min( 2, , , ).( )
2 2 22

( )

V d d d

V V

S

t

  
   

  



   



   , (39) 

where "
1 2 3 4

0 1 2

2 2 2min( 2, , , )    
  

 .  

The concerned system is stable if: 

1 2 3 4

0 1
1 1 1

0 0 21 0 2 01, 1, 1

, , , 0

M M M

   

     



  




. (40) 

According to the Lyapunov stability theory, it is sufficient to 
ensure that the derivative of Lyapunov function is negative.  

Lemma 1: Consider ( )V t , which is a continuous, positive-
definite function that fulfils the differential inequation:  

(31)

The time derivative of Equation (31) gives:

 
 
 
 

where 0 1 2
ˆ ˆ ˆ, ,d d d  are the estimates of 0 1 2, ,d d d  respectively 

and updated with the adaptative law (28), then, the tracking 
error of the exoskeleton system converges to zero in finite 
time. 

4.3 Stability Analysis 
The nonlinear system faces uncertainties (7) with the control 
command (30) and based on the adaptive NTS surface (15) and 
the adaptation law (28) it can achieve the switching surface in 
a finite time. 

Proof. To prove the stability of the considered system, we refer 
to the following Lyapunov function:  
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Substituting Equations (19) and (29) into Equation (32), we 
get: 
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Replacing the adaptation law by its expression (28) in the latter 
equation, we obtain: 
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Inserting the expression of the control law (30) for S   
into Equation (34) gives: 
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All the calculations are done; we get: 
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Equation (37) becomes: 
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According to the Lyapunov stability theory, it is sufficient to 
ensure that the derivative of Lyapunov function is negative.  

Lemma 1: Consider ( )V t , which is a continuous, positive-
definite function that fulfils the differential inequation:  

(32)

Substituting Equations (19) and (29) into Equation 
(32), we get:
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and updated with the adaptative law (28), then, the tracking 
error of the exoskeleton system converges to zero in finite 
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4.3 Stability Analysis 
The nonlinear system faces uncertainties (7) with the control 
command (30) and based on the adaptive NTS surface (15) and 
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Substituting Equations (19) and (29) into Equation (32), we 
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Replacing the adaptation law by its expression (28) in the latter 
equation, we obtain: 
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Inserting the expression of the control law (30) for S   
into Equation (34) gives: 
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All the calculations are done; we get: 
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Equation (37) becomes: 
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According to the Lyapunov stability theory, it is sufficient to 
ensure that the derivative of Lyapunov function is negative.  

Lemma 1: Consider ( )V t , which is a continuous, positive-
definite function that fulfils the differential inequation:  

(33)

Replacing the adaptation law by its expression (28) in 
the latter equation, we obtain:

 
 
 
 

where 0 1 2
ˆ ˆ ˆ, ,d d d  are the estimates of 0 1 2, ,d d d  respectively 

and updated with the adaptative law (28), then, the tracking 
error of the exoskeleton system converges to zero in finite 
time. 

4.3 Stability Analysis 
The nonlinear system faces uncertainties (7) with the control 
command (30) and based on the adaptive NTS surface (15) and 
the adaptation law (28) it can achieve the switching surface in 
a finite time. 

Proof. To prove the stability of the considered system, we refer 
to the following Lyapunov function:  
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Inserting the expression of the control law (30) for S   
into Equation (34) gives: 
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All the calculations are done; we get: 
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Equation (37) becomes: 
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According to the Lyapunov stability theory, it is sufficient to 
ensure that the derivative of Lyapunov function is negative.  

Lemma 1: Consider ( )V t , which is a continuous, positive-
definite function that fulfils the differential inequation:  
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Inserting the expression of the control law (30) for 
S δ≥  into Equation (34) gives:

 
 
 
 

where 0 1 2
ˆ ˆ ˆ, ,d d d  are the estimates of 0 1 2, ,d d d  respectively 

and updated with the adaptative law (28), then, the tracking 
error of the exoskeleton system converges to zero in finite 
time. 

4.3 Stability Analysis 
The nonlinear system faces uncertainties (7) with the control 
command (30) and based on the adaptive NTS surface (15) and 
the adaptation law (28) it can achieve the switching surface in 
a finite time. 

Proof. To prove the stability of the considered system, we refer 
to the following Lyapunov function:  
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Substituting Equations (19) and (29) into Equation (32), we 
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Replacing the adaptation law by its expression (28) in the latter 
equation, we obtain: 
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Inserting the expression of the control law (30) for S   
into Equation (34) gives: 
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All the calculations are done; we get: 
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Equation (37) becomes: 
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According to the Lyapunov stability theory, it is sufficient to 
ensure that the derivative of Lyapunov function is negative.  

Lemma 1: Consider ( )V t , which is a continuous, positive-
definite function that fulfils the differential inequation:  
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All the calculations are done; we get:

 
 
 
 

where 0 1 2
ˆ ˆ ˆ, ,d d d  are the estimates of 0 1 2, ,d d d  respectively 

and updated with the adaptative law (28), then, the tracking 
error of the exoskeleton system converges to zero in finite 
time. 

4.3 Stability Analysis 
The nonlinear system faces uncertainties (7) with the control 
command (30) and based on the adaptive NTS surface (15) and 
the adaptation law (28) it can achieve the switching surface in 
a finite time. 

Proof. To prove the stability of the considered system, we refer 
to the following Lyapunov function:  
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equation, we obtain: 

.. ../ 1 1
2 2 0

1
0 0 0 0

2.
1 1

1 1 1 0 2

0

0

1 2 02 2

( )( , )( ( ( ) )) ..

.. ( ˆ ) ..

ˆ( ( ˆ.. ) )

b
d

a
M qq q

a

d d S M

d d S M q d d S

V S e e f D q
b

M q

t







 

 



 



 

 





   

. (34) 

Inserting the expression of the control law (30) for S   
into Equation (34) gives: 
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All the calculations are done; we get: 
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Equation (37) becomes: 
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According to the Lyapunov stability theory, it is sufficient to 
ensure that the derivative of Lyapunov function is negative.  

Lemma 1: Consider ( )V t , which is a continuous, positive-
definite function that fulfils the differential inequation:  

(36)

 
 
 
 

where 0 1 2
ˆ ˆ ˆ, ,d d d  are the estimates of 0 1 2, ,d d d  respectively 

and updated with the adaptative law (28), then, the tracking 
error of the exoskeleton system converges to zero in finite 
time. 

4.3 Stability Analysis 
The nonlinear system faces uncertainties (7) with the control 
command (30) and based on the adaptive NTS surface (15) and 
the adaptation law (28) it can achieve the switching surface in 
a finite time. 

Proof. To prove the stability of the considered system, we refer 
to the following Lyapunov function:  
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The time derivative of Equation (31) gives: 
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Substituting Equations (19) and (29) into Equation (32), we 
get: 
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Replacing the adaptation law by its expression (28) in the latter 
equation, we obtain: 
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Inserting the expression of the control law (30) for S   
into Equation (34) gives: 
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Equation (37) becomes: 
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According to the Lyapunov stability theory, it is sufficient to 
ensure that the derivative of Lyapunov function is negative.  

Lemma 1: Consider ( )V t , which is a continuous, positive-
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Equation (37) becomes:

 
 
 
 

where 0 1 2
ˆ ˆ ˆ, ,d d d  are the estimates of 0 1 2, ,d d d  respectively 

and updated with the adaptative law (28), then, the tracking 
error of the exoskeleton system converges to zero in finite 
time. 

4.3 Stability Analysis 
The nonlinear system faces uncertainties (7) with the control 
command (30) and based on the adaptive NTS surface (15) and 
the adaptation law (28) it can achieve the switching surface in 
a finite time. 

Proof. To prove the stability of the considered system, we refer 
to the following Lyapunov function:  
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The time derivative of Equation (31) gives: 
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Substituting Equations (19) and (29) into Equation (32), we 
get: 
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Replacing the adaptation law by its expression (28) in the latter 
equation, we obtain: 
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Inserting the expression of the control law (30) for S   
into Equation (34) gives: 

. .

.. ../ 1 / 11
2 2 0 0 2 0 2 0

..

0 0 2
1

2.

0 1 2

.
1 1 1

0 0 0 0 1 1 1 0 2 2 22 00 1

( )( ( ) ( )

( , ) ( ) )

( , )

ˆ ˆ ˆ )

ˆ ˆ

1( (

( () )

ˆ) ) )

)

( ( (

b b
d

d

a a
M q M q M q

C qq q G q

qq
a

a

d d q d q

d d S M d d S M q d d S

bV Se e f e e q
b

S Dt q
S

M q






  



 





 

 

 

    

  





    

. 

(35) 

All the calculations are done; we get: 
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Equation (37) becomes: 
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According to the Lyapunov stability theory, it is sufficient to 
ensure that the derivative of Lyapunov function is negative.  

Lemma 1: Consider ( )V t , which is a continuous, positive-
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where 0 1 2
ˆ ˆ ˆ, ,d d d  are the estimates of 0 1 2, ,d d d  respectively 

and updated with the adaptative law (28), then, the tracking 
error of the exoskeleton system converges to zero in finite 
time. 

4.3 Stability Analysis 
The nonlinear system faces uncertainties (7) with the control 
command (30) and based on the adaptive NTS surface (15) and 
the adaptation law (28) it can achieve the switching surface in 
a finite time. 

Proof. To prove the stability of the considered system, we refer 
to the following Lyapunov function:  
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Substituting Equations (19) and (29) into Equation (32), we 
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Replacing the adaptation law by its expression (28) in the latter 
equation, we obtain: 
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Inserting the expression of the control law (30) for S   
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All the calculations are done; we get: 
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Equation (37) becomes: 
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According to the Lyapunov stability theory, it is sufficient to 
ensure that the derivative of Lyapunov function is negative.  
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Inserting the expression of the control law (30) for S   
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According to the Lyapunov stability theory, it is sufficient to 
ensure that the derivative of Lyapunov function is negative.  

Lemma 1: Consider ( )V t , which is a continuous, positive-
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where 0 1   and 0  . 

Then the system (
.

( )x f x ) under the inequation (41) reaches 
the non-singular terminal sliding mode manifold and the 
tracking error converges to the equilibrium point within a finite 

time 
1/ 2

1 / 2
Vt  . 

The control scheme of the exoskeleton upper limb system using 
the robust adaptive non-singular terminal sliding mode in order 
to track the patient’s various activities is presented in Figure 4. 

 
      Figure 4. The Control block of the orthosis 

5. Simulation Results 
The proposed controller efficiency is proved by simulating a 
two-link upper-limb orthosis whose configuration is presented 
in Figure 5. 

 
Figure 5. Configuration of 2 DOF upper-limb exoskeleton 

The dynamic model of the simulated system under its matrix 
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where q1 and q2 are the joint angles, 
.

1q and 
.

2q are the joint 
velocities, L1 and L2 are the arm joint lengths, m1 and m2 are 
the exoskeleton joint masses, J1 and J2 are the inertia of the 
upper-limb exoskeleton links1 and 2, g is the acceleration due 
to gravity. 

The values of the exoskeleton nominal parameters used for 
simulation are grouped in Table 1. 
  Table 1. Simulation Parameters  

Joint 1 2 

Masses  

(m1, m2 [Kg]) 

0.4 1.2 
 

Lengths  

(L1, L2 [m]) 

1 0.8 

Inertia  

(J1, J2 [Kg.m2])  

5 5 

The acceleration of 
gravity (g [m/s2]) 9.8 

The global time-varying disturbance and uncertainty vector is 
defined as: 
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nal sliding mode in order to track the patient’s various 
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5. Simulation Results
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The initial state of the exoskeleton system is defined 
by the values of the joint positions and velocity intro-
duced as:
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We consider a 10% variance in the nominal values of 
the exoskeleton joint masses when considering pa-
rameter uncertainty. 1 20.4 , 1.2n nm kg m kg= =  
The upper-limb orthosis is controlled to follow a de-
sired movement trajectory, having the form of:
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Choosing the values of the controller parameters is an 
important task in the design and implementation of a 
control system.
Considering the ANTSMC scheme (30), the control-
ler parameters are chosen to be:
b = 7, a = 5 1( .... ) (2, 2),ndi g diagaβ β β= = 1 21, 1/ 2α α= = .
Selected uncertainty bound parameters are: d0, d1, d2= 
2, 5, 9.  
The constants of adaptive laws are: 0 1 2 0.1σ σ σ= = =  
and the initial adaptive parameters are selected as: 

0 1 2
ˆ ˆ ˆ, , 0d d d = . 

To eliminate the chattering, the numerical simulation 
of the proposed control technique is performed with a 
boundary layer δ  equal to 0.015.

5.1. RNTSMC Performance
Consider the robust non-singular terminal sliding 
mode control (RNTSMC) scheme developed in Sub-
section 3.1. 
Figures 6-9 show the tracking performances of the 
upper limb exoskeleton when subjected to uncertain-
ties and time-varying disturbances.

The global time-varying disturbance and uncertainty 
vector is defined as:
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Figure 6
Position tracking performance of joint 1 and 2
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Selected uncertainty bound parameters are: d0, d1, d2= 2, 5, 9.   

The constants of adaptive laws are: 0 1 2 0.1       

and the initial adaptive parameters are selected as: 

0 1 2
ˆ ˆ ˆ, , 0d d d  .  

To eliminate the chattering, the numerical simulation of the 
proposed control technique is performed with a boundary layer 
  equal to 0.015. 

5.1 RNTSMC Performance 
Consider the robust non-singular terminal sliding mode control 
(RNTSMC) scheme developed in Subsection 3.1.  

Figures 6-9 show the tracking performances of the upper limb 
exoskeleton when subjected to uncertainties and time-varying 
disturbances.
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Figure 9. Sliding mode of joint 1 and 2 

 
It can be seen that when this scheme is applied to an upper limb 
exoskeleton system, it can track the desired states and reach the 
reference states in a finite amount of time (approximately 1.3 
seconds). The NTSMC strategy is able to force the tracking 
errors and the sliding surface to reach zero within a determined 

time, ensuring fast and accurate movement of the exoskeleton. 
However, as shown in Figures 8-9, the trajectory of the 
exoskeleton's joint velocities and sliding surfaces may present 
a negligible high-frequency commutation problem. 

5.2 ANTSMC Performance 
Consider the robust adaptive non-singular terminal sliding 
mode control (ANTSMC) scheme developed in Subsection 3. 
The tracking position and velocity of the exoskeleton’s desired 

motion with the use of the proposed adaptive non-singular 
terminal sliding mode controller based on the boundary layer 
are given in Figures 10-11, respectively. 
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Figure 9
Sliding mode of joint 1 and 2
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5.3. Comparison

To showcase the effectiveness of the proposed 
ANTSMC Control, a comparative analysis was con-
ducted, pitting it against a recently developed slid-
ing-mode controller. The specific control strategy 
being compared is adaptive super-twisting global 
nonlinear sliding-mode control, as presented by 
Mobayen et al. [24]. This analysis aims to highlight 
the advantages and distinctive features of ANTSMC 
Control in relation to the alternative sliding-mode 
controller.
Note that in order to make an accurate and reliable 
comparison of the different control schemes’ perfor-
mances, it is important to ensure that the simulations 
are implemented with the same system model under 
the same conditions, using the same set of system pa-
rameters, initial conditions, and disturbances listed 
in Section 4.
The details of the control algorithm designed by Mo-
bayen et al. [24] are given as follows:
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Table 2 presents the corresponding performance 
metrics, specifically the Integral of Absolute Error 
(IAE) and Integral of Squared Error (ISV). Figures 
12-13 illustrate the position tracking error for the exo-
skeleton’s joints 1 and 2 using the proposed ANTSM 

Figure 11
Velocity tracking performance of joint 1 and 2
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It can be observed that in this case, the joint velocity 
trajectories progress smoothly without the occurrence of the 
chattering phenomenon and without compromising their 
precision and robustness. As a result, the proposed adaptive 
non-singular terminal sliding mode controller based on the 
boundary layer control law can effectively track the desired 
trajectory of the upper-limb exoskeleton in finite time, 
compensate for system disturbances, ensure its robustness, and 
eliminate undesirable chattering effects. 
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Table 2 presents the corresponding performance metrics, 
specifically the Integral of Absolute Error (IAE) and Integral of 
Squared Error (ISV). Figures 12-13 illustrate the position 
tracking error for the exoskeleton's joints 1 and 2 using the 

proposed ANTSM controller and the control scheme proposed 
by Mobayen et al. (TSMC) [24]. 

  

Figure 12. Position tracking trajectories for Joint 1 under uncertainties and 
external disturbances of the developed ANTSMC and the controller designed 

by Mobayen et al. 
 
 
 
 
 
 
 

 
Figure 13. Position tracking trajectories for Joint 2 under uncertainties and 

external disturbances of the developed ANTSMC and the controller designed 
by Mobayen et al. [24] 

A quantitative analysis was conducted to evaluate the 
performance of the proposed ANTSMC approach in the 
presence of uncertainties and external disturbances. The 
analysis focused on two important metrics: Integral of Absolute 
Error (IAE) and Integral of Squared Value (ISV) as shown in 
Table 2. 
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controller and the control scheme proposed by Mo-
bayen et al. (TSMC) [24].
A quantitative analysis was conducted to evaluate 
the performance of the proposed ANTSMC approach 
in the presence of uncertainties and external distur-
bances. The analysis focused on two important met-
rics: Integral of Absolute Error (IAE) and Integral of 
Squared Value (ISV) as shown in Table 2.

Table 2
Comparative analysis

Controller
IAE ISV

Joint1 Joint2 Joint1 Joint2

The proposed 
controller 0.5324 0.5186 0.2159 0.2846

Mobayen et al. 
[24] 0.6017 0.5725 0.2932 0.3057

It is evident that both control techniques guarantee the 
attainment of the desired exoskeleton motion within 
a finite timeframe and the convergence of the track-
ing error to zero. However, the proposed ANTSMC 
achieves a notably quicker transient response com-
pared to the control algorithm devised by Mobayen et 
al. [24] when dealing with uncertainties and dynamic 
variations. The robust ANTSMC scheme achieves the 
fastest transients and the smallest settling time, re-
sulting in the highest tracking precision. This means 
that the newly developed ANFTSM controller can 
quickly and precisely adjust the control inputs to 
achieve the desired state. The simulation results fur-
ther support the superiority of the proposed scheme, 
as it outperforms other control methods in terms of 
achieving rapid and accurate tracking. This superi-
ority is also confirmed by the quantitative analysis in 
Table 2, where the proposed scheme exhibits lower In-

tegral of Absolute Error (IAE) values compared to the 
existing control method by Mobayen et al. [24].
In summary, the proposed ANTSMC demonstrates 
superior performance compared to conventional 
methods. It achieves a faster convergence rate, more 
precise tracking, reduced chattering, and improved ro-
bustness. Moreover, the control and adaptation tech-
nique employed in the developed adaptive approach 
eliminates the requirement of determining the upper 
bounds of uncertainties, which is a constraint typically 
encountered by conventional controllers.

6. Conclusion
The work presented in this paper addresses the con-
trol, stability, and robustness of a two-link upper-limb 
exoskeleton in the presence of various uncertainties 
and nonlinearities. These uncertainties include sensor 
noise, variations in the user’s body mechanics, environ-
mental changes, and limitations in the exoskeleton’s 
design. To address these challenges, a robust adaptive 
non-singular terminal sliding mode control (ANTSMC) 
strategy with a boundary layer control law is proposed. 
The ANTSMC technique employs an adaptive con-
trol approach to estimate the uncertainties online 
and adjust the control input accordingly. This allows 
the control system to adapt to changes in the system 
dynamics, ensuring fast and finite-time convergence 
while improving tracking performance with a smooth 
and chatterless control signal, even in the presence of 
disturbances and uncertainties. However, Real-world 
testing with a robotic exoskeleton is crucial to validate 
the technique, assess performance, identify limita-
tions, and improve it. Future research should focus on 
experimental studies to evaluate practicality, address 
challenges, and enhance reliability, contributing to ad-
vanced upper-limb rehabilitation exoskeleton systems.
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