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Accidents due to driver drowsiness are observed to be increasing at an alarming rate across all countries and it 
becomes necessary to identify driver drowsiness to reduce accident rates. Researchers handled many machine 
learning and deep learning techniques especially many CNN variants created for drowsiness detection, but it is 
dangerous to use in real time, as the design fails due to high computational complexity, low evaluation accura-
cies and low reliability. In this article, we introduce a multistage adaptive 3D-CNN model with multi-expressive 
features for Driver Drowsiness Detection (DDD) with special attention to system complexity and performance. 
The proposed architecture is divided into five cascaded stages: (1) A three level Convolutional Neural Network 
(CNN) for driver face positioning (2) 3D-CNN based Spatio-Temporal (ST) Learning to extract 3D features 
from face positioned stacked samples. (3) State Understanding (SU) to train 3D-CNN based drowsiness mod-
els (4) Feature fusion using ST and SU stages (5) Drowsiness Detection stage. The Proposed system extract ST 
values from the face positioned images and then merges it with SU results from each state understanding sub 
models to create conditional driver facial features for final Drowsiness Detection (DD) model. Final DD Model 
is trained offline and implemented in online, results show the developed model performs well when compared 
to others and additionally capable of handling Indian conditions. This method is applied (Trained and Evalu-
ated) using two different datasets, Kongu Engineering College Driver Drowsiness Detection (KEC-DDD) own 
dataset and National Tsing Hua University Driver Drowsiness Detection (NTHU-DDD) Benchmark Dataset. 
The proposed system trained with KEC-DDD dataset produces accuracy of 77.45% and 75.91% using evalua-
tion set of KEC-DDD and NTHU-DDD dataset and capable to detect driver drowsiness from 256×256 resolu-
tion images at 39.6 fps at an average of 400 execution seconds.
KEYWORDS: Driver Drowsiness Detection, Convolution Neural Network, Face Positioning, Spatio Temporal 
Learning, 3D-CNN, KEC-DDD Dataset.
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1. Introduction
Road accidents are dangerous to human community. 
According to National Highway Traffic Safety Ad-
ministration report, USA, 24.5% accidents and Min-
istry of Road Transport and Highways report, India, 
27% accidents are caused by driver fatigues. Risk of 
accident increases by four to five times in almost all 
countries [11]. Regular accidents especially in dense-
ly populated country like India heavily affects people 
safety. As a necessary consequence, research towards 
detecting driver drowsiness is significant. To prevent 
drowsiness, behavioural strategies including drink-
ing tea or coffee, stopping for a little nap, and riding 
with a passenger are typically advised. These precau-
tions, however, might not work if a motorist is not 
aware that he or she is tired [12]. Drowsiness is usu-
ally indicated by excessive yawning, bowing, or head 
sliding, as well as persistent blinking and there are 
variety of methods to measure the driver drowsiness 
level but when it comes to Indian conditions, most of 
the research work does not produce good results. For 
example, during yawning, Indians have the habit of 
placing their hands to cover the mouth as not to dis-
turb others and this habit is reflected in most of the 
Indian drivers during driving, the works in conven-
tional models does not consider this specific feature 
related to Indian conditions. In this work most of the 
drowsiness features are considered and a global driv-
er drowsiness detection model using 3D Deep Convo-
lution Neural network.
Driver Drowsiness is linked to psychological and 
physiological changes of driver such as blink rate, 
pulse rate, anxiety, and so on. Generally, these meth-
ods fall under four different categories. Image-based 
measures; vehicle-based measures; biological-based 
measures; hybrid-based measures [2]. In image-based 
measures, drowsiness symptoms can be seen and re-
corded using cameras or visual sensors. These mea-
sures are further divided for motion of lips, head 
movements and frequency of eyes closures [25]. Al-
though Computer Vision based sleepiness detection 
techniques are most useful, their effectiveness is in-
fluenced by changes in lighting, facial expressions, 
and stance. However, with the advancement of deep 
learning, sleepiness detection methods based on con-
volutional neural networks (CNNs) are now a state-
of-the-art method [23]. 
Deep belief network [26] is introduced to identify the 
facial landmarks with own dataset collected across 

different ages, genders and under various illumina-
tion conditions and 68 facial landmarks are identi-
fied. Using different deep learning architectures like 
ResNet50, VGG16, Inception V3 and VGG19, various 
varieties of DDD systems [8, 21-22] are introduced 
but when we combine methods to work sequentially 
to improve the performance, feature fusion issue aris-
es, resulting in losing important facial elements [4]. 
To avoid feature fusion losses, a deep cascaded con-
volution neural network that identifies exact features 
of the facial regions is trained offline and blended for 
online monitoring [4], Spatial and Temporal space is 
explored for the facial regions after which bilinear 
feature fusion [3] to take frame level annotations to 
LSTM for drowsiness detection [7]. These methods 
operate under low time responses, especially when 
comes to Indian conditions. A residual 3D CNN archi-
tecture is introduced and compared with similar 2D 
networks to present the advantages of Spatio Tempo-
ral learning [27]. 
A conditional spatio-temporal data representation 
using 3D-DCNN framework is introduced for learn-
ing through direct inputs for driver drowsiness de-
tection without considering the real time online 
monitoring of driver states[24]. Through online mon-
itoring, a new 3D Conditional Generative Adversar-
ial Network and Two-Level Attention Bidirectional 
Long Short-Term Memory (3DcGAN-TLABiLSTM) 
[10] is introduced and achieves a reasonable frame 
processing time compared to 36.9 fps in 3D-DCNN. 
Even though there are enough varieties in CNN, eye 
and mouth conditions in maximum all the DDD mod-
els have low performance as they occupy smaller part 
of the frames, special features for eye and mouth are 
used in ensemble Multi-CNN Deep Learning model 
[5, 1]. R-CNN is introduced as an alternative model 
through which 93 % of accuracy is received [6]. All 
the above discussed works have high intrusion, low 
robustness, and low reliability which require huge 
processing power. This provides a huge scope and de-
mand for Driver drowsiness detection research. 
We propose a multi-stage adaptive 3D-CNN for face 
positioned DDD System and the proposed innova-
tions are as follows:
1 A three-stage model with a non-intersection over 

union suppression technique to identify five-
points (Left eye, Right eye, Nose, left end of mouth 
and right end of mouth) along with the bounding 
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boxes by a feather-like CNN architecture carefully 
designed to easily operate with frames (Stage 1).

2 A separate adaptive learning (Learning from sam-
ples irrespective of its class) for understanding the 
state of driver is designed using a multistage adap-
tive 3D-CNN to increase drowsiness classification 
performance (Stage 2 to 5).

1.1. Preliminaries
Convolutional Neural Network (CNN) is initially 
introduced [15] as a weighted filter model with mul-
tiple connected layers. CNN is popularly used in vi-
sion-based tasks such as Image Classification, Recog-
nition and Object Detection. Its design structure has 
characteristics of high scaling, high degree shifting 
and misinterpretation of invariances such as defined 
segmented area in convolution process (temporary 
space where convolution takes place), Weight sharing 
and Spatio-Temporal (ST) Sampling. As we use local 
connection and weight sharing in CNNs, locally min-
imal meaningful features are extracted and this prop-
erty of CNN makes it a preliminary feature detector 
of a small part of image in a set of images. The major 
part of convolution relays on identifying the feature 
map and its unit position (m,n) in 2D convolution is 
given by, 
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drowsiness symptoms can be seen and recorded using 
cameras or visual sensors. These measures are further 
divided for motion of lips, head movements and 
frequency of eyes closures [25]. Although Computer 
Vision based sleepiness detection techniques are most 
useful, their effectiveness is influenced by changes in 
lighting, facial expressions, and stance. However, with 
the advancement of deep learning, sleepiness detection 
methods based on convolutional neural networks 
(CNNs) are now a state-of-the-art method [23].  
Deep belief network [26] is introduced to identify the 
facial landmarks with own dataset collected across 
different ages, genders and under various illumination 
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different deep learning architectures like ResNet50, 
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DDD systems [8, 21-22] are introduced but when we 
combine methods to work sequentially to improve the 
performance, feature fusion issue arises, resulting in 
losing important facial elements [4]. To avoid feature 
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in ensemble Multi-CNN Deep Learning model [5, 
1]. R-CNN is introduced as an alternative model 
through which 93 % of accuracy is received [6]. 
All the above discussed works have high intrusion, 
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samples irrespective of its class) for understanding 
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introduced [15] as a weighted filter model with 
multiple connected layers. CNN is popularly used 
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invariances such as defined segmented area in 
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connection and weight sharing in CNNs, locally 
minimal meaningful features are extracted and this 
property of CNN makes it a preliminary feature 
detector of a small part of image in a set of images. 
The major part of convolution relays on identifying 
the feature map and its unit position (m,n) in 2D 
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where α is activation function, x is latent 
information (unit pixel value) of position (m,n) in 
ith feature map corresponds to jth layer, w is the 
kernel associated with the local feature map. The 
feature height and width is H and W and a,b are its 
initial values. For each feature map generated at 
each layer, a different bias Bij is associated. The 
dimensions of feature map are reduced by pooling 
with spatial adjacent values generated in previous 
feature maps. The final feature does not only 
contain local information, it can be combined with 
another local spatial neighbours to describe whole 
image. Even though the features from 2D-CNN are 
robust and has good impact in sequential data 
applications, it considers only the spatial data that 
would not be capable to produce good results for 
time dimension oriented dynamic applications. To 
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the local feature map. The feature height and width is 
H and W and a,b are its initial values. For each feature 
map generated at each layer, a different bias Bij is as-
sociated. The dimensions of feature map are reduced 
by pooling with spatial adjacent values generated in 
previous feature maps. The final feature does not only 
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image. Even though the features from 2D-CNN are 
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not be capable to produce good results for time di-
mension oriented dynamic applications. To process 
the additional temporal information in sequential 
data, 3D-CNN is introduced [13]. A 3D Feature map 
is used to convolve with 3D volume of combined set of 

image inputs to create a latent 3D feature map for the 
next layer. Through this method an additional tem-
poral information is captured and its unit position 
(m,n,t) in 3D convolution is given by
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where α is activation function, x is latent information 
(unit pixel value) of position (m,n,t) in ith feature map 
corresponds to jth layer, w is the 3D kernel associated 
with the local feature map. The feature height, width and 
depth is H,W and D and a,b,c are its initial values. Bij is 
bias associated with the feature map. 2D explores spatial 
data through image by image while 3D explores spatial 
and temporal data simultaneously for many images as 
3D-kernals can explore additional temporal dimension. 
We use 2D convolution for face positioning and 3D 
convolution for classification and sub-classification to 
identify the driver drowsiness. 
 Algorithm 1: Driver Drowsiness Detection 
 Input: Sequence of Driving Images 
 Output: Drowsy or non-Drowsy Class 
1. for i ← 1 to frames in image pyramid do 
2.    I-Net, P-Net and O-Net operations 

   compute face positioned image, N ← imagei  
3.    for j ← 1 to N positioned images do 
4.        st ← learningmodelst(j,θ),extract ST values,  
5.        for k ← 1 to M sub models do 
6.          opi←learningmodelU (a; θu),  

         compute output fn. of models 
7.          return op  
8.        end for 
9.        for op ← 1 to N (∀ op ∈ imagei) do 
10.            γ=learningmodelfu(st,op; θfu ),        
11.            for 𝛾𝛾𝛾𝛾 ←  1 to N positioned images do 
12.               RDet=learningmodeldet(υ;θdet),  

                                υ ∈ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 𝛾𝛾𝛾𝛾,  
              compute final detection result 

13.            end for 
14.        end for   
15.    end for   
16. end for 

2. Architecture 
The proposed architecture shown in Figure 1(b) contains 
five major stages, 1. Three stage architecture for face 
positioning, 2. 3D State Learning (Spatial and Temporal 
values Learning), 3. 3D State understanding (Training 
sub models), 4. Feature fusion and 5. Final Detection 
Model. Initially from the sequence of images, we resize 
to form an image pyramid then a three-stage architecture 
is introduced to operate with these images in cascaded 
manner, in first stage, Input-Net (I-Net) is a fully 
connected CNN used to obtain the suitable regression 
vectors to position the face. On obtaining the vectors, we 
may get overlapped candidates, these candidates are 
further calibrated and we suppress the overlaps using 
Non-Intersection Over Union Suppression (NIOUS) [20] 
over general Non-Maximum Suppression (NMS) to 

merge highly correlated vectors. Vectors obtained 
are given to second stage of CNN, Process-Net (P-
Net), this network further refines the false positives 
of regression vectors obtained from I-Net using 
NIOUS. In third stage, Output-Net (O-Net) gives 
us the exact facial positions and ensures the correct 
regression vectors as shown in Figure 1(b). These 
outputs are stacked and given as input to 3D-state 
learning for extracting ST values, we define sub 
models to understand different driver states. We 
then use fusion model to understand one or more 
driver states in a single image using results of sub 
models. Fusion model extracts conditional features 
in frames to execute final detection model. 
One-hot encoding is a general method of 
representation of a legal linear combination with 
high (1) and others a low (0) value. During feature 
fusion a condition model is developed from these 
one-hot vectors and ST data. Finally, detection 
model identifies the drowsiness.  

2.1 Face Positioning 
Many CNN based algorithms are available for face 
positioning. We notice several performance 
limitations due to following reasons: 1. Few filters 
while performing convolution may fail to 
differentiate input parameters as lack of diversity. 
2. Huge filter size is used and it is not needed, as 
this problem falls in only two classes (1. Face and 
2. Not Face), filter size can be reduced, we fixed it 
as 3 x 3, this will reduce total computational 
complexity as we use this stage for identifying 
driver is available in the frame in order to process 
the frame for drowsiness detection. The 2D-CNN 
architecture used for positioning face is given in 
Figure 3. 

2.2 Spatio-Temporal (ST) State Learning 
Phase 
In this section, we describe about state learning 
model designed using 3D-CNN. 3D-CNN is used 
to extract the ST data from the sequence of frames. 
Driver facing cameras in vehicle may record the 
events at different conditions such as change in 
background with different lighting situations. As 
diversifications are high, we must deal with 
additional temporal dimension. We designed state 
learning by spatial and temporal values to develop 
a discriminant feature from the inputs. Spatial 
values are the exact position of the pixel values in 
each image and temporal values are the change of 
pixel values from one frame to another frame with 
respect to time. Exploring a third dimension in a 
single image is not possible, we need to have a set 
of images to identify the change associated with 
time sequence. We need to process a sequence set 
of frames simultaneously to identify the ST data. 
Proposed 3D-CNN is used to extract ST data from 
the given input sequence. Let x∈SWxHxT, x is the 
input training video and W, H and T are Width, 
Height, and Temporal length, for input x, the state 
learning by 3D-CNN is given as 

st=lmd(x|Pd), st ∈ SWst * Hst * Dst                           (3) 
 Pd is the parameter vector of state learning 

, (2)

where α is activation function, x is latent informa-
tion (unit pixel value) of position (m,n,t) in ith feature 
map corresponds to jth layer, w is the 3D kernel asso-
ciated with the local feature map. The feature height, 
width and depth is H,W and D and a,b,c are its initial 
values. Bij is bias associated with the feature map. 2D 
explores spatial data through image by image while 
3D explores spatial and temporal data simultaneously 
for many images as 3D-kernals can explore additional 
temporal dimension. We use 2D convolution for face 
positioning and 3D convolution for classification and 
sub-classification to identify the driver drowsiness.

Algorithm 1: Driver Drowsiness Detection
Input: Sequence of Driving Images
Output: Drowsy or non-Drowsy Class

1. for i ← 1 to frames in image pyramid do
2.    I-Net, P-Net and O-Net operations

   compute face positioned image, N ← imagei 
3.    for j ← 1 to N positioned images do
4.        st ← learningmodelst( j,θ),extract ST values, 
5.        for k ← 1 to M sub models do
6.          opi← learningmodelU(a; θu), 

         compute output fn. of models
7.          return op 
8.        end for
9.        for op ← 1 to N (∀ op ∈  imagei) do
10.           γ =learningmodelfu(st, op; θfu),              
11.            for  γ ← 1 to N positioned images do
12.                RDet = learningmodeldet(υ; θdet),

                                υ ∈ Norm.γ, 
              compute final detection result

13.            end for
14.        end for  
15.    end for  
16. end for
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2. Architecture
The proposed architecture shown in Figure 1(b) con-
tains five major stages, 1. Three stage architecture for 
face positioning, 2. 3D State Learning (Spatial and 
Temporal values Learning), 3. 3D State understand-
ing (Training sub models), 4. Feature fusion and 5. 
Final Detection Model. Initially from the sequence 
of images, we resize to form an image pyramid then 
a three-stage architecture is introduced to operate 
with these images in cascaded manner, in first stage, 
Input-Net (I-Net) is a fully connected CNN used to 
obtain the suitable regression vectors to position the 
face. On obtaining the vectors, we may get overlapped 
candidates, these candidates are further calibrated 
and we suppress the overlaps using Non-Intersection 
Over Union Suppression (NIOUS) [20] over general 

Figure 1(a)   
Driver state positions

Figure 1(b)
Cascaded form of a three stage CNN producing bounding boxes at stage 1 (I-net) and providing high suppression at stage 2 
(Process-Net) and finalizing facial positions in stage 3 (O-net), adaptive state learning structure designed using 3D-CNN 
(green box) and features/outputs of the designed model (orange box)
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Non-Maximum Suppression (NMS) to merge highly 
correlated vectors. Vectors obtained are given to sec-
ond stage of CNN, Process-Net (P-Net), this network 
further refines the false positives of regression vec-
tors obtained from I-Net using NIOUS. In third stage, 
Output-Net (O-Net) gives us the exact facial positions 
and ensures the correct regression vectors as shown 
in Figure 1(b). These outputs are stacked and given 
as input to 3D-state learning for extracting ST values, 
we define sub models to understand different driver 
states. We then use fusion model to understand one 
or more driver states in a single image using results 
of sub models. Fusion model extracts conditional fea-
tures in frames to execute final detection model.
One-hot encoding is a general method of represen-
tation of a legal linear combination with high (1) and 
others a low (0) value. During feature fusion a condi-
tion model is developed from these one-hot vectors 
and ST data. Finally, detection model identifies the 
drowsiness. 

2.1. Face Positioning
Many CNN based algorithms are available for face po-
sitioning. We notice several performance limitations 
due to following reasons: 1. Few filters while perform-
ing convolution may fail to differentiate input param-
eters as lack of diversity. 2. Huge filter size is used and 
it is not needed, as this problem falls in only two class-
es (1. Face and 2. Not Face), filter size can be reduced, 
we fixed it as 3 x 3, this will reduce total computational 
complexity as we use this stage for identifying driver 
is available in the frame in order to process the frame 
for drowsiness detection. The 2D-CNN architecture 
used for positioning face is given in Figure 3.

2.2. Spatio-Temporal (ST) State Learning 
Phase
In this section, we describe about state learning mod-
el designed using 3D-CNN. 3D-CNN is used to ex-
tract the ST data from the sequence of frames. Driver 
facing cameras in vehicle may record the events at 
different conditions such as change in background 
with different lighting situations. As diversifications 
are high, we must deal with additional temporal di-
mension. We designed state learning by spatial and 
temporal values to develop a discriminant feature 
from the inputs. Spatial values are the exact position 
of the pixel values in each image and temporal values 
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mension in a single image is not possible, we need to 
have a set of images to identify the change associated 
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the given input sequence. Let x ∈ SWxHxT, x is the in-
put training video and W, H and T are Width, Height, 
and Temporal length, for input x, the state learning by 
3D-CNN is given as
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                                υ ∈ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 𝛾𝛾𝛾𝛾,  
              compute final detection result 

13.            end for 
14.        end for   
15.    end for   
16. end for 

2. Architecture 
The proposed architecture shown in Figure 1(b) contains 
five major stages, 1. Three stage architecture for face 
positioning, 2. 3D State Learning (Spatial and Temporal 
values Learning), 3. 3D State understanding (Training 
sub models), 4. Feature fusion and 5. Final Detection 
Model. Initially from the sequence of images, we resize 
to form an image pyramid then a three-stage architecture 
is introduced to operate with these images in cascaded 
manner, in first stage, Input-Net (I-Net) is a fully 
connected CNN used to obtain the suitable regression 
vectors to position the face. On obtaining the vectors, we 
may get overlapped candidates, these candidates are 
further calibrated and we suppress the overlaps using 
Non-Intersection Over Union Suppression (NIOUS) [20] 
over general Non-Maximum Suppression (NMS) to 

merge highly correlated vectors. Vectors obtained 
are given to second stage of CNN, Process-Net (P-
Net), this network further refines the false positives 
of regression vectors obtained from I-Net using 
NIOUS. In third stage, Output-Net (O-Net) gives 
us the exact facial positions and ensures the correct 
regression vectors as shown in Figure 1(b). These 
outputs are stacked and given as input to 3D-state 
learning for extracting ST values, we define sub 
models to understand different driver states. We 
then use fusion model to understand one or more 
driver states in a single image using results of sub 
models. Fusion model extracts conditional features 
in frames to execute final detection model. 
One-hot encoding is a general method of 
representation of a legal linear combination with 
high (1) and others a low (0) value. During feature 
fusion a condition model is developed from these 
one-hot vectors and ST data. Finally, detection 
model identifies the drowsiness.  

2.1 Face Positioning 
Many CNN based algorithms are available for face 
positioning. We notice several performance 
limitations due to following reasons: 1. Few filters 
while performing convolution may fail to 
differentiate input parameters as lack of diversity. 
2. Huge filter size is used and it is not needed, as 
this problem falls in only two classes (1. Face and 
2. Not Face), filter size can be reduced, we fixed it 
as 3 x 3, this will reduce total computational 
complexity as we use this stage for identifying 
driver is available in the frame in order to process 
the frame for drowsiness detection. The 2D-CNN 
architecture used for positioning face is given in 
Figure 3. 

2.2 Spatio-Temporal (ST) State Learning 
Phase 
In this section, we describe about state learning 
model designed using 3D-CNN. 3D-CNN is used 
to extract the ST data from the sequence of frames. 
Driver facing cameras in vehicle may record the 
events at different conditions such as change in 
background with different lighting situations. As 
diversifications are high, we must deal with 
additional temporal dimension. We designed state 
learning by spatial and temporal values to develop 
a discriminant feature from the inputs. Spatial 
values are the exact position of the pixel values in 
each image and temporal values are the change of 
pixel values from one frame to another frame with 
respect to time. Exploring a third dimension in a 
single image is not possible, we need to have a set 
of images to identify the change associated with 
time sequence. We need to process a sequence set 
of frames simultaneously to identify the ST data. 
Proposed 3D-CNN is used to extract ST data from 
the given input sequence. Let x∈SWxHxT, x is the 
input training video and W, H and T are Width, 
Height, and Temporal length, for input x, the state 
learning by 3D-CNN is given as 

st=lmd(x|Pd), st ∈ SWst * Hst * Dst                           (3) 
 Pd is the parameter vector of state learning 

(3)

Pd is the parameter vector of state learning and st 
is learnt ST data from the input x. Wst, Hst and Dst is 
Width, Height, and Depth of ST data. This ST data can 
also be defined as the activation values for the hidden 
layer from the last computed convolution layer in pro-
posed 3D-CNN adaptive state learning model. We de-
signed 3D-CNN with 4 convolution and 2 pooling lay-
ers and the detailed architecture of 3D-CNN is given 
in Figure 2. To identify ST data simultaneously, we use 
3D-local receptive field and its operation is given by 

  

and st is learnt ST data from the input x. Wst, Hst and Dst 
is Width, Height, and Depth of ST data. This ST data can 
also be defined as the activation values for the hidden 
layer from the last computed convolution layer in 
proposed 3D-CNN adaptive state learning model. We 
designed 3D-CNN with 4 convolution and 2 pooling 
layers and the detailed architecture of 3D-CNN is given 
in Figure 2. To identify ST data simultaneously, we use 
3D-local receptive field and its operation is given by  

 a= ρ�∑ ∑ ∑ �vx,y,zwx,y,z+b�Dlr
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Wlr
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where Wlr, Hlr and Dlr are width, height and depth of the 
local receptive field, and v, w and b are input, weight, 
and its associated bias. The activation value a, triggers 
the hidden unit functions and ρ is the local activation 
function used in convolution, we use Rectified Linear 
Units (ReLU) [14] for all local activations in proposed 
3D-CNN. As discussed in earlier sections our designed 
3D-CNN extracts spatial and temporal values 
simultaneously then conveys to state understanding and 
fusion model to make Conditional feature for drowsiness 
classification model. 

2.3 State Understanding Phase 
The goal of this section is to make models to understand 
driver physiological states and environmental conditions 
like night time, day time, wearing glasses and other 
important facial elements of the driver. This will help us 
to develop an integrated adaptive state learning network 
according to state conditions. We hypocrite that the data 
collected (video) is associated with the state conditions 
and driver drowsiness. These are explained clearly in 
training and inference section. This proposed work has a 
main category of glasses and normal state conditions and 
four sub categories of driver state conditional elements, 
1. Glasses and Normal State Ogn 2. Head condition model 
Oh 3. Mouth condition model Om 4. Eye condition model 
Oe and 5. other special condition model Osc. We use one-
hot vector to define the states and its facial conditions, 
assigned one-hot vectors are given in Table 1. We 
assume that linear kernels will face difficulty in handling 
ST data due to highly overlapped distributions and so we 
use fully connected Neural Network (NN) to deal with 
ST data carefully. The predictions of the models are 
represented as 

{ Ȏgn=lmgn �a; θgn�,       Ogn∈ SOgn * 1   , 

Ȏh=lmh (a; θh),       Oh∈ SOh *  1  , 

Ȏm=lmm (a; θm),       Om∈ SOm *  1   , 

Ȏe=lme (a; θe),       Oe∈ SOe *  1  , 

Ȏsc=lmsc (a; θsc),  Osc∈ SOsc *  1  }        (5)  
where Ȏ ∈ {Ȏgn,Ȏh,Ȏm,Ȏe,Ȏsc} are the predictions from 
input data x, O ∈ {Ogn,Oh,Om,Oe,Osc} are the input 
dimension representation of state with conditions and θ 
∈ {θgn,θh,θm,θe,θsc} are the parameters of its associated 
model that is given in fully connected network 
architecture of understanding model. We design all the 
models with three hidden layers and one output layer. 
The operative function of these models is given by 
op=fop{fhl3[fhl2(fhl1(stWhl1+bhl1)Whl2+ 
bhl2)Whl3+bhl3]Wo+bo},                                (6) 
where st is Spatial Temporal values derived from state 

learning using 3D-CNN. Whl3, Whl2, and Whl1 are 
weights of hidden layers and Wo is weight of 
output layer, bhl3, bhl2, and bhl1 are the bias 
associated with the hidden layers and bO is the bias 
in output layer. fhl1, fhl2 and fhl3 are the activation 
functions of the hidden layers and fop is the final 
activation function in output layer. Sub models 
learns through back propagation, intends to 
identify a condition for given ST data st, then 
calculates the difference between predicted and 
fixed annotations to train network parameters. The 
output dimensions of the state understanding 
models will always depends on the target classes to 
predict. For an instance, the output op of the 
glasses and normal state understanding model has 
five target classes for a given ST data as input, 
similarly sub models are trained to optimize 
Objective Function (OF) is given as follows, 

OFsu�Ȏ, O;θ�={ min ( θd, θgn, θh, θm, θe,θsc) γ 
∑ �OFgn�Ogn,Ȏgn� + OF

h
�Oh,Ȏh� +        i

OFm�Om,Ȏm�+OFe�Oe,Ȏe� + OFsc�Osc,Ȏsc�� }, (7)   

where O ∈ {Ogn,Oh,Om,Oe,Osc} are annotations of 
input, and OFgn, OFh, OFm, OFe, and OFsc are the 
SoftMax cross entropy loss functions that calculate 
the difference between the actual annotation and 
the predicted results. Then γ is the hyperparameter 
for regularizing the sum of error values received 
from loss functions of all sub models. Further 
details about training are discussed in training and 
inference section. Using ST data and the results of 
state understanding models, a new fusion model is 
created to form a Conditional feature 
representation for final detection model. 

2.4  Feature Fusion Phase  
Feature fusion model is designed to learn 
collection of adaptive-Conditional feature 
representation from the ST representation st and 
state conditional annotations 
Ȏ∈{Ȏgn,Ȏh,Ȏm,Ȏe,Ȏsc}. Using ST data extracted 
from 3D-CNN, st ∈ 𝑆𝑆𝑆𝑆𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠and predicted 
state conditions of sub models Ȏ, fusion model 
identifies the collection of adaptive-Conditional 
feature representation γ. This γ vector is calculated 
by multiplicative interaction approach [9, 17-19]. 
The highly dependent and relevant features are 
identified by multiplicative interaction among the 
feature maps (element-wise). As the proposed 
fusion model requires to learn from two form of 
sources, to handle this, a training procedure 
defined by Hong et al [9] is adopted. γ 
corresponding to Fusion model lmfu is given as, 

γ=lmfu(st,O; θfu )                                   (8)  
γ=Wfu�Wfeast ⊙ WgnOgn ⊙ WhOh ⊙ WmOm ⊙ 
WeOe ⊙ WscOsc�+ bfu,                                      (9) 

where bfu∈Sd*l is the bias of fusion model and ⊙ 
represent element wise multiplication. Wfu∈SH*d, 
Wfea∈Sd*WstHstDst , Wgn, Wh, Wm, We and Wsc are 
the weights. Here H and d are hidden units and its 
total count in this fusion layer. γ is unnormalized 
adaptive Conditional feature representation.

, (4)

where Wlr, Hlr and Dlr are width, height and depth 
of the local receptive field, and v, w and b are input, 
weight, and its associated bias. The activation value 
a, triggers the hidden unit functions and ρ is the local 
activation function used in convolution, we use Recti-
fied Linear Units (ReLU) [14] for all local activations 
in proposed 3D-CNN. As discussed in earlier sections 
our designed 3D-CNN extracts spatial and temporal 
values simultaneously then conveys to state under-
standing and fusion model to make Conditional fea-
ture for drowsiness classification model.

2.3. State Understanding Phase
The goal of this section is to make models to under-
stand driver physiological states and environmental 
conditions like night time, day time, wearing glass-
es and other important facial elements of the driver. 
This will help us to develop an integrated adaptive 
state learning network according to state conditions. 
We hypocrite that the data collected (video) is associ-
ated with the state conditions and driver drowsiness. 
These are explained clearly in training and inference 
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Figure 2 
Representation of 3D-CNN Architecture. Purple denotes images stacked after face positioning (i.e., input images 
for DDD) and green denotes extracted Deep ST Values. Yellow denotes pooling layers and grey are convolution layers 
respectively. Numbers in top are depths and bottom are 3D kernel volumes of its associated layers

Figure 3
Architecture used for face positioning, I-Net, P-Net and O-Net Architectures with stride and pooling as 1 and 2

section. This proposed work has a main category of 
glasses and normal state conditions and four sub cat-
egories of driver state conditional elements, 1. Glass-
es and Normal State Ogn 2. Head condition model Oh 
3. Mouth condition model Om 4. Eye condition model 
Oe and 5. other special condition model Osc. We use 

one-hot vector to define the states and its facial con-
ditions, assigned one-hot vectors are given in Table 1. 
We assume that linear kernels will face difficulty in 
handling ST data due to highly overlapped distribu-
tions and so we use fully connected Neural Network 
(NN) to deal with ST data carefully. The predictions 
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Table 1 
Annotations of Models in State Understanding stage

State 
Conditions

Assigned One-Hot 
Vector

Driver State 
Condition

Glasses and 
Normal 
State

10000 (A) Day Normal State

01000 (B) Day Glass State

00100 (C) Night Normal State

00010 (D) Night Glass State

00001 (E) Day Sun Glasses

Eye 
Conditions

{(A), (B), (C), (D), 
(E)}10 - 10

Sleepiness Eye 
Position

{(A), (B), (C), (D), 
(E)} - 01

Normal Eye 
Position

Head 
Conditions

{(A), (B), (C), (D), 
(E)} - 100 Normal Position

{(A), (B), (C), (D), 
(E)} - 010 Nodding Position

{(A), (B), (C), (D), 
(E)} - 001

Looking at Both 
Sides

Mouth 
Conditions

{(A), (B), (C), (D), 
(E)} - 100 Normal Position

{(A), (B), (C), (D), 
(E)} - 010 Yawning Position

{(A), (B), (C), (D), 
(E)} - 001

Talking and 
Laughing Position

Other 
Special 
Conditions

{(A), (B), (C), (D), 
(E)} - 100

Eye Rubbing by 
Hand Position

{(A), (B), (C), (D), 
(E)} - 010

Spectacles Falling 
Position

{(A), (B), (C), (D), 
(E)} - 001

Lifting Eyebrows 
and Bulging Eyes

of the models are represented as
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is Width, Height, and Depth of ST data. This ST data can 
also be defined as the activation values for the hidden 
layer from the last computed convolution layer in 
proposed 3D-CNN adaptive state learning model. We 
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3D-local receptive field and its operation is given by  
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and its associated bias. The activation value a, triggers 
the hidden unit functions and ρ is the local activation 
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Units (ReLU) [14] for all local activations in proposed 
3D-CNN. As discussed in earlier sections our designed 
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simultaneously then conveys to state understanding and 
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2.3 State Understanding Phase 
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like night time, day time, wearing glasses and other 
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according to state conditions. We hypocrite that the data 
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1. Glasses and Normal State Ogn 2. Head condition model 
Oh 3. Mouth condition model Om 4. Eye condition model 
Oe and 5. other special condition model Osc. We use one-
hot vector to define the states and its facial conditions, 
assigned one-hot vectors are given in Table 1. We 
assume that linear kernels will face difficulty in handling 
ST data due to highly overlapped distributions and so we 
use fully connected Neural Network (NN) to deal with 
ST data carefully. The predictions of the models are 
represented as 
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input data x, O ∈ {Ogn,Oh,Om,Oe,Osc} are the input 
dimension representation of state with conditions and θ 
∈ {θgn,θh,θm,θe,θsc} are the parameters of its associated 
model that is given in fully connected network 
architecture of understanding model. We design all the 
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The operative function of these models is given by 
op=fop{fhl3[fhl2(fhl1(stWhl1+bhl1)Whl2+ 
bhl2)Whl3+bhl3]Wo+bo},                                (6) 
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weights of hidden layers and Wo is weight of 
output layer, bhl3, bhl2, and bhl1 are the bias 
associated with the hidden layers and bO is the bias 
in output layer. fhl1, fhl2 and fhl3 are the activation 
functions of the hidden layers and fop is the final 
activation function in output layer. Sub models 
learns through back propagation, intends to 
identify a condition for given ST data st, then 
calculates the difference between predicted and 
fixed annotations to train network parameters. The 
output dimensions of the state understanding 
models will always depends on the target classes to 
predict. For an instance, the output op of the 
glasses and normal state understanding model has 
five target classes for a given ST data as input, 
similarly sub models are trained to optimize 
Objective Function (OF) is given as follows, 
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where O ∈ {Ogn,Oh,Om,Oe,Osc} are annotations of 
input, and OFgn, OFh, OFm, OFe, and OFsc are the 
SoftMax cross entropy loss functions that calculate 
the difference between the actual annotation and 
the predicted results. Then γ is the hyperparameter 
for regularizing the sum of error values received 
from loss functions of all sub models. Further 
details about training are discussed in training and 
inference section. Using ST data and the results of 
state understanding models, a new fusion model is 
created to form a Conditional feature 
representation for final detection model. 

2.4  Feature Fusion Phase  
Feature fusion model is designed to learn 
collection of adaptive-Conditional feature 
representation from the ST representation st and 
state conditional annotations 
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identifies the collection of adaptive-Conditional 
feature representation γ. This γ vector is calculated 
by multiplicative interaction approach [9, 17-19]. 
The highly dependent and relevant features are 
identified by multiplicative interaction among the 
feature maps (element-wise). As the proposed 
fusion model requires to learn from two form of 
sources, to handle this, a training procedure 
defined by Hong et al [9] is adopted. γ 
corresponding to Fusion model lmfu is given as, 
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SoftMax cross entropy loss functions that calculate 
the difference between the actual annotation and 
the predicted results. Then γ is the hyperparameter 
for regularizing the sum of error values received 
from loss functions of all sub models. Further 
details about training are discussed in training and 
inference section. Using ST data and the results of 
state understanding models, a new fusion model is 
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representation for final detection model. 
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identified by multiplicative interaction among the 
feature maps (element-wise). As the proposed 
fusion model requires to learn from two form of 
sources, to handle this, a training procedure 
defined by Hong et al [9] is adopted. γ 
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where st is Spatial Temporal values derived from 
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weights of hidden layers and Wo is weight of output 
layer, bhl3, bhl2, and bhl1 are the bias associated with the 
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then calculates the difference between predicted and 
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output dimensions of the state understanding models 
will always depends on the target classes to predict. 
For an instance, the output op of the glasses and nor-
mal state understanding model has five target classes 
for a given ST data as input, similarly sub models are 
trained to optimize Objective Function (OF) is given 
as follows,
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is Width, Height, and Depth of ST data. This ST data can 
also be defined as the activation values for the hidden 
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proposed 3D-CNN adaptive state learning model. We 
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local receptive field, and v, w and b are input, weight, 
and its associated bias. The activation value a, triggers 
the hidden unit functions and ρ is the local activation 
function used in convolution, we use Rectified Linear 
Units (ReLU) [14] for all local activations in proposed 
3D-CNN. As discussed in earlier sections our designed 
3D-CNN extracts spatial and temporal values 
simultaneously then conveys to state understanding and 
fusion model to make Conditional feature for drowsiness 
classification model. 

2.3 State Understanding Phase 
The goal of this section is to make models to understand 
driver physiological states and environmental conditions 
like night time, day time, wearing glasses and other 
important facial elements of the driver. This will help us 
to develop an integrated adaptive state learning network 
according to state conditions. We hypocrite that the data 
collected (video) is associated with the state conditions 
and driver drowsiness. These are explained clearly in 
training and inference section. This proposed work has a 
main category of glasses and normal state conditions and 
four sub categories of driver state conditional elements, 
1. Glasses and Normal State Ogn 2. Head condition model 
Oh 3. Mouth condition model Om 4. Eye condition model 
Oe and 5. other special condition model Osc. We use one-
hot vector to define the states and its facial conditions, 
assigned one-hot vectors are given in Table 1. We 
assume that linear kernels will face difficulty in handling 
ST data due to highly overlapped distributions and so we 
use fully connected Neural Network (NN) to deal with 
ST data carefully. The predictions of the models are 
represented as 
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where Ȏ ∈ {Ȏgn,Ȏh,Ȏm,Ȏe,Ȏsc} are the predictions from 
input data x, O ∈ {Ogn,Oh,Om,Oe,Osc} are the input 
dimension representation of state with conditions and θ 
∈ {θgn,θh,θm,θe,θsc} are the parameters of its associated 
model that is given in fully connected network 
architecture of understanding model. We design all the 
models with three hidden 
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by multiplicative interaction approach [9, 17-19]. 
The highly dependent and relevant features are 
identified by multiplicative interaction among the 
feature maps (element-wise). As the proposed 
fusion model requires to learn from two form of 
sources, to handle this, a training procedure 
defined by Hong et al [9] is adopted. γ 
corresponding to Fusion model lmfu is given as, 

γ=lmfu(st,O; θfu )                                   (8)  
γ=Wfu�Wfeast ⊙ WgnOgn ⊙ WhOh ⊙ WmOm ⊙ 
WeOe ⊙ WscOsc�+ bfu,                                      (9) 

where bfu∈Sd*l is the bias of fusion model and ⊙ 
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and OFgn, OFh, OFm, OFe, and OFsc are the SoftMax 
cross entropy loss functions that calculate the differ-
ence between the actual annotation and the predicted 
results. Then γ is the hyperparameter for regularizing 
the sum of error values received from loss functions 
of all sub models. Further details about training are 
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data and the results of state understanding models, 
a new fusion model is created to form a Conditional 
feature representation for final detection model.
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the ST representation st and state conditional anno-
tations Ȏ∈{Ȏgn, Ȏh, Ȏm, Ȏe, Ȏsc}. Using ST data extract-
ed from 3D-CNN, st ∈ and predicted state conditions 
of sub models Ȏ, fusion model identifies the collec-
tion of adaptive-Conditional feature representation 
γ. This γ vector is calculated by multiplicative inter-
action approach [9, 17-19]. The highly dependent and 
relevant features are identified by multiplicative in-
teraction among the feature maps (element-wise). As 
the proposed fusion model requires to learn from two 
form of sources, to handle this, a training procedure 
defined by Hong et al [9] is adopted. γ corresponding 
to Fusion model lmfu is given as,
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where Wlr, Hlr and Dlr are width, height and depth of the 
local receptive field, and v, w and b are input, weight, 
and its associated bias. The activation value a, triggers 
the hidden unit functions and ρ is the local activation 
function used in convolution, we use Rectified Linear 
Units (ReLU) [14] for all local activations in proposed 
3D-CNN. As discussed in earlier sections our designed 
3D-CNN extracts spatial and temporal values 
simultaneously then conveys to state understanding and 
fusion model to make Conditional feature for drowsiness 
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2.3 State Understanding Phase 
The goal of this section is to make models to understand 
driver physiological states and environmental conditions 
like night time, day time, wearing glasses and other 
important facial elements of the driver. This will help us 
to develop an integrated adaptive state learning network 
according to state conditions. We hypocrite that the data 
collected (video) is associated with the state conditions 
and driver drowsiness. These are explained clearly in 
training and inference section. This proposed work has a 
main category of glasses and normal state conditions and 
four sub categories of driver state conditional elements, 
1. Glasses and Normal State Ogn 2. Head condition model 
Oh 3. Mouth condition model Om 4. Eye condition model 
Oe and 5. other special condition model Osc. We use one-
hot vector to define the states and its facial conditions, 
assigned one-hot vectors are given in Table 1. We 
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ST data due to highly overlapped distributions and so we 
use fully connected Neural Network (NN) to deal with 
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input data x, O ∈ {Ogn,Oh,Om,Oe,Osc} are the input 
dimension representation of state with conditions and θ 
∈ {θgn,θh,θm,θe,θsc} are the parameters of its associated 
model that is given in fully connected network 
architecture of understanding model. We design all the 
models with three hidden 
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models will always depends on the target classes to 
predict. For an instance, the output op of the 
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five target classes for a given ST data as input, 
similarly sub models are trained to optimize 
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SoftMax cross entropy loss functions that calculate 
the difference between the actual annotation and 
the predicted results. Then γ is the hyperparameter 
for regularizing the sum of error values received 
from loss functions of all sub models. Further 
details about training are discussed in training and 
inference section. Using ST data and the results of 
state understanding models, a new fusion model is 
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representation for final detection model. 
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where bfu∈ Sd*l is the bias of fusion model and ⊙ rep-
resent element wise multiplication. Wfu∈ SH*d, Wfea∈,  
are the weights. Here H and d are hidden units and 
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adaptive Conditional feature representation.
This six-way inner tensor product helps in identifying 
the correlation among defined sub-classes. Figure 4 
shows input images, its ST values and Conditional 

feature representations. From this procedure, we re-
ceive the resultant nearer to zero, which may produce 
bad results and may sometimes violates the compu-
tational procedure by exceeding its range. A SoftMax 
normalization procedure is used to solve these issues 
and preserve the dependencies among ST data and 
outputs of sub models. Normalized γ represented as υi 

is given by

 
 

 

This six-way inner tensor product helps in identifying the 
correlation among defined sub-classes. Figure 4 shows 
input images, its ST values and Conditional feature 
representations. From this procedure, we receive the 
resultant nearer to zero, which may produce bad results 
and may sometimes violates the computational 
procedure by exceeding its range. A SoftMax 
normalization procedure is used to solve these issues and 
preserve the dependencies among ST data and outputs of 
sub models. Normalized γ represented as υi is given by 

                        υi= exp(γi) 
∑ exp(γj)j

,                                (10) 

where υi is normalized ith element feature and γi is 
unnormalized combined feature at ith element. Now υ 
represents the Conditional feature over ST data and 
outputs of sub models, which is an input for final 
detection model. 

2.5 Feature Fusion Phase 
Fusion phase provides with cluster of Conditional 
feature υ, contains feature information about driver 
expressions of all classes and the final driver drowsiness 
identification model of the proposed system is 
constructed using Conditional feature υ. A similar fully 
connected NN used in state understanding phase is used 
again upon fusion model to derive the final two class 
(Drowsy and Non-Drowsy) output is given as 

RDetect=lmdetect(υ;θdetect),                                            (11) 
where RDetect is the final output for parameter set θdetect 
for final detection model. RDetect falls under two class 
units (output layer units in this fully connected layer are 
1. drowsy and 2. non-drowsy) and we implement 
SoftMax activation function to measure likeliness of 
output units for every input samples. If SoftMax function 
returns a high value in the drowsy unit, then the driver is 
sleepy and if it returns a high value in non-drowsy unit 
then the driver is in normal condition. For better results, 
a common optimization is carried out for both fusion and 
detection model to minimize the loss by comparing 
annotated form of final detection with features and it is 
given by   

min(θfu, θdetect)�Erdet
i

�RDetect,RDetect
' �,                   (12) 

where 𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷′  is expected outcome of input sample and 
𝐸𝐸𝐸𝐸𝑁𝑁𝑁𝑁𝑑𝑑𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 is SoftMax cross entropy loss function to recalculate 
the deviations with fixed number of iterations i and 
embedded to all the previous laid models in the proposed 
system 

3. Training and Augmentation 
CNN training in face positioning phase has three 
objectives, 1. facial classification, 2. regression 
bounding lines, 3. identifying facial landmarks, to 
compute results for facial classification, we have two 
class units (1. face and 2. non-face), for regression 
bounding lines, we have four class units (1. Left, 2. 
Right, 3. Length, 4. Width) representing the bounding 
boxes (candidate window) and for facial landmarks, we 
have 10 class units (1. Left eye, 2. Not-left eye, 3. Right 
eye, 4. Not-right eye, 5. Nose, 6. Not-nose, 7. Left end 
of lips, 8. Not left end of lips, 9. Right end of lips and 10. 

Not right end of lips) in the final output layer of 
fully connected layer. If the corresponding values 
from the units are high, then the proposed system 
is likely to adhere that class unit. The error 
minimization is carried out for all 3 stages (I-net, 
P-net, O-net) to repeatedly train the network and so 
we use loss functions for error measurements. For 
facial binary classification, we use cross entropy 
loss function given in equation (13). For regression 
bounding lines and facial landmarks, we adopt 
Euclidean loss function given in equation (14) and 
(15).  
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∈{0,1} acts as an indicator. The proposed face 
positioning system of first two stages (I-net and P-
net) uses γdet=1, γbox=0.5, γloc=0.5 and O-net uses 
γdet=1,γbox=0.5,γloc=1. Stochastic Gradient Descent 
(SGD) is deployed to train these three stages and 
then final facial positions are stacked separately. 
These stacked images form another image pyramid 
that are given as input to 3D adaptive state learning 
network. The proposed 3D adaptive state learning 
network has two main Objective Functions (OF’s) 
defined in Equation (7) and (12) of state 
understanding model and detection model. It is 
very important to consider these performances for 
optimization to produce better results. From these 
equations, the objective function of whole 
proposed system is given by, 

min∑ ∑ γjj ∈ {det,box,loc} βi
jN

i Lossi
j+min(Pd,θsu,θf,θdet) 

�(1-λ)OFsu�Oc,Ȏc�+λErdet�RDetect,RDetect
' ��,  (17)  

where λ is the balancing parameter for 
understanding and detection phases. This objective 
function optimizes all five modules of the proposed 
system simultaneously. Even though we have five 
modules to train, we are not training all modules 
simultaneously and we train according to the 
groups that impact output of proposed system 
architecture, the overall output depends on 1. Face 
positioning 2. ST learning, 3. State understanding, 
4. Fusion and 5. Detection. So first we train face 

, (10)

where υi is normalized ith element feature and γi is un-
normalized combined feature at ith element. Now υ 
represents the Conditional feature over ST data and 
outputs of sub models, which is an input for final de-
tection model.

2.5. Feature Fusion Phase
Fusion phase provides with cluster of Condition-
al feature υ, contains feature information about 
driver expressions of all classes and the final driver 
drowsiness identification model of the proposed 
system is constructed using Conditional feature 
υ. A similar fully connected NN used in state 
understanding phase is used again upon fusion 
model to derive the final two class (Drowsy and Non-
Drowsy) output is given as

Figure 4 (a-c)
A. Represents input images; B. generated ST value representations; C. conditional feature representations

(B) (C)(A)



721Information Technology and Control 2023/3/52

 
 

 

This six-way inner tensor product helps in identifying the 
correlation among defined sub-classes. Figure 4 shows 
input images, its ST values and Conditional feature 
representations. From this procedure, we receive the 
resultant nearer to zero, which may produce bad results 
and may sometimes violates the computational 
procedure by exceeding its range. A SoftMax 
normalization procedure is used to solve these issues and 
preserve the dependencies among ST data and outputs of 
sub models. Normalized γ represented as υi is given by 
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again upon fusion model to derive the final two class 
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a common optimization is carried out for both fusion and 
detection model to minimize the loss by comparing 
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given by   

min(θfu, θdetect)�Erdet
i

�RDetect,RDetect
' �,                   (12) 

where 𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷′  is expected outcome of input sample and 
𝐸𝐸𝐸𝐸𝑁𝑁𝑁𝑁𝑑𝑑𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 is SoftMax cross entropy loss function to recalculate 
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class units (1. face and 2. non-face), for regression 
bounding lines, we have four class units (1. Left, 2. 
Right, 3. Length, 4. Width) representing the bounding 
boxes (candidate window) and for facial landmarks, we 
have 10 class units (1. Left eye, 2. Not-left eye, 3. Right 
eye, 4. Not-right eye, 5. Nose, 6. Not-nose, 7. Left end 
of lips, 8. Not left end of lips, 9. Right end of lips and 10. 

Not right end of lips) in the final output layer of 
fully connected layer. If the corresponding values 
from the units are high, then the proposed system 
is likely to adhere that class unit. The error 
minimization is carried out for all 3 stages (I-net, 
P-net, O-net) to repeatedly train the network and so 
we use loss functions for error measurements. For 
facial binary classification, we use cross entropy 
loss function given in equation (13). For regression 
bounding lines and facial landmarks, we adopt 
Euclidean loss function given in equation (14) and 
(15).  
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example, when the input is only background image 
(case: without a driver) then there is no need to find 
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that are given as input to 3D adaptive state learning 
network. The proposed 3D adaptive state learning 
network has two main Objective Functions (OF’s) 
defined in Equation (7) and (12) of state 
understanding model and detection model. It is 
very important to consider these performances for 
optimization to produce better results. From these 
equations, the objective function of whole 
proposed system is given by, 
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where λ is the balancing parameter for 
understanding and detection phases. This objective 
function optimizes all five modules of the proposed 
system simultaneously. Even though we have five 
modules to train, we are not training all modules 
simultaneously and we train according to the 
groups that impact output of proposed system 
architecture, the overall output depends on 1. Face 
positioning 2. ST learning, 3. State understanding, 
4. Fusion and 5. Detection. So first we train face 
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where RDetect is the final output for parameter set θdetect 
for final detection model. RDetect falls under two class 
units (output layer units in this fully connected layer 
are 1. drowsy and 2. non-drowsy) and we implement 
SoftMax activation function to measure likeliness of 
output units for every input samples. If SoftMax func-
tion returns a high value in the drowsy unit, then the 
driver is sleepy and if it returns a high value in non-
drowsy unit then the driver is in normal condition. 
For better results, a common optimization is carried 
out for both fusion and detection model to minimize 
the loss by comparing annotated form of final detec-
tion with features and it is given by  
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bounding lines, 3. identifying facial landmarks, to 
compute results for facial classification, we have two 
class units (1. face and 2. non-face), for regression 
bounding lines, we have four class units (1. Left, 2. 
Right, 3. Length, 4. Width) representing the bounding 
boxes (candidate window) and for facial landmarks, we 
have 10 class units (1. Left eye, 2. Not-left eye, 3. Right 
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of lips, 8. Not left end of lips, 9. Right end of lips and 10. 

Not right end of lips) in the final output layer of 
fully connected layer. If the corresponding values 
from the units are high, then the proposed system 
is likely to adhere that class unit. The error 
minimization is carried out for all 3 stages (I-net, 
P-net, O-net) to repeatedly train the network and so 
we use loss functions for error measurements. For 
facial binary classification, we use cross entropy 
loss function given in equation (13). For regression 
bounding lines and facial landmarks, we adopt 
Euclidean loss function given in equation (14) and 
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(case: without a driver) then there is no need to find 
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net) uses γdet=1, γbox=0.5, γloc=0.5 and O-net uses 
γdet=1,γbox=0.5,γloc=1. Stochastic Gradient Descent 
(SGD) is deployed to train these three stages and 
then final facial positions are stacked separately. 
These stacked images form another image pyramid 
that are given as input to 3D adaptive state learning 
network. The proposed 3D adaptive state learning 
network has two main Objective Functions (OF’s) 
defined in Equation (7) and (12) of state 
understanding model and detection model. It is 
very important to consider these performances for 
optimization to produce better results. From these 
equations, the objective function of whole 
proposed system is given by, 
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where λ is the balancing parameter for 
understanding and detection phases. This objective 
function optimizes all five modules of the proposed 
system simultaneously. Even though we have five 
modules to train, we are not training all modules 
simultaneously and we train according to the 
groups that impact output of proposed system 
architecture, the overall output depends on 1. Face 
positioning 2. ST learning, 3. State understanding, 
4. Fusion and 5. Detection. So first we train face 

, (12)

where is expected outcome of input sample and is Soft-
Max cross entropy loss function to recalculate the devi-
ations with fixed number of iterations i and embedded 
to all the previous laid models in the proposed system

3. Training and Augmentation
CNN training in face positioning phase has three ob-
jectives, 1. facial classification, 2. regression bounding 
lines, 3. identifying facial landmarks, to compute re-
sults for facial classification, we have two class units 
(1. face and 2. non-face), for regression bounding lines, 
we have four class units (1. Left, 2. Right, 3. Length, 4. 
Width) representing the bounding boxes (candidate 
window) and for facial landmarks, we have 10 class 
units (1. Left eye, 2. Not-left eye, 3. Right eye, 4. Not-
right eye, 5. Nose, 6. Not-nose, 7. Left end of lips, 8. Not 
left end of lips, 9. Right end of lips and 10. Not right 
end of lips) in the final output layer of fully connected 
layer. If the corresponding values from the units are 
high, then the proposed system is likely to adhere that 
class unit. The error minimization is carried out for 
all 3 stages (I-net, P-net, O-net) to repeatedly train 
the network and so we use loss functions for error 
measurements. For facial binary classification, we 
use cross entropy loss function given in equation (13). 
For regression bounding lines and facial landmarks, 
we adopt Euclidean loss function given in equation 
(14) and (15).
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represents the Conditional feature over ST data and 
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2.5 Feature Fusion Phase 
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expressions of all classes and the final driver drowsiness 
identification model of the proposed system is 
constructed using Conditional feature υ. A similar fully 
connected NN used in state understanding phase is used 
again upon fusion model to derive the final two class 
(Drowsy and Non-Drowsy) output is given as 
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where RDetect is the final output for parameter set θdetect 
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where λ is the balancing parameter for 
understanding and detection phases. This objective 
function optimizes all five modules of the proposed 
system simultaneously. Even though we have five 
modules to train, we are not training all modules 
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groups that impact output of proposed system 
architecture, the overall output depends on 1. Face 
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where λ is the balancing parameter for 
understanding and detection phases. This objective 
function optimizes all five modules of the proposed 
system simultaneously. Even though we have five 
modules to train, we are not training all modules 
simultaneously and we train according to the 
groups that impact output of proposed system 
architecture, the overall output depends on 1. Face 
positioning 2. ST learning, 3. State understanding, 
4. Fusion and 5. Detection. So first we train face 
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where λ is the balancing parameter for understanding 
and detection phases. This objective function optimiz-
es all five modules of the proposed system simultane-
ously. Even though we have five modules to train, we 
are not training all modules simultaneously and we 
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train according to the groups that impact output of pro-
posed system architecture, the overall output depends 
on 1. Face positioning 2. ST learning, 3. State under-
standing, 4. Fusion and 5. Detection. So first we train 
face positioning model then ST Learning and State un-
derstanding followed by fusion and detection models. 
For the objective of driver drowsiness identification 
from video, the proposed system has ST learning that 
creates ST data used for state understanding to cre-
ate models and sub- models, then by using the ST data 
and State understanding information’s, adaptive Con-
ditional feature is created by fusion model and using 
adaptive Conditional feature, drowsiness is detected. 
Overfitting is the general issue in all learning models 
especially in most of the unsupervised learning de-
signs. Generally overfitting can be reduced by trans-
forming the dataset in different ways without losing 
output labels and inducing the transformed knowl-
edge to the learning system. In our work, the stacked 
images from face positioning phase are rotated (hor-
izontal transformation). Since the computation for 
this rotation is significantly low, we created a new 
data set with low computational cost. The original 
images and rotated images are transformed using 
gaussian filter and the transformations are used to ad-
ditionally train our proposed system to fix the patches 

in training phase. Further, we generate four different 
variations of input sample through image pyramid 
technique to include in the experiments is shown in 
Figure 5, thus more additional input samples are cre-
ated with horizontal transformation and image pyra-
mid technique. Without implementing these two aug-
mentation techniques, our proposed system suffers 
from overfitting and low convergence rate and this is 
further discussed in ablation experiments.

4. Experimentation and Analysis
4.1. Datasets
In this section, we evaluate our proposed system with 
two datasets 1. NTHU-DDD Dataset (Benchmark 
dataset) and 2. KEC-DDD Dataset (own collection) 
and compared using major performance metrics. 
During emerging days of driver drowsiness detection 
studies, most of the researchers used private datasets, 
Now-a-days many driver drowsiness detection data-
sets are available for public access. We requested ac-
cess for NTHU-DDD dataset through end user license 
agreement given by NTHU and downloaded the data-
set from their FTP server to implement our proposed 
driver drowsiness detection system. 
NTHU-DDD Dataset consists of samples collect-
ed from 36 eligible drivers under various scenarios. 
Training dataset consists of 50% data of drivers (18 
members) with five main classes (glasses, no glasses, 
night glasses, night no glasses, sunglasses) and four 
sub classes (non-sleepy combination, sleepy combi-
nation, slow blink with nodding and yawning) corre-
sponding to each main classes. Totally training has 
360 video clips of around 4 to 7 minutes and all put 
together around nine and half hours, all videos are in 
640x480 AVI format and transformed to 256 x 256 
pixels each uniformly for proposed system execution. 
Similarly, evaluation set has videos of 4 drivers with 
same main and sub classes, totally evaluation has 20 
video clips. We consider only 722,225 frames from 
training and 173,268 frames from evaluation set for 
our proposed model training as frame level annota-
tions are readily available in the dataset.
KEC-DDD Dataset is created by Department of Arti-
ficial Intelligence, Kongu Engineering College, India 
(Own Dataset) in a simulated environment of vehicle 
maintenance lab of KEC. Overall dataset consists of 

Figure 5 
Augmentation procedure (Creation of 4 different variants 
to improve test and train size) 
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84 driver members under 5 main classes (same as 
NTHU-DDD) and 11 sub classes (defined according 
to Indian conditions) of different drowsiness combi-
nations associated with main class. Initially 420 vid-
eo clips are recorded, then it is sliced for sub classes 
which consists of totally 4620 video clips of around 
90 to 140 seconds per clips. Initially the video is re-
corded in 30fps at 3840 x 2160 at high quality 4k reso-
lution, then after considering the computational load, 
images are down sampled using bilinear interpola-
tion method (retains important features) available 
in OpenCV and are transformed into 256 x 256 pixels 
each uniformly. The frame level and clip level anno-
tations are defined using non-intersection over union 
suppression technique and transformed images are 
stacked in the respective sub classes of around 600 
to 800 images each to form a video to improve the ex-
perimentation results. For experiments, 60:30:10 rule 
is followed for training, testing and evaluation pro-
cedures. Figure 6 shows the snapshots of KEC-DDD 
Dataset, as samples of NTHU-DDD is well known to 
all, we did not display. It is easily observed that more 
variants (sub classes) are created corresponding to 

Indian drowsiness conditions in our dataset. Training 
and evaluation are carried out separately using both 
the datasets.

4.2. Experimental Results
During initial stage of training, annotations for face 
positioning is created using non-intersection over 
union suppression technique are listed below,
 _ Negatives – where regions of NIOU ratio < 0.275 to 

ground truth
 _ Positives – where regions of NIOU ratio > 0.625 to 

ground truth
 _ Part facial regions – where regions of NIOU ratio is 

0.375 ≤ area ≤ 0.675 to ground truth
 _ Facial points – labelled five facial locations.

Region (0.275 < area < 0.375) is left during NIOU, as 
there exists an undecidable variational gap between 
negative and part faces. During driver face positioned 
training, these positives and negatives are used for clas-
sification, positives and part faces are used for bound-
ing box and facial points are used to localize and provide 
additional conformation about the positioned faces.

Figure 6 
Few Samples of KEC-DDD dataset; (a) eye closed position; (b) eye rubbing by hand position; (c) eye rubbing by hand 
without glasses position; (d) head nodding position; (e) lifting eyebrow position; (f ) looking either side distracted position; 
(g) normal head, eye and mouth position; (h) spectacles falling; (i) talking and laughing; ( j) yawning position

(a)                                          (b)                                               (c)                                                   (d)                                                 (e)

(f )                                          (g)                                               (h)                                                   (i)                                                 ( j)
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Table 2 
Average Validation accuracy of face positioning phase

Methods Accuracy

Cascaded CNN[4] 95.1

Ours (KEC-DDD) 96.3

Ours (NTHU-DDD) 94.9

We used 2Dconv layer function for face positioning, 
3Dconv layer function for ST learning, State under-
standing and Detection phases, so it is obvious to com-
pare the results with other models at face positioning 
stage and drowsiness detection stage. We demonstrate 
our results with the decided evaluation set of KEC-
DDD and NTHU-DDD dataset. Performance of the 
proposed system is measured at face positioning stage 
and final drowsiness detection stage and compared 
its results with other models. The positioning phase 
validation results is presented in Table 2. The train-
ing accuracies during state understanding phase are 
shown in Figure 7 separately for all sub models. The 
validation accuracies of state understanding models 

are given by y/x , where y is correct classifications and 
x is input samples of the respective sub models. Valida-
tion results of state understanding phase which com-
poses of five models, 1. Glasses and normal conditions 
lmgn, 2. Head conditions lmh, 3. Eye Conditions lme, 4. 
Mouth Conditions lmm and 5. Special conditions lmsc 
are shown in Table 3.  The average accuracies are cal-
culated by taking mean of respective heads, so that the 
total classification numbers can be neutralized. Final 
average accuracy of state understanding phase is 0.888 
for KEC-DDD and 0.866 for NTHU-DDD dataset. It 
is also observed that high accuracies are found in lmgn 
and comparatively low accuracies are found in lme, this 
gaps between sub models are matched by bias of ST 
learning to support final detection. Output of the state 
understanding phase is always based on size of the tar-
get element, as mouth and eye are small compared to 
glasses and head region in entire frame in both data-
sets, models lmgn and lmh may be overfitted and pro-
duces good accuracies as shown in Table 3. The overall 
performance of the proposed system is calculated by 
F-Measure. It is calculated by harmonic mean of preci-
sion and recall, F-measure is given by,

Figure 7 
Training accuracies of sub models and overall system on both the datasets
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Table 3 
Average validation accuracy of models in state understanding phase using KEC-DDD and NTHU-DDD

State/Conditions Glasses and normal 
Conditions

Head
Conditions

Mouth Condi-
tions Eye Conditions Other Special 

Conditions

Day Normal State

K
E

C
-D

D
D

0.98 0.98 0.97 0.88 0.84

Day Glasses State 0.96 0.92 0.94 0.80 0.76

Night Normal State 0.98 0.94 0.96 0.81 0.77

Night Glasses State 0.96 0.95 0.87 0.91 0.86

Day Sun Glasses State 0.97 0.96 0.77 0.77 0.71

Average 0.97 0.95 0.902 0.834 0.788

Total Average 0.888

Day Normal State

N
T

H
U

-D
D

D

0.97 0.97 0.96 0.87 0.83

Day Glasses State 0.95 0.91 0.9 0.79 0.75

Night Normal State 0.97 0.93 0.89 0.77 0.76

Night Glasses State 0.95 0.94 0.85 0.76 0.77

Day Sun Glasses State 0.96 0.95 0.77 0.77 0.71

Average 0.96 0.94 0.874 0.792 0.764

Total Average 0.866

Table 4 
Comparison of average validation accuracy of driver states across models using evaluation sets of KEC and NTHU-DDD

Comparisons/ State Day Normal 
State

Day Glasses 
State

Night Normal 
State

Night Glasses 
State

Day Sun Glass-
es State Avg. Ref.

MobileNetV2-DCNN 0.678 0.607 0.563 0.546 0.704 0.617 [12]

BiLSTM-DCNN 0.715 0.627 0.657 0.638 0.713 0.67 [3]

MultiCNN-Deep Model 0.649 0.716 0.748 0.752 0.581 0.689 [1]

3D-DCNN 0.666 0.733 0.765 0.769 0.598 0.706 [24]

R-CNN 0.701 0.768 0.768 0.804 0.633 0.735 [16]

Ours (NTHU-DDD) 0.792 0.777 0.761 0.73 0.734 0.759 -

Ours (KEC-DDD) 0.807 0.792 0.776 0.745 0.749 0.774 -

The best average scores are in bold

Where precision is measuring the grade of positive 
prediction of the system and recall is ability to pre-
dict maximum positive samples, this quantitative 
measure provides with the average on all videos in all 
categories. Average accuracy of 0.774 for KEC-DDD 
and 0.759 for NTHU-DDD dataset is achieved using 
respective evaluation sets.

We compare our final results with recent methods like 
MobileNetV2-DCNN [12], BiLSTM-DCNN [3], Mul-
tiCNN-Deep Model [1], 3D-DCNN [24] and R-CNN 
[16] used in driver drowsiness prediction, shown in 
Table 4. The results shows that the proposed system 
outperforms almost all other methods in all state con-
ditions except in night glasses state due to low visi-
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bility at night time eye positioning when driver is in 
glasses (both the datasets behave similarly). Individu-
ally, our proposed state understanding models perform 
well even though all others are competitive deep net-
works. The average accuracy of both drowsiness and 
non-drowsiness of the proposed driver drowsiness de-
tection system is given in Table 5. The ROC-AUC curve 
comparing with other methods at face positioning and 
drowsiness detection stage is shown in Figure 8(a) and 
8b, it is noted that the proposed system is very much 
tolerant to the false positive rate, as approximately its 
rate is lesser than 0.04 and after that the curve shows 
greater benefit for the proposed system. Figures 9(a)-
(b) shows the sample screenshots of drowsiness detec-
tion using KEC-DDD and NTHU-DDD dataset.

Table 5 
F-Measures and accuracies of DDD using Evaluation set of 
KEC-DDD Dataset

State Drowsy 
(F-Measure)

Non-Drowsy 
(F-Measure) Accuracy

Day Normal State 0.819 0.795 0.807

Day Glasses State 0.799 0.785 0.792

Night Normal State 0.783 0.769 0.776

Night Glasses State 0.752 0.738 0.745

Day Sun Glasses 
State 0.756 0.742 0.749

Average 0.781 0.767 0.774

Figure 8a 
ROC-AUC of positioning stage for various datasets

Figure 8b 
Final ROC-AUC of whole system for various datasets
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Figure 9a 
Output using KEC-DDD Dataset

4.3. Ablation Study
Since we introduced a complex architecture with a 
new dataset, performing ablation study is a seal of 
approval. An ablation study is carried out with KEC-
DDD dataset for investigating the proposed archi-
tecture based on four cases, 1. Without performing 
face positioning, directly giving raw input to the ST 
learning phase, 2. Excluding the augmented datasets 
for performing training, 3. Replacing the suppression 

Figure 9b 
Output using NTHU-DDD Dataset

technique from NIOU to Intersection over Union. 4. 
Feature fusion exempting the support from ST learn-
ing phase.
After blending our system to train for listed cases, 
models representing each case are evaluated sepa-
rately. Then the results received for the evaluation 
set of KEC-DDD dataset for each case are shown 
with ROC-AUC curve in Figure 10. The outcomes are 
as expected in almost all cases except for case 3, both 
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Figure 10
ROC-AUC of our model blended for various cases in ablation study

NIOU and IOU seems to produce a slight variational 
performance. From Figure 10, our proposed system 
passes tests made under cases 1,2 and 4, which intu-
itively provides our architecture performs well.

4.4. Complexity Analysis

Practically for any CNN based architectures, com-
plexity relies on major parameters like input image 
size, kernel size and pooling size. Training needs 
higher computation time than testing, since it has to 
backpropagate and adjust the weights for required 
iterations. On the other hand, testing has low time 
complexity as it only depends on result computa-
tion.  We calculate complexities that applies for both 
training and testing of proposed system. Further-
more, theoretically, the complexity of our proposed 
system is given by maximum of 2D and 3D CNN 
computations taking in our proposed system repre-
sented by  
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Output of the state understanding phase is always 
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lmh may be overfitted and produces good 
accuracies as shown in Table 3. The overall 
performance of the proposed system is calculated 
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(18)

where i represents the computations for 1 to nth convo-
lution layer, Wi,Hi,Di and xi,yi,zi denotes width, height, 
depth of the inputs and width, height, depth of the ker-
nels in ith layer corresponding to the respective 2D and 
3D convolutions. Computational complexity of two lay-
ered understanding and detection models is O(C*N2), 
where N is hidden layer dimensions and C is targeting 
domain. We calculate the execution time by leaving out-
put time display, and achieved around 39.6 FPS at 30.2 
ms at an average of 400 execution seconds, which is al-
most processing a live dynamic real scenario.
The proposed system is developed using TensorFlow 
library and implemented using Core i7 3.4 GHz 16GB 
RAM with 12 GB GeForce GTX TITAN X. The execu-
tion time of different models are compared in Table 6.

Table 6 
Comparison for speed across models trained with KEC-DDD Dataset

Method MobileNetV2-
DCNN

BiLSTM-
DCNN

MultiCNN-
Deep Model 3D-DCNN R-CNN Ours (KEC-

DDD)

Speed by using 12 GB GeForce 
GTX TITAN X (Avg. execution 
seconds- 400 )

42.4 FPS 38.1 FPS 34 FPS 36 FPS 35.7 FPS 39.1 FPS

Reference [12] [3] [1] [24] [16] -
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5. Conclusion
In this work, architecture for Face positioning, ST 
learning, State understanding, feature fusion and De-
tection phases of proposed system is designed and im-
plemented for driver drowsiness detection according 
to Indian conditions (Indian driver face positions). we 
started by giving input to face positioning phase that 
is designed with cascaded three stage 2D convolution 
layers and face classified outputs are stacked to pro-
vide input to Spatio Temporal Learning Stage where 
the Spatio Temporal values are created and are passed 
to State understanding phase. Models and sub models 
defined in state understanding phase are trained to 
hold the knowledge of respective driver state condi-
tions. Along with the knowledge of state conditions, 
ST values are passed to feature fusion stage by which 
a Conditional feature representation is created. This 
Conditional feature is given as input to final fully con-
nected layer (Detection phase) by which drowsiness 
and non-drowsiness of the driver is classified. This 
proposed procedure is carried out using two datasets 
KEC-DDD (own dataset) and NTHU-DDD training 
dataset. Additionally, an ablation study to conform ef-

fectiveness of our architecture is conducted for four 
different cases and results are discussed separately. 
Results of the proposed system are measured for both 
the datasets at two stages (Face Positioning and Final 
Detection) and compared with literatures discussed 
earlier. From the results, it can be concluded that the 
proposed system outperforms all other methods like 
3D-CNN, R-CNN and MultiCNN-Deep Model in In-
dian conditions (Indian driver face positions) and ca-
pable to detect driver drowsiness from 256×256 reso-
lution images at 39.6 fps at an average of 400 execution 
seconds. Even though we produced acceptable results 
for driver drowsiness detection, it is still hard to imple-
ment in the real time vehicle as we face the limitations 
like 1. GPU unit in terms of cost, 2. system accepts only 
labelled samples with huge count at various situations 
of driver state and 3. System is trained offline and these 
limitations can be fixed in near future.
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