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The Cognitive radio network (CR) is a widespread technology in which the Secondary users are engaged in ac-
quiring the idle spectrum from the primary user. The secondary users with the help of Spectrum monitoring 
agents acquire the spectrum to avoid the false alarm possibility. The collaborative spectrum sensing (CSS) is an 
approach that will identify the false intruder in the CR networks, here it is proposed with the Enhanced Q-Learn-
ing model with Coalition Game approach (EQLCG) to outline the energy enhancement. Besides an approach on 
Greedy Bidding is used to allocate the spectrum to the winning secondary user (SU) based on the idle primary 
user to strengthen the spectrum sensing. The winning secondary user forms a communication establishment 
with the neighbouring SU to eradicate the miss detection probability based on group level cooperation.  The sim-
ulation experiment analyses the cluster level security with energy monitoring that has been performed using the 
analysis of interference by applying the coalition game theory modelling and the information obscured by the 
attacker is reduced with the usage of enhanced Q-learning, and the results prove that overhead is substantially 
monitored. The proposed paper enhances the security in physical layer with energy conservation and maintains 
the spectrum usage for application purpose. The proposed simulation approach reduces the miss detection and 
false alarm probabilistic approach while compared with Stackelberg and Bayesian game models.
KEYWORDS: CR networks, Physical Layer Security, Coalition Game Theory, Spectrum Sensing, Q-Learning.

1. Introduction
The demand in wireless communication has emerged 
widespread in the spectrum management and spec-
trum handling market. In the modern era, wireless 
devices occupy a marketable solution for all sources 
of data communication. Security is a major concern, 
even though a lot of applications came into existence. 
Besides their geographical position, wireless commu-
nication makes the information sharing and accessing 
of the information in the global era at ease. Wireless 
communication can be classified as an infrastructure 
network and infrastructure-less networks. The wire-
less communications perform a key role in the mod-
ern era for making efficient communication; besides 
CR networks have been best known for the spectrum 
allocation in the modern digital world. The spectrum 
allocation and the spectrum utilization occupy a ma-
jor impact in the wireless communication to support 
the demand in the increase of the spectrum utilization 
[31]. The CR networks are utilized with the available 
spectrum bands, where the unlicensed users that are 
secondary users (SU) and the licensed users that are 
primary users (PU) utilize the spectrum to avoid in-
terference in the physical layer communication. . Each 
secondary user attempts the idle spectrum to utilize it 
with the support of the primary agents residing in the 
same cluster of SU, and hence the utilization may be 
increased parallel in the CR networks. The Spectrum 
sensing is done by the SU that analyze the spectrum for 
the best efficient usage, and hence the accuracy is en-
riched that makes the spectrum allocation and sensing 
parameter to be estimated well [32].

The CR networks may be susceptible to various factors 
that affect the spectrum allocation and the utilization 
such as propagation loss, channel fading, Misdetection 
ratio in a higher altitude, and channel noise [47]. The 
spectrum sensing may be enriched to avoid the false 
alarm and miss detection. The false alarm probability 
is a measure, where the SU assumes that the spectrum 
is busy with the PU even when the spectrum is idle, it 
leads to the false alarm probability and intruder to en-
ter in to the CR network [35]. The miss detection is a 
case, where the spectrum is assumed to be idle even 
when it has been used by some other PU. The Miss 
detection and false alarm are the sensing errors that 
often happened in CR networks in a high probabili-
ty compared to the other authentication approaches. 
These sensing errors in SU may be a big barrier to the 
user allocation within the SU and also the utilization of 
the spectrum with the PU [48]. This spectrum sensing 
approach restricts the miss classification when the SU 
is in large number and focus on the winning allocation, 
and it may variably increase the physical communica-
tion in the network due to the selection of the best SU 
among the cluster from the greedy bidding, in such cas-
es, the miss classification is avoided by the configured 
SU [40]. The second frame is that the winning SU must 
increase the idle spectrum detection ratio that may in-
crease the communication paradigm [2].
The spectrum sensing is proposed herewith in a col-
laborative manner termed as collaborative spectrum 
sensing, where the accuracy is enriched in the collab-
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orative spectrum sensing [29]. The CSS approach col-
lects the sensing report with the support of the fusion 
centre, and the centre prepares a collective sensing 
report in a cooperative manner [14]. The cooperative 
spectrum sensing approach has been implemented 
in SU to enhance the spectrum sensing, where it will 
provide a good authentication mechanism compared 
to the normal sensing, and it actuates the secrecy rate 
to avoid jamming and interference with allowing only 
the authenticated user to acquire the spectrum. The 
coalition game theory approach has been applied with 
the CSS to investigate the interference analysis be-
tween the PU and SU [45]. The miss detection prob-
ability is assumed to be reduced with the coalition 
game approach, where the intruder will maliciously 
intrude in the CR network by advertising them as 
SU, and the interference analysis within PU is done 
at the miniature level with this game approach. The 
communication between neighbouring SU is in-
creased with the PU outside the cluster to avoid miss 
detection [5]. Figure 1 depicts the usage of SU with 
group formation, and the winning SU from the spec-
trum allocated group by the PU are formed in a group 
with SU1 to SU5, and the losing group informs the SU 
during transmission and the time slot allocation per-
forms the miss detection probability [26].
Figure 1 depicts the proposed model of selecting the 
winning SU, and a group has been formed with these 
winners. The Primary User 1 connects with the SU1 
and SU5 for accumulating the usage of spectrum ac-
cess. The PU2 has its spectrum shared with the SU2 
and SU3. This sharing is done basis on the bidding 
approach, and the network performance between the 
SU using the spectrum has been monitored. The com-
munication that exists between various SU is subject 
to Miss Detection, and hence the group formation has 
been done with the Winning SU in a particular PU’s. 
The communication between different clusters SU 
may subject to a member of losing, where the miss de-
tection probability of communication is higher.
The miss detection and false alarm probability is mit-
igated with the best selection of SU, and the coalition 
game theory approach works on with the CSS of SU 
to allocate the spectrum, this mechanism proposes 
an energy efficient in CR networks and the spectrum 
access by SU is done with the idle spectrum in PU 
in a secured manner without causing interference 
between them [1]. The Spectrum sensing among the 
cluster approach between SU is done with a Greedy 

Figure 1
Proposed Model for Winning SU group formation

based bidding where the SU compete with their bid-
ding to access the PU idle spectrum. Hence the bid-
ding process is applied with the CSS and the winner 
SU is determined based on the authenticated agents 
in the PU [17]. The spectrum access also follows a 
rule of incentive based approaches from the bidding, 
where the non-winner SU to access the spectrum is 
provided with their rewards back to them for their 
bidding cost in the CSS paradigm [22]. The CSS 
paradigm uses an Effective mechanism to apply the 
Q-learning and Greedy bidding mechanism to en-
hance energy optimization and the security param-
eters [7]. The Physical communication between SU 
and PU often susceptible to various attacks, the main 
attack which affects the secure communication at the 
cluster level is eavesdropping attack; it creates inter-
ference in PU’s [13]. To mitigate this attack a Q-learn-
ing approach has been proposed that works on the SU 
cluster and the Q-learning algorithm is an action se-
lection policy and agent based algorithm, that handles 
the rewards for the SU in the current state of being 
either the spectrum is allocated or not allocated. The 
state with the corresponding reward for the SU in the 
cluster is formed with the Q-learning approach [36]. 
Eavesdropping is one of the most dangerous attacks 
that happen in the physical communication paradigm 
in the physical communications segment and it max-
imizes the interference within the system [37]. The 
coalition game and Q-learning ensure a higher level 
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Figure 1 depicts the proposed model of selecting the 
winning SU, and a group has been formed with 
these winners. The Primary User 1 connects with the 
SU1 and SU5 for accumulating the usage of 
spectrum access. The PU2 has its spectrum shared 
with the SU2 and SU3. This sharing is done basis on 
the bidding approach, and the network performance 
between the SU using the spectrum has been 
monitored. The communication that exists between 
various SU is subject to Miss Detection, and hence 
the group formation has been done with the 
Winning SU in a particular PU's. The 
communication between different clusters SU may 
subject to a member of losing, where the miss 
detection probability of communication is higher. 

The miss detection and false alarm probability is 
mitigated with the best selection of SU, and the 
coalition game theory approach works on with the 

CSS of SU to allocate the spectrum, this 
mechanism proposes an energy efficient in CR 
networks and the spectrum access by SU is 
done with the idle spectrum in PU in a secured 
manner without causing interference between 
them [1]. The Spectrum sensing among the 
cluster approach between SU is done with a 
Greedy based bidding where the SU compete 
with their bidding to access the PU idle 
spectrum. Hence the bidding process is applied 
with the CSS and the winner SU is determined 
based on the authenticated agents in the PU 
[17]. The spectrum access also follows a rule of 
incentive based approaches from the bidding, 
where the non-winner SU to access the 
spectrum is provided with their rewards back 
to them for their bidding cost in the CSS 
paradigm [22]. The CSS paradigm uses an 
Effective mechanism to apply the Q-learning 
and Greedy bidding mechanism to enhance 
energy optimization and the security 
parameters [7]. The Physical communication 
between SU and PU often susceptible to 
various attacks, the main attack which affects 
the secure communication at the cluster level is 
eavesdropping attack; it creates interference in 
PU's [13]. To mitigate this attack a Q-learning 
approach has been proposed that works on the 
SU cluster and the Q-learning algorithm is an 
action selection policy and agent based 
algorithm, that handles the rewards for the SU 
in the current state of being either the spectrum 
is allocated or not allocated. The state with the 
corresponding reward for the SU in the cluster 
is formed with the Q-learning approach [36].  

Eavesdropping is one of the most dangerous 
attacks that happen in the physical 
communication paradigm in the physical 
communications segment and it maximizes the 
interference within the system [37]. The 
coalition game and Q-learning ensure a higher 
level of security and cooperative 
communication is performed in the Physical 
layer level communication [11]. The channel 
and increased noise rate is also a parameter for 
the implementation strategy with increased 
energy conservation [34]. Figure 2 showcase 
the eavesdropping scenario with the 
transmission matrix for data transmission in a 
different scenario with the Eavesdropping 
scenario, where the source and destination 
communication happens with PU and SUs. The 
transmission parameter has been formulated 
with the matrix, during the transmission phase, 
the eavesdropping may occur to acquire the 
transformation parameters information. The 
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of security and cooperative communication is per-
formed in the Physical layer level communication 
[11]. The channel and increased noise rate is also a 
parameter for the implementation strategy with in-
creased energy conservation [34]. Figure 2 showcase 
the eavesdropping scenario with the transmission 
matrix for data transmission in a different scenario 
with the Eavesdropping scenario, where the source 
and destination communication happens with PU 
and SUs. The transmission parameter has been for-
mulated with the matrix, during the transmission 
phase, the eavesdropping may occur to acquire the 
transformation parameters information. The direct 
and indirect transmission may acquire within the 
S1 to Sn. The Eavesdropping is more likely to occur 
within the indirect transmission.

Figure 2
Eavesdropping Scenario

The spectrum access from SU is enhanced with Co-
alition game formulation and Q-learning approach 
that performs the energy enhancement and mitigates 
the Eavesdropping attack along with the identifica-
tion of the miss detection and false alarm during the 
communication.
The proposed method is focused with single PU and 
multiple SU to monitor the network efficiency and 
SU selfishness to acquire the spectrum in the clus-
ter is measured with the energy enhancement, and 
the tradeoff between various security parameters are 
shown with the simulation experiment.
Coalition Game formation is used to enhance the en-
ergy conservation in CR networks and also the attack 
mitigation is done at the extreme level.
The paper is organized as follows in section 2 presents 
related works, section3 highlights the system model 
in that proposed model for game theory formulation 
and Q-learning approach for enhancing the energy 
and security in eavesdropping is discussed. Section 
4 deals with the simulation results and discussion to-
wards the proposed model, and section 5 focuses the 
conclusion with future work. 

2. Related Works
Cognitive radio networks are among those wireless 
networks, it resolves the spectrum scarcity problem 
with dynamic spectrum access and to avoid the inter-
ferences happening between cognitive users. The two 
main challenges in CR networks are energy efficien-
cy and secure transmission without attacks in the 
network. The CR networks are different from other 
intelligent networks and technologies based on their 
actions and data flow. It is an adaptable software pro-
cess, providing access to the transmission parame-
ters and the sensors. The CR network devices provide 
control and feedback mechanism. The CR networks 
are further classified into spectrum sensing and full 
radio based on the transmission and reception pa-
rameters [20].
The spectrum management process is categorized 
into four cadres such as spectrum sensing, spectrum 
decision, spectrum sharing, and spectrum mobility 
[12]. Spectrum sensing is the major challenging part 
of the CR network, where the spectrum allocation 
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The contribution of the work includes 

i. The CR network performs a SU group 
formation that has to win SU in a cluster to 
enhance the spectrum utilization with the 
usage of Greedy Bidding 

ii. The group reformation within the SU cluster 
to identify the miss detection and false alarm 
probability has been done after the winner 
determination from Greedy Bidding. The 
reformation supports a more enhanced way of 
spectrum assignment, and it may improve 
spectrum management and secured 
communication. 

iii. The spectrum access from SU is enhanced 
with Coalition game formulation and Q-
learning approach that performs the energy 
enhancement and mitigates the 
Eavesdropping attack along with the 
identification of the miss detection and false 
alarm during the communication. 

iv. The proposed method is focused with single 
PU and multiple SU to monitor the network 
efficiency and SU selfishness to acquire the 
spectrum in the cluster is measured with the 
energy enhancement, and the tradeoff 
between various security parameters are 
shown with the simulation experiment. 

v. Coalition Game formation is used to enhance 
the energy conservation in CR networks and 
also the attack mitigation is done at the 
extreme level. 

The paper is organized as follows in section 2 
presents related works, section3 highlights the 
system model in that proposed model for game 
theory formulation and Q-learning approach 
for enhancing the energy and security in 
eavesdropping is discussed. Section 4 deals 
with the simulation results and discussion 
towards the proposed model, and section 5 
focuses the conclusion with future work.  

 

22..  RReellaatteedd  WWoorrkkss  
Cognitive radio networks are among those 
wireless networks, it resolves the spectrum 
scarcity problem with dynamic spectrum 
access and to avoid the interferences 
happening between cognitive users. The two 
main challenges in CR networks are energy 
efficiency and secure transmission without 
attacks in the network. The CR networks are 
different from other intelligent networks and 
technologies based on their actions and data 
flow. It is an adaptable software process, 
providing access to the transmission 
parameters and the sensors. The CR network 
devices provide control and feedback 
mechanism. The CR networks are further 
classified into spectrum sensing and full radio 
based on the transmission and reception 
parameters [20]. 

The spectrum management process is 
categorized into four cadres such as spectrum 
sensing, spectrum decision, spectrum sharing, 
and spectrum mobility [12]. Spectrum sensing 
is the major challenging part of the CR 
network, where the spectrum allocation relies 
on monitoring the unused portion of the 
spectrum, to detect available spectrum bands 
and detect the spectrum holes.  The spectrum 
decision is applied to the CR user to allocate 
the spectrum based on the channel policy. The 
spectrum sharing avoids the multiple users 
allocating the spectrum and accessing the same 
band or the same spectrum [15]. The spectrum 
mobility, if a PU needs a particular portion of 
the spectrum that is in use, it may be allotted 
with a vacant portion [23]. The above 
functionalities necessitate significant 
interactions that spectrum management 
support cross-layered approach in CR 
networks. 

The cooperative spectrum sensing, the SU 
sense the channel in a collaborative manner 
which may enhance the network to be aware of 

The contribution of the work includes
The CR network performs a SU group formation that 
has to win SU in a cluster to enhance the spectrum 
utilization with the usage of Greedy Bidding
The group reformation within the SU cluster to iden-
tify the miss detection and false alarm probability 
has been done after the winner determination from 
Greedy Bidding. The reformation supports a more 
enhanced way of spectrum assignment, and it may 
improve spectrum management and secured commu-
nication.
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relies on monitoring the unused portion of the spec-
trum, to detect available spectrum bands and detect 
the spectrum holes.  The spectrum decision is applied 
to the CR user to allocate the spectrum based on the 
channel policy. The spectrum sharing avoids the mul-
tiple users allocating the spectrum and accessing the 
same band or the same spectrum [15]. The spectrum 
mobility, if a PU needs a particular portion of the spec-
trum that is in use, it may be allotted with a vacant 
portion [23]. The above functionalities necessitate 
significant interactions that spectrum management 
support cross-layered approach in CR networks.
The cooperative spectrum sensing, the SU sense the 
channel in a collaborative manner which may en-
hance the network to be aware of multipath fading, 
shadowing and penetration loss. The cooperative 
sensing mitigates the interference between Cogni-
tive users. Cooperative sensing enhances energy con-
sumption, reduces throughput, and delay in the vehic-
ular network [8]. The SU signal has been reported to 
the fusion centre, and each SU reports a different Sig-
nal to Noise Ratio (SNR) for the primary signal. The 
energy efficiency has been improved in sensing using 
optimization programming and improves the sensing 
time using optimization algorithms [25].
A hybrid approach has been implemented on cooper-
ative spectrum sensing, and in this, a collaboration of 
Energy detection and cyclostationary feature detec-
tion with low complexity and high-performance de-
tection has been studied. The individual CR node will 
decide their energy detector due to their SNR perfor-
mance in it. A linear classifier has been proposed with 
the fusion centre it collects the information about the 
energy monitoring and information sharing in the 
detected CR nodes [9]. A CR network is an efficient 
method for spectrum management resources. The 
spectrum management is performed, and spectrum 
sensing is restricted with multipath effect and shad-
ow fading due to low probability detection [10]. The 
proposed method has been considered for five CR 
nodes. The false alarm and detection probability are 
being considered here with two merging rules OR and 
AND rule [42]. The detection probability improves 
the spectrum efficiency in a profound manner.
The spectrum sensing does the interference to be 
avoided during the spectrum utilization for the pri-
mary user. The detection may be identified with 
multipath fading, uncertainty issues to mitigate the 

impact detection performance may be done by un-
certainty issues with spatial diversity. The coopera-
tive gain with sensing can be devoted to performance 
degradation [16, 44]. The cooperation gain can be 
achieved in the control channel and data fusion with 
the overhead. Wang Haijun et al. proposed that the 
Cognitive radio network is an efficient wireless com-
munication to destroy the inefficiency of spectrum 
usage. The CR networks focus mainly on the ability 
to detect the spectrum hole. The low SNR ratio with 
AND-model, OR-model, counting model, double 
threshold model has been established in analyzing the 
sensing techniques [46, 41].
A cluster-based approach has been implemented at 
the fusion centre since it handles a large amount of 
data and fuzzy-based C-means clustering and it has 
been decided at energy-based cooperative spectrum 
sensing has been analyzed. The projection of linear 
based problems at the data set patterns has been pro-
posed. The Fuzzy C means clustering approach has 
been made by clustering has a multiple Pus [4]. The 
proposed technique that the tradeoff between util-
ity and energy conservation is discussed. The ener-
gy-efficiency problem is very important in the field 
of CR network, where the utility is maximized, and 
the energy consumption is minimized in such a CR 
network [27]. An improved particle swarm optimiza-
tion algorithm makes the optimization problem PSO 
employs a co-evolutionary methodology, and then 
divide-and-conquer strategy provides an energy effi-
cient feasible solution.
The wireless network is a trend of green communica-
tion for next-generation wireless networks. The opti-
mum in this approach is the selection of energy-effi-
cient throughput as a metric for optimizing sensing 
time and sensors in a deployment [18]. An iterative 
algorithm has been proposed to obtain the optimality 
with these two parameters. The low complexity algo-
rithm has been an exhaustive search method when 
compared to the easy way of complexion. Modelled 
a Distributed Dynamic Load Balanced Clustering 
(DDLBC) algorithm. Using this algorithm, a cluster 
has been formed, and each member in the cluster cal-
culates the cooperative gain, residual energy, distance 
and sensing cost from the neighbour cluster and per-
forms an optimal cluster. The cluster head has been 
elected by the cluster member, and through cooper-
ative gain and residual energy the network energy 
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consumption enhances channel sensing [19]. In this 
algorithm, a Markov process model has been formed 
to reduce the energy consumption in a network. 
Load-balanced clustering technique [21, 33] enhanc-
es energy-efficiency and security in ad hoc and cogni-
tive networks.  The cluster formation makes the en-
ergy-efficiency and accuracy of the channel increased 
using the proposed algorithm [49].
The spectrum sensing and sharing is a primary chal-
lenging task in the CR networks. Various cryptograph-
ic algorithms are applied in the security aspects of CR 
networks in the physical layer with private/public 
key management and key transmission security in the 
stack [43]. Security threats may be given from passive 
eavesdropping nodes that interrupt communications 
with the authenticated nodes. The CR network has 
secondary networks, which allocate resources with 
the strategy proposed in the sensing game to estimate 
the optimal solution [38]. The secrecy enhancement 
might develop the optimal solution with the resourc-
es, and their maximizing has the CR networks in co-
operative jamming to power control and analyze the 
Dynamic Spectrum Access (DSA). The game players 
with the uplink of cellular CR networks. The exis-
tence of NASH equilibrium in the power control game 
proposes a strategy with the power control, leads to 
significantly lower power consumption and a con-
vergence secrecy rate by cooperative gaming [6]. The 
Chaotic shift keying scheme is proposed to attend 
the performance of the Rayleigh fading channel. The 
game theory has a cooperation scheme that has phys-
ical layer security that has the primary and secondary 
transmission of a CR network. The PU leases its own 
spectrum for the presence of the EavesDropper (ED). 
The secondary transmitter is a trusted delay with the 
primary transmitter with a decode and forward fash-
ion to predict the jamming attack. The maximization 
of the primary secrecy rate and the secondary secre-
cy rate has been analyzed with the Stackelberg game 
modelling [3].
The cooperative spectrum sensing in a CR network 
in which the SU cooperate themselves to detect the 
Primary user and the possible multiple bands that 
have been analyzed. The deep cooperative sensing 
has been proposed with the Convolution neural net-
work to analyze the individual sensing in the training 
samples [24]. The spectral and spatial correlation of 
individual sensing with the quantization to propose a 

DCS approach within the network. The game-based 
analysis has been done here with sensing analysis. 
The Spectrum sensing is offered a Initial set up of 
sensing, where the malicious secondary users may 
enter the network as advertising themselves as the 
authenticated users. This intrusion may intrude the 
final outcome also the author proposes a reinforce-
ment learning model to substantiate the working 
principles of CR networks to analyse the false sens-
ing data. This method proposes a detailed analysis on 
the adjacent nodes estimation for the agent to merge 
the high reputation nodes [28]. The former models 
proposes various game applications but the Proposed 
solution takes the Q Learning mechanism and Co-
alition game Modelling to support the security at a 
greater level with the coalition game modelling
The proposed model forms a cluster with the group for-
mation in the winning SU to frame a reduction mecha-
nism for miss detection and false alarm probability to 
improvise the communication opportunities [30]. The 
group spectrum access mechanism is supported by 
the coalition game formulation and Q-learning-based 
approach to enhancing the energy with eavesdropping 
error reduction during the communication paradigm. 
The proposed model is compared with the Stackelberg 
and Bayesian game approach[39].

3. System Model
Consider a CR network consists of M number of PUs 
that has been labelled from 1 to M and SU are labelled 
within 1 to N SU’s. Let R = {1, ... ., M} and S= {1, ... ., N}  
specifies the associated set of primary users and sec-
ondary users. Each PU is considered to be of the li-
censed channel, and more such licensed channel PU’s 
are available for the shared SU to utilize the idle spec-
trum from PU. In such cases, the SU is assumed to 
use the idle channel in the PU. The SU has the trans-
mission parameters in terms of underlay, overlay and 
interweave. Depending on the spectrum assignment, 
the SU fixes the PU channel usage, in this paper, the 
sufficient drive for SU has been considered with the 
interweave condition when the PU is idle. The miss 
detection probability hit ratio is measured well using 
the upper bound limit in the CR network for cluster 
formation, where the limited number of SU may oc-
cupy in a particular cluster is exceeding the limit for 
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doing the sensing. The upper bound is a threshold 
limit assigned for each cluster formation with various 
secondary users. 
Assume the miss detection probability is assumed of 
in condition limit of (0 ≤ ρ ≤ 1), where ρ assumes to 
be miss detection probability parameter estimation. 
The SU can obtain the transmission parameters. A 
Rayleigh fading environment is considered for the 
assumption of the SU parameters, where it subject 
to identify the signal by SU in the distance node with 
the transmission parameters. The Rayleigh fading 
environment is assumed to be of the miss detection 
and false alarm probability with p missi having miss 
detection as ‘i’, and  p falsei towards the PU as shown 
in Eq. (1). The assumption is noted as the primary 
model, where Probability estimation is done with 
the 1-ex-y(ex-ex!)
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uplink of cellular CR networks. The existence of 
NASH equilibrium in the power control game 
proposes a strategy with the power control, leads to 
significantly lower power consumption and a 
convergence secrecy rate by cooperative gaming [6]. 
The Chaotic shift keying scheme is proposed to 
attend the performance of the Rayleigh fading 
channel. The game theory has a cooperation scheme 
that has physical layer security that has the primary 
and secondary transmission of a CR network. The 
PU leases its own spectrum for the presence of the 
EavesDropper (ED). The secondary transmitter is a 
trusted delay with the primary transmitter with a 
decode and forward fashion to predict the jamming 
attack. The maximization of the primary secrecy rate 
and the secondary secrecy rate has been analyzed 
with the Stackelberg game modelling [3]. 

The cooperative spectrum sensing in a CR network 
in which the SU cooperate themselves to detect the 
Primary user and the possible multiple bands that 
have been analyzed. The deep cooperative sensing 
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3. System Model 
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In the above notation, the miss detection is 
obtained with the Rayleigh fading 
environment, where  𝑥𝑥  deals with the 
bandwidth in terms of time and 𝜔𝜔 deals with 
the energy threshold.𝛾𝛾� represents the average 

(2)

In the above notation, the miss detection is obtained 
with the Rayleigh fading environment, where x deals 
with the bandwidth in terms of time and ω deals with 
the energy threshold. γi represents the average SNR 
with respect to the received signal in terms of the PU 
and SU. The received signal strength with a thresh-
old is measured with γi is measured with the 

 

 

SNR with respect to the received signal in terms of 
the PU and SU. The received signal strength with a 
threshold is measured with 𝛾𝛾�is measured with the 
𝛾𝛾� = ����

�  , where 𝑇𝑇�𝐿𝐿� is the Gaussian product of the 
transmission power and the path loss between the 
PU and SU and the 𝜎𝜎 is the Gaussian noise variance. 
The y-2 depicts the range of threshold applied with 
SU in terms of y, and the SNR is assumed to be 
within this threshold. The 𝐿𝐿� = 𝑚𝑚/𝑑𝑑��   path loss 
probability measured with the distance between PU 
and SU and the path exponent is monitored with the 
‘e’ and ‘m’ is the path loss component. The 
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function in terms of measuring the distance with PU 
and SU, and the false detection is measured with the 
PU and  SU distance as shown in Eq. (2). 

3.1 CSS to Enhance Communication with Winner 
SU  

 The SU has a miss detection probability to PU, and 
the upper bound limit in the CR network for cluster 
formation, where the limited number of SU may 
occupy in a particular cluster is exceeding the limit 
for doing the sensing. The upper bound is a 
threshold limit assigned for each cluster formation 
with various secondary users. This cluster group 
forms a CSS and the upper bound is specified as ‘U’ 
in SU. This group formation includes a candidate 
discovery with a similar transmission parameter 
with the miss detection is set in the upper bound 
limit. The Set of SU having 'n' candidates in the 
group is assumed to be off in the transmission range 
‘r’. 𝑟𝑟 = √𝑚𝑚� P/ 𝛾𝛾�𝜎𝜎 , where P is measured as the 
transmission power for the SU, and the sensing 
result is achieved to be of the SNR with '0' decibel. 
The sensing result and the control channel is 
assumed to be of the consideration with the SU 
group formation. 

 The miss detection probability is analyzed with the 
SU cluster head formation as the winning SU that 
metrics the ‘S’ as the cluster head and it follows 𝑆𝑆 𝑆
2n. The AND based fusion rule has been applied to 
the cluster head, and the application is performed 
with the winner SU. The miss detection probability 
for PU and the group 'S' formation with the false 
alarm to PU. The false alarm and miss detection is 
predicted with the below notations as shown in Eqs. 
(3)-(4) 

𝐾𝐾����� = ∏ [𝑃𝑃������1 − 𝑒𝑒���+ (1 −�𝑆� 𝑃𝑃�����)𝑒𝑒��]--- (3) 

𝐾𝐾������ = 1 −∏ [(1 − 𝑃𝑃������𝑆� )�1 − 𝑒𝑒��� + 𝑃𝑃�����𝑒𝑒�𝐻𝐻--
(4), 

where the miss detection with the PU is predicted 
with  𝐾𝐾�����. 𝑒𝑒�𝐻𝐻 is the probability for detecting the 

error in the channel allocation in the cluster 
with head 'H' and the Rayleigh fading is 
detected with the binary phase-shift keying. 
The false alarm is predicted with the  𝐾𝐾������ , 
where the 𝑒𝑒�𝐻𝐻 is the probability for detecting 
the error in the channel allocation in a cluster 
with head 'H' as shown in Eq. (5). 
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where 𝛾𝛾�𝐻𝐻 shows, the average SNR is allotted 
with the head and the member of SU. The 
cluster grouping assumes the decrease in 𝐾𝐾����� 
and 𝐾𝐾������. The group formation among SU is 1 
and 4 decreases the miss detection probability. 
The CSS responses that the PU is assumed to be 
off in the remaining SU is losing. The SUs 1,2,3 
and 4 are winning, and the SU 5 is assumed to 
be in the losing state of the CSS. The sensing 
report is performed in the fusion centre and 
stored for the future sensing mechanism.  

 The maximization of winning SUs and the 
server establishes the group formation in the 
SUs in an optimized control with 

max∑ (�𝑆� 𝑃𝑃����� ≤ 𝑥𝑥)(1 − 𝑃𝑃�����)                      (6) 

also the∑ (�𝑆� 𝑆𝑆𝑒𝑒��𝐻𝐻 = 1),   ∀, 𝑖𝑖 𝑆N 

∑ 𝑆𝑆�𝑆� 𝑒𝑒���� ≤ 𝑎𝑎�,�∀𝑗𝑗, 𝑘𝑘 𝑆 𝑘𝑘.                                (7) 

The objective function that maximizes the 
number of winning SU and the communication 
is established with the indicator in the idle 
spectrum state. The Eq. (6) and Eq. (7) depicts 
the model of maximizing the winning SU using 
the winner Group formation 'S'. The indicator 
is measured with the idle state using the 
indicator function with the 𝑃𝑃����� ≤ 𝑥𝑥 . The 
condition if winning is obtained in the SU is 
denoted as (𝑃𝑃����� ≤ 𝑥𝑥) = 0, and the winning 
SU is obtained with the (𝑃𝑃����� ≤ 𝑥𝑥) = 1 . The 
head is assumed to be ‘1’ and ‘0’ and the group 
level detection is done with the head value in 
the probability of obtaining the miss detection. 
The Eq. (8) shows the false probability 
condition that prevails in the CR winner SU 
group 'S', and the Eq. (9) shows the miss 
detection probability that prevails in the CR 
winner SU group ‘S’. The below estimation 
identifies the conditional formulation. 

𝑃𝑃����� = ∏ �1 − (1 − 𝑃𝑃�����)∑ 𝑆𝑆�𝑆� 𝑒𝑒������𝑆�     (8) 

𝑃𝑃����� = 1 −∏ �(1 − 𝑃𝑃�����)∑ 𝑆𝑆�𝑆� 𝑒𝑒������𝑆� .    (9) 

The group formation possibility between the 
SU is assumed to be of the same 
group ∑ (�𝑆� 𝑆𝑆𝑒𝑒��𝐻𝐻 = 1)  and the non-linear 

, 
 where TiLi is the Gaussian product of the transmis-
sion power and the path loss between the PU and SU 
and the σ is the Gaussian noise variance. The y-2 
depicts the range of threshold applied with SU in 
terms of y, and the SNR is assumed to be within this 
threshold. The Li = m/d

e
i  path loss probability mea-

sured with the distance between PU and SU and the 
path exponent is monitored with the ‘e’ and ‘m’ is the 
path loss component. The 
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 is measured 
with the probable gamma function in terms of mea-
suring the distance with PU and SU, and the false de-
tection is measured with the PU and  SU distance as 
shown in Eq. (2).

3.1. CSS to Enhance Communication 
with Winner SU 
The SU has a miss detection probability to PU, and 
the upper bound limit in the CR network for cluster 
formation, where the limited number of SU may oc-
cupy in a particular cluster is exceeding the limit for 
doing the sensing. The upper bound is a threshold 
limit assigned for each cluster formation with various 
secondary users. This cluster group forms a CSS and 
the upper bound is specified as ‘U’ in SU. This group 
formation includes a candidate discovery with a sim-
ilar transmission parameter with the miss detection 
is set in the upper bound limit. The Set of SU having 
‘n’ candidates in the group is assumed to be off in the 
transmission range ‘r’. 
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function in terms of measuring the distance with PU 
and SU, and the false detection is measured with the 
PU and  SU distance as shown in Eq. (2). 

3.1 CSS to Enhance Communication with Winner 
SU  

 The SU has a miss detection probability to PU, and 
the upper bound limit in the CR network for cluster 
formation, where the limited number of SU may 
occupy in a particular cluster is exceeding the limit 
for doing the sensing. The upper bound is a 
threshold limit assigned for each cluster formation 
with various secondary users. This cluster group 
forms a CSS and the upper bound is specified as ‘U’ 
in SU. This group formation includes a candidate 
discovery with a similar transmission parameter 
with the miss detection is set in the upper bound 
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group is assumed to be off in the transmission range 
‘r’. 𝑟𝑟 = √𝑚𝑚� P/ 𝛾𝛾�𝜎𝜎 , where P is measured as the 
transmission power for the SU, and the sensing 
result is achieved to be of the SNR with '0' decibel. 
The sensing result and the control channel is 
assumed to be of the consideration with the SU 
group formation. 

 The miss detection probability is analyzed with the 
SU cluster head formation as the winning SU that 
metrics the ‘S’ as the cluster head and it follows 𝑆𝑆 𝑆
2n. The AND based fusion rule has been applied to 
the cluster head, and the application is performed 
with the winner SU. The miss detection probability 
for PU and the group 'S' formation with the false 
alarm to PU. The false alarm and miss detection is 
predicted with the below notations as shown in Eqs. 
(3)-(4) 

𝐾𝐾����� = ∏ [𝑃𝑃������1 − 𝑒𝑒���+ (1 −�𝑆� 𝑃𝑃�����)𝑒𝑒��]--- (3) 

𝐾𝐾������ = 1 −∏ [(1 − 𝑃𝑃������𝑆� )�1 − 𝑒𝑒��� + 𝑃𝑃�����𝑒𝑒�𝐻𝐻--
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with  𝐾𝐾�����. 𝑒𝑒�𝐻𝐻 is the probability for detecting the 

error in the channel allocation in the cluster 
with head 'H' and the Rayleigh fading is 
detected with the binary phase-shift keying. 
The false alarm is predicted with the  𝐾𝐾������ , 
where the 𝑒𝑒�𝐻𝐻 is the probability for detecting 
the error in the channel allocation in a cluster 
with head 'H' as shown in Eq. (5). 

𝑒𝑒�𝐻𝐻 = �
����� ���

�����
�
,                                      (5) 

where 𝛾𝛾�𝐻𝐻 shows, the average SNR is allotted 
with the head and the member of SU. The 
cluster grouping assumes the decrease in 𝐾𝐾����� 
and 𝐾𝐾������. The group formation among SU is 1 
and 4 decreases the miss detection probability. 
The CSS responses that the PU is assumed to be 
off in the remaining SU is losing. The SUs 1,2,3 
and 4 are winning, and the SU 5 is assumed to 
be in the losing state of the CSS. The sensing 
report is performed in the fusion centre and 
stored for the future sensing mechanism.  

 The maximization of winning SUs and the 
server establishes the group formation in the 
SUs in an optimized control with 

max∑ (�𝑆� 𝑃𝑃����� ≤ 𝑥𝑥)(1 − 𝑃𝑃�����)                      (6) 

also the∑ (�𝑆� 𝑆𝑆𝑒𝑒��𝐻𝐻 = 1),   ∀, 𝑖𝑖 𝑆N 

∑ 𝑆𝑆�𝑆� 𝑒𝑒���� ≤ 𝑎𝑎�,�∀𝑗𝑗, 𝑘𝑘 𝑆 𝑘𝑘.                                (7) 

The objective function that maximizes the 
number of winning SU and the communication 
is established with the indicator in the idle 
spectrum state. The Eq. (6) and Eq. (7) depicts 
the model of maximizing the winning SU using 
the winner Group formation 'S'. The indicator 
is measured with the idle state using the 
indicator function with the 𝑃𝑃����� ≤ 𝑥𝑥 . The 
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head is assumed to be ‘1’ and ‘0’ and the group 
level detection is done with the head value in 
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The Eq. (8) shows the false probability 
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probability measured with the distance between PU 
and SU and the path exponent is monitored with the 
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function in terms of measuring the distance with PU 
and SU, and the false detection is measured with the 
PU and  SU distance as shown in Eq. (2). 

3.1 CSS to Enhance Communication with Winner 
SU  

 The SU has a miss detection probability to PU, and 
the upper bound limit in the CR network for cluster 
formation, where the limited number of SU may 
occupy in a particular cluster is exceeding the limit 
for doing the sensing. The upper bound is a 
threshold limit assigned for each cluster formation 
with various secondary users. This cluster group 
forms a CSS and the upper bound is specified as ‘U’ 
in SU. This group formation includes a candidate 
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with the miss detection is set in the upper bound 
limit. The Set of SU having 'n' candidates in the 
group is assumed to be off in the transmission range 
‘r’. 𝑟𝑟 = √𝑚𝑚� P/ 𝛾𝛾�𝜎𝜎 , where P is measured as the 
transmission power for the SU, and the sensing 
result is achieved to be of the SNR with '0' decibel. 
The sensing result and the control channel is 
assumed to be of the consideration with the SU 
group formation. 

 The miss detection probability is analyzed with the 
SU cluster head formation as the winning SU that 
metrics the ‘S’ as the cluster head and it follows 𝑆𝑆 𝑆
2n. The AND based fusion rule has been applied to 
the cluster head, and the application is performed 
with the winner SU. The miss detection probability 
for PU and the group 'S' formation with the false 
alarm to PU. The false alarm and miss detection is 
predicted with the below notations as shown in Eqs. 
(3)-(4) 
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(4), 

where the miss detection with the PU is predicted 
with  𝐾𝐾�����. 𝑒𝑒�𝐻𝐻 is the probability for detecting the 

error in the channel allocation in the cluster 
with head 'H' and the Rayleigh fading is 
detected with the binary phase-shift keying. 
The false alarm is predicted with the  𝐾𝐾������ , 
where the 𝑒𝑒�𝐻𝐻 is the probability for detecting 
the error in the channel allocation in a cluster 
with head 'H' as shown in Eq. (5). 
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where 𝛾𝛾�𝐻𝐻 shows, the average SNR is allotted 
with the head and the member of SU. The 
cluster grouping assumes the decrease in 𝐾𝐾����� 
and 𝐾𝐾������. The group formation among SU is 1 
and 4 decreases the miss detection probability. 
The CSS responses that the PU is assumed to be 
off in the remaining SU is losing. The SUs 1,2,3 
and 4 are winning, and the SU 5 is assumed to 
be in the losing state of the CSS. The sensing 
report is performed in the fusion centre and 
stored for the future sensing mechanism.  

 The maximization of winning SUs and the 
server establishes the group formation in the 
SUs in an optimized control with 

max∑ (�𝑆� 𝑃𝑃����� ≤ 𝑥𝑥)(1 − 𝑃𝑃�����)                      (6) 

also the∑ (�𝑆� 𝑆𝑆𝑒𝑒��𝐻𝐻 = 1),   ∀, 𝑖𝑖 𝑆N 

∑ 𝑆𝑆�𝑆� 𝑒𝑒���� ≤ 𝑎𝑎�,�∀𝑗𝑗, 𝑘𝑘 𝑆 𝑘𝑘.                                (7) 

The objective function that maximizes the 
number of winning SU and the communication 
is established with the indicator in the idle 
spectrum state. The Eq. (6) and Eq. (7) depicts 
the model of maximizing the winning SU using 
the winner Group formation 'S'. The indicator 
is measured with the idle state using the 
indicator function with the 𝑃𝑃����� ≤ 𝑥𝑥 . The 
condition if winning is obtained in the SU is 
denoted as (𝑃𝑃����� ≤ 𝑥𝑥) = 0, and the winning 
SU is obtained with the (𝑃𝑃����� ≤ 𝑥𝑥) = 1 . The 
head is assumed to be ‘1’ and ‘0’ and the group 
level detection is done with the head value in 
the probability of obtaining the miss detection. 
The Eq. (8) shows the false probability 
condition that prevails in the CR winner SU 
group 'S', and the Eq. (9) shows the miss 
detection probability that prevails in the CR 
winner SU group ‘S’. The below estimation 
identifies the conditional formulation. 
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The group formation possibility between the 
SU is assumed to be of the same 
group ∑ (�𝑆� 𝑆𝑆𝑒𝑒��𝐻𝐻 = 1)  and the non-linear 
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PU and  SU distance as shown in Eq. (2). 

3.1 CSS to Enhance Communication with Winner 
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 The SU has a miss detection probability to PU, and 
the upper bound limit in the CR network for cluster 
formation, where the limited number of SU may 
occupy in a particular cluster is exceeding the limit 
for doing the sensing. The upper bound is a 
threshold limit assigned for each cluster formation 
with various secondary users. This cluster group 
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‘r’. 𝑟𝑟 = √𝑚𝑚� P/ 𝛾𝛾�𝜎𝜎 , where P is measured as the 
transmission power for the SU, and the sensing 
result is achieved to be of the SNR with '0' decibel. 
The sensing result and the control channel is 
assumed to be of the consideration with the SU 
group formation. 

 The miss detection probability is analyzed with the 
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metrics the ‘S’ as the cluster head and it follows 𝑆𝑆 𝑆
2n. The AND based fusion rule has been applied to 
the cluster head, and the application is performed 
with the winner SU. The miss detection probability 
for PU and the group 'S' formation with the false 
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predicted with the below notations as shown in Eqs. 
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condition that prevails in the CR winner SU 
group 'S', and the Eq. (9) shows the miss 
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SU is obtained with the (𝑃𝑃����� ≤ 𝑥𝑥) = 1 . The 
head is assumed to be ‘1’ and ‘0’ and the group 
level detection is done with the head value in 
the probability of obtaining the miss detection. 
The Eq. (8) shows the false probability 
condition that prevails in the CR winner SU 
group 'S', and the Eq. (9) shows the miss 
detection probability that prevails in the CR 
winner SU group ‘S’. The below estimation 
identifies the conditional formulation. 

𝑃𝑃����� = ∏ �1 − (1 − 𝑃𝑃�����)∑ 𝑆𝑆�𝑆� 𝑒𝑒������𝑆�     (8) 

𝑃𝑃����� = 1 −∏ �(1 − 𝑃𝑃�����)∑ 𝑆𝑆�𝑆� 𝑒𝑒������𝑆� .    (9) 

The group formation possibility between the 
SU is assumed to be of the same 
group ∑ (�𝑆� 𝑆𝑆𝑒𝑒��𝐻𝐻 = 1)  and the non-linear 

(8)

 

 

SNR with respect to the received signal in terms of 
the PU and SU. The received signal strength with a 
threshold is measured with 𝛾𝛾�is measured with the 
𝛾𝛾� = ����

�  , where 𝑇𝑇�𝐿𝐿� is the Gaussian product of the 
transmission power and the path loss between the 
PU and SU and the 𝜎𝜎 is the Gaussian noise variance. 
The y-2 depicts the range of threshold applied with 
SU in terms of y, and the SNR is assumed to be 
within this threshold. The 𝐿𝐿� = 𝑚𝑚/𝑑𝑑��   path loss 
probability measured with the distance between PU 
and SU and the path exponent is monitored with the 
‘e’ and ‘m’ is the path loss component. The 

� (�,����)
�

���
���  is measured with the probable gamma 

function in terms of measuring the distance with PU 
and SU, and the false detection is measured with the 
PU and  SU distance as shown in Eq. (2). 

3.1 CSS to Enhance Communication with Winner 
SU  

 The SU has a miss detection probability to PU, and 
the upper bound limit in the CR network for cluster 
formation, where the limited number of SU may 
occupy in a particular cluster is exceeding the limit 
for doing the sensing. The upper bound is a 
threshold limit assigned for each cluster formation 
with various secondary users. This cluster group 
forms a CSS and the upper bound is specified as ‘U’ 
in SU. This group formation includes a candidate 
discovery with a similar transmission parameter 
with the miss detection is set in the upper bound 
limit. The Set of SU having 'n' candidates in the 
group is assumed to be off in the transmission range 
‘r’. 𝑟𝑟 = √𝑚𝑚� P/ 𝛾𝛾�𝜎𝜎 , where P is measured as the 
transmission power for the SU, and the sensing 
result is achieved to be of the SNR with '0' decibel. 
The sensing result and the control channel is 
assumed to be of the consideration with the SU 
group formation. 

 The miss detection probability is analyzed with the 
SU cluster head formation as the winning SU that 
metrics the ‘S’ as the cluster head and it follows 𝑆𝑆 𝑆
2n. The AND based fusion rule has been applied to 
the cluster head, and the application is performed 
with the winner SU. The miss detection probability 
for PU and the group 'S' formation with the false 
alarm to PU. The false alarm and miss detection is 
predicted with the below notations as shown in Eqs. 
(3)-(4) 

𝐾𝐾����� = ∏ [𝑃𝑃������1 − 𝑒𝑒���+ (1 −�𝑆� 𝑃𝑃�����)𝑒𝑒��]--- (3) 

𝐾𝐾������ = 1 −∏ [(1 − 𝑃𝑃������𝑆� )�1 − 𝑒𝑒��� + 𝑃𝑃�����𝑒𝑒�𝐻𝐻--
(4), 

where the miss detection with the PU is predicted 
with  𝐾𝐾�����. 𝑒𝑒�𝐻𝐻 is the probability for detecting the 

error in the channel allocation in the cluster 
with head 'H' and the Rayleigh fading is 
detected with the binary phase-shift keying. 
The false alarm is predicted with the  𝐾𝐾������ , 
where the 𝑒𝑒�𝐻𝐻 is the probability for detecting 
the error in the channel allocation in a cluster 
with head 'H' as shown in Eq. (5). 

𝑒𝑒�𝐻𝐻 = �
����� ���

�����
�
,                                      (5) 

where 𝛾𝛾�𝐻𝐻 shows, the average SNR is allotted 
with the head and the member of SU. The 
cluster grouping assumes the decrease in 𝐾𝐾����� 
and 𝐾𝐾������. The group formation among SU is 1 
and 4 decreases the miss detection probability. 
The CSS responses that the PU is assumed to be 
off in the remaining SU is losing. The SUs 1,2,3 
and 4 are winning, and the SU 5 is assumed to 
be in the losing state of the CSS. The sensing 
report is performed in the fusion centre and 
stored for the future sensing mechanism.  

 The maximization of winning SUs and the 
server establishes the group formation in the 
SUs in an optimized control with 

max∑ (�𝑆� 𝑃𝑃����� ≤ 𝑥𝑥)(1 − 𝑃𝑃�����)                      (6) 

∑ (�𝑆� 𝑆𝑆𝑒𝑒��𝐻𝐻 = 1),   ∀, 𝑖𝑖 𝑆N 

∑ 𝑆𝑆�𝑆� 𝑒𝑒���� ≤ 𝑎𝑎�,�∀𝑗𝑗, 𝑘𝑘 𝑆 𝑘𝑘.                                (7) 

The objective function that maximizes the 
number of winning SU and the communication 
is established with the indicator in the idle 
spectrum state. The Eq. (6) and Eq. (7) depicts 
the model of maximizing the winning SU using 
the winner Group formation 'S'. The indicator 
is measured with the idle state using the 
indicator function with the 𝑃𝑃����� ≤ 𝑥𝑥 . The 
condition if winning is obtained in the SU is 
denoted as (𝑃𝑃����� ≤ 𝑥𝑥) = 0, and the winning 
SU is obtained with the (𝑃𝑃����� ≤ 𝑥𝑥) = 1 . The 
head is assumed to be ‘1’ and ‘0’ and the group 
level detection is done with the head value in 
the probability of obtaining the miss detection. 
The Eq. (8) shows the false probability 
condition that prevails in the CR winner SU 
group 'S', and the Eq. (9) shows the miss 
detection probability that prevails in the CR 
winner SU group ‘S’. The below estimation 
identifies the conditional formulation. 

𝑃𝑃����� = ∏ �1 − (1 − 𝑃𝑃�����)∑ 𝑆𝑆�𝑆� 𝑒𝑒������𝑆�     (8) 

𝑃𝑃����� = 1 −∏ �(1 − 𝑃𝑃�����)∑ 𝑆𝑆�𝑆� 𝑒𝑒������𝑆� .    (9) 

The group formation possibility between the 
SU is assumed to be of the same 
group ∑ (�𝑆� 𝑆𝑆𝑒𝑒��𝐻𝐻 = 1)  and the non-linear 

(9)

The group formation possibility between the SU is as-
sumed to be of the same group 

 

 

SNR with respect to the received signal in terms of 
the PU and SU. The received signal strength with a 
threshold is measured with 𝛾𝛾�is measured with the 
𝛾𝛾� = ����

�  , where 𝑇𝑇�𝐿𝐿� is the Gaussian product of the 
transmission power and the path loss between the 
PU and SU and the 𝜎𝜎 is the Gaussian noise variance. 
The y-2 depicts the range of threshold applied with 
SU in terms of y, and the SNR is assumed to be 
within this threshold. The 𝐿𝐿� = 𝑚𝑚/𝑑𝑑��   path loss 
probability measured with the distance between PU 
and SU and the path exponent is monitored with the 
‘e’ and ‘m’ is the path loss component. The 
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���  is measured with the probable gamma 

function in terms of measuring the distance with PU 
and SU, and the false detection is measured with the 
PU and  SU distance as shown in Eq. (2). 

3.1 CSS to Enhance Communication with Winner 
SU  

 The SU has a miss detection probability to PU, and 
the upper bound limit in the CR network for cluster 
formation, where the limited number of SU may 
occupy in a particular cluster is exceeding the limit 
for doing the sensing. The upper bound is a 
threshold limit assigned for each cluster formation 
with various secondary users. This cluster group 
forms a CSS and the upper bound is specified as ‘U’ 
in SU. This group formation includes a candidate 
discovery with a similar transmission parameter 
with the miss detection is set in the upper bound 
limit. The Set of SU having 'n' candidates in the 
group is assumed to be off in the transmission range 
‘r’. 𝑟𝑟 = √𝑚𝑚� P/ 𝛾𝛾�𝜎𝜎 , where P is measured as the 
transmission power for the SU, and the sensing 
result is achieved to be of the SNR with '0' decibel. 
The sensing result and the control channel is 
assumed to be of the consideration with the SU 
group formation. 

 The miss detection probability is analyzed with the 
SU cluster head formation as the winning SU that 
metrics the ‘S’ as the cluster head and it follows 𝑆𝑆 𝑆
2n. The AND based fusion rule has been applied to 
the cluster head, and the application is performed 
with the winner SU. The miss detection probability 
for PU and the group 'S' formation with the false 
alarm to PU. The false alarm and miss detection is 
predicted with the below notations as shown in Eqs. 
(3)-(4) 

𝐾𝐾����� = ∏ [𝑃𝑃������1 − 𝑒𝑒���+ (1 −�𝑆� 𝑃𝑃�����)𝑒𝑒��]--- (3) 

𝐾𝐾������ = 1 −∏ [(1 − 𝑃𝑃������𝑆� )�1 − 𝑒𝑒��� + 𝑃𝑃�����𝑒𝑒�𝐻𝐻--
(4), 

where the miss detection with the PU is predicted 
with  𝐾𝐾�����. 𝑒𝑒�𝐻𝐻 is the probability for detecting the 

error in the channel allocation in the cluster 
with head 'H' and the Rayleigh fading is 
detected with the binary phase-shift keying. 
The false alarm is predicted with the  𝐾𝐾������ , 
where the 𝑒𝑒�𝐻𝐻 is the probability for detecting 
the error in the channel allocation in a cluster 
with head 'H' as shown in Eq. (5). 

𝑒𝑒�𝐻𝐻 = �
����� ���

�����
�
,                                      (5) 

where 𝛾𝛾�𝐻𝐻 shows, the average SNR is allotted 
with the head and the member of SU. The 
cluster grouping assumes the decrease in 𝐾𝐾����� 
and 𝐾𝐾������. The group formation among SU is 1 
and 4 decreases the miss detection probability. 
The CSS responses that the PU is assumed to be 
off in the remaining SU is losing. The SUs 1,2,3 
and 4 are winning, and the SU 5 is assumed to 
be in the losing state of the CSS. The sensing 
report is performed in the fusion centre and 
stored for the future sensing mechanism.  

 The maximization of winning SUs and the 
server establishes the group formation in the 
SUs in an optimized control with 

max∑ (�𝑆� 𝑃𝑃����� ≤ 𝑥𝑥)(1 − 𝑃𝑃�����)                      (6) 

∑ (�𝑆� 𝑆𝑆𝑒𝑒��𝐻𝐻 = 1),   ∀, 𝑖𝑖 𝑆N 

∑ 𝑆𝑆�𝑆� 𝑒𝑒���� ≤ 𝑎𝑎�,�∀𝑗𝑗, 𝑘𝑘 𝑆 𝑘𝑘.                                (7) 

The objective function that maximizes the 
number of winning SU and the communication 
is established with the indicator in the idle 
spectrum state. The Eq. (6) and Eq. (7) depicts 
the model of maximizing the winning SU using 
the winner Group formation 'S'. The indicator 
is measured with the idle state using the 
indicator function with the 𝑃𝑃����� ≤ 𝑥𝑥 . The 
condition if winning is obtained in the SU is 
denoted as (𝑃𝑃����� ≤ 𝑥𝑥) = 0, and the winning 
SU is obtained with the (𝑃𝑃����� ≤ 𝑥𝑥) = 1 . The 
head is assumed to be ‘1’ and ‘0’ and the group 
level detection is done with the head value in 
the probability of obtaining the miss detection. 
The Eq. (8) shows the false probability 
condition that prevails in the CR winner SU 
group 'S', and the Eq. (9) shows the miss 
detection probability that prevails in the CR 
winner SU group ‘S’. The below estimation 
identifies the conditional formulation. 

𝑃𝑃����� = ∏ �1 − (1 − 𝑃𝑃�����)∑ 𝑆𝑆�𝑆� 𝑒𝑒������𝑆�     (8) 

𝑃𝑃����� = 1 −∏ �(1 − 𝑃𝑃�����)∑ 𝑆𝑆�𝑆� 𝑒𝑒������𝑆� .    (9) 

The group formation possibility between the 
SU is assumed to be of the same 
group ∑ (�𝑆� 𝑆𝑆𝑒𝑒��𝐻𝐻 = 1)  and the non-linear  and 

the non-linear features is directed with the optimiza-
tion having the indicator function and the binary vari-
ables is followed in the relative case.

3.1.1. Algorithm 1:  Group Formation and 
Selection of  Winning SU 

1. initialize "i∈ N, Si= {i} 
2.

  

features is directed with the optimization having the 
indicator function and the binary variables is 
followed in the relative case. 

3.1.1 Algorithm 1:  Group Formation and Selection 
of  Winning SU  

1. initialize ∀𝑖𝑖 𝑖 𝑖𝑖, 𝑆𝑆i=�𝑖𝑖� 
2. ∀𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑆𝑆𝑖𝑖 𝑤𝑤𝑖𝑖𝑖𝑖𝑖 𝑆𝑆𝑖𝑖1,2,3,4 &5 

3. for all i 𝑖 𝑖𝑖𝑖𝑖𝑖𝑖 

4. if  M𝑆𝑆i≠ ∅ then 

5.  Optimization Oi(�𝑆𝑆i�,𝑀𝑀) 

6.  select PU with optimized condition 

7. else 

8.  PU is selected according to  the 𝑝𝑝����� 𝑖 𝑀𝑀 

9.  do the process repeatedly  

10. Winning SU =(�𝑆𝑆i�, 𝑖𝑖 𝑖 𝑖𝑖, M𝑆𝑆i≠ ∅) 

11. for all i 𝑖 𝑖𝑖𝑖𝑖𝑖𝑖 

12.  if  M𝑆𝑆i≠ ∅ then // Cooperative Spectrum Sensing 

13.  i collects the SU from cluster Sj from ∀𝑗𝑗 𝑖 𝑖𝑖 

14.  Ei = ∅ 

15.  for all [ j 𝑖 [𝑚𝑚 𝑖 𝑖𝑖� M𝑆𝑆i≠ ∅] do 

16.   if M𝑆𝑆i Sj  ≠ ∅ then 

17.   add i with 𝑆𝑆𝑖𝑖 𝑆Sj to Ei 

18. if  Ei = ∅ then   // Winner determination 

19. i selects the 𝑆𝑆𝑖𝑖and PU by providing optimization  

20.   OPi(Ei,M) // optimization  

21. i performs the group member to collaborate 

22. SU forms the selfish group formation with 
min Error prob 

23.  else   // Losing case 

24.  i replaces the 𝑆𝑆i with 𝑆𝑆𝑖𝑖 𝑆Sj to Ei , where j 𝑖 
N, M𝑆𝑆𝑗𝑗 ≠ ∅ and minimizes 

25.  ∀𝑗𝑗 𝑖 𝑖𝑖, 𝑆𝑆i=�𝑖𝑖� 
26.  else 

27. Until𝑆𝑆𝑖𝑖 𝑆Sj to Ei where j 𝑖 N, M𝑆𝑆𝑗𝑗 ≠ ∅ == SU     
//winning is predicted 

The spectrum allocation among different Pus in a 
CSS identifies a simple idle spectrum based on the 
situation where the interference is not disturbing the 
PU communication. The CSS form a cluster group 
within the process of identifying the complexity and 
utility within the group schemes. The design of 
individual SU comprises of the SU group formation 
and the CSS mechanism, and the selfish group has 
been fixed with the relationship between the PU and 

SU to converse the optimization. 

Each SU identifies the transmission parameters, 
and hence the communication is established 
with the parameters in an effective way that 
the miss detection probability is assumed to 
follow an optimization in the with PU in 
OP(𝑆𝑆𝑖𝑖𝑆𝑆 i). The set of SUs formed is grouped 
together to associate in a manner of forming 
the optimal association in the groups with SU, 
and each PU is attained thereof with the return 
optimal policy prediction as shown in Eq. (10). 

max��𝑖���𝑖�� 𝑇𝑇𝑖𝑖𝑆𝑆𝑖𝑖,                                                (10) 

where the transmission parameters are 
assumed of with the Tr and the secondary 
users are measured with the max��𝑖�� � 𝑖��TrSi. The 
set is marked with the Si, and the groups are 
collaborated to form the ratio of the selection 
with the SU forming a j 𝑖 N. The Objective 
function is attained with the maximization of 
the group winning SU as shown in Eq. (11) 
𝑇𝑇𝑖𝑖𝑆𝑆𝑖𝑖 = (1 − 𝑃𝑃𝑖𝑖�����)(1 −
𝑃𝑃�����) �

�������
�����

∑ ����� �,�𝑖��
 ,   (11) 

where the unused primary user probability is 
measured with the spectrum whichever idle in 
PU with 𝑃𝑃𝑖𝑖������and the PU is assumed to be 
used with BUSY/IDLE state control. The 𝑃𝑃����� 
is the second property where the idle spectrum 
is assumed to be of the progressive state in the 
formulation for the PU and the spectrum state 
is assumed to be of the state for noticing the 
unused idle spectrum. �

�������  determines the 
winning secondary group in the CR network 
with CSS. �����

∑ ������,�𝑖��
 measures the secondary 

user identification in the detection capability of 
the secondary user in the predetermined SU to 
achieve group reformation with only a 
secondary group winning strategy. The 
objective function indicates that the winning 
SU has the constraint nomination in the 
maximization of the communication 
establishment and energy preservation in the 
CR network. 

3.1.2 Algorithm 2:  Group Reformation with 
Selfishness and Selection of Winning SU for 
Energy Enhancement 

1.  Assume selection of  winning group Si 

2.  for all  𝑖𝑖 𝑖Si do 

3.     i performs the group analysis with the 
members 𝑆𝑆��  using OP(𝑆𝑆𝑖𝑖𝑆𝑆i). 

4.  i communicate to all members for all  𝑗𝑗 𝑖Si  

3. for all i∈ N do
4. if  MSi ≠ Æ then
5.  Optimization Oi({Si}, M)
6.  select PU with optimized condition
7. else
8. PU is selected according to  the 

  

detection probability that prevails in the CR winner 
SU group ‘S’. The below estimation identifies the 
conditional formulation. 

𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓 = ∏ �1 − (1 − 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓)∑ 𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗∈𝑁𝑁𝑁𝑁 𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑗𝑗𝑗𝑗𝑝𝑝𝑝𝑝�𝑚𝑚𝑚𝑚∈𝑁𝑁𝑁𝑁     (8) 

𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 1 −∏ �(1 − 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓)∑ 𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗∈𝑁𝑁𝑁𝑁 𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑗𝑗𝑗𝑗𝑝𝑝𝑝𝑝�𝑚𝑚𝑚𝑚∈𝑁𝑁𝑁𝑁 .    (9) 

The group formation possibility between the SU is 
assumed to be of the same group∑ (𝑚𝑚𝑚𝑚∈𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝐻𝐻𝐻𝐻 = 1) 
and the non-linear features is directed with the 
optimization having the indicator function and the 
binary variables is followed in the relative case. 

3.1.1 Algorithm 1:  Group Formation and Selection 
of  Winning SU  

1. initialize ∀𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁, 𝑆𝑆𝑆𝑆i={𝑖𝑖𝑖𝑖} 

2. ∀𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆𝑏𝑏𝑏𝑏 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑ℎ 𝑆𝑆𝑆𝑆𝑏𝑏𝑏𝑏1,2,3,4 &5 

3. for all i ∈ 𝑁𝑁𝑁𝑁𝑑𝑑𝑑𝑑𝑏𝑏𝑏𝑏 

4. if  M𝑆𝑆𝑆𝑆i≠ ∅ then 

5.  Optimization Oi({𝑆𝑆𝑆𝑆i},𝑀𝑀𝑀𝑀) 

6.  select PU with optimized condition 

7. else 

8.  PU is selected according to  the 𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖 ∈ 𝑀𝑀𝑀𝑀 

9.  do the process repeatedly  

10. Winning SU =({𝑆𝑆𝑆𝑆i}, 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁, M𝑆𝑆𝑆𝑆i≠ ∅) 

11. for all i ∈ 𝑁𝑁𝑁𝑁𝑑𝑑𝑑𝑑𝑏𝑏𝑏𝑏 

12.  if  M𝑆𝑆𝑆𝑆i≠ ∅ then // Cooperative Spectrum Sensing 

13.  i collects the SU from cluster Sj from ∀𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 

14.  Ei = ∅ 

15.  for all [ j ∈ [𝑚𝑚𝑚𝑚 ∈ 𝑁𝑁𝑁𝑁] M𝑆𝑆𝑆𝑆i≠ ∅] do 

16.   if M𝑆𝑆𝑆𝑆i Sj  ≠ ∅ then 

17.   add i with 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ∪Sj to Ei 

18. if  Ei = ∅ then   // Winner determination 

19. i selects the 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖and PU by providing optimization  

20.   OPi(Ei,M) // optimization  

21. i performs the group member to collaborate 

22. SU forms the selfish group formation with 
min Error prob 

23.  else   // Losing case 

24.  i replaces the 𝑆𝑆𝑆𝑆i with 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ∪Sj to Ei , where j ∈ 
N, M𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗 ≠ ∅ and minimizes 

25.  ∀𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁, 𝑆𝑆𝑆𝑆i={𝑖𝑖𝑖𝑖} 

26.  else 

27. Until𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ∪Sj to Ei where j ∈ N, M𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗 ≠ ∅ == SU     
//winning is predicted 

The spectrum allocation among different Pus in 
a CSS identifies a simple idle spectrum based 
on the situation where the interference is not 
disturbing the PU communication. The CSS 
form a cluster group within the process of 
identifying the complexity and utility within 
the group schemes. The design of individual 
SU comprises of the SU group formation and 
the CSS mechanism, and the selfish group has 
been fixed with the relationship between the 
PU and SU to converse the optimization. 

Each SU identifies the transmission parameters, 
and hence the communication is established 
with the parameters in an effective way that 
the miss detection probability is assumed to 
follow an optimization in the with PU in 
OP(𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆 i). The set of SUs formed is grouped 
together to associate in a manner of forming 
the optimal association in the groups with SU, 
and each PU is attained thereof with the return 
optimal policy prediction as shown in Eq. (10). 

max
𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚∈𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚∈𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,                                                (10) 

where the transmission parameters are 
assumed of with the Tr and the secondary 
users are measured with the max

Si∈Si i ∈SM
TrSi. The 

set is marked with the Si, and the groups are 
collaborated to form the ratio of the selection 
with the SU forming a j ∈ N. The Objective 
function is attained with the maximization of 
the group winning SU as shown in Eq. (11) 
𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 = (1 − 𝑃𝑃𝑃𝑃𝑏𝑏𝑏𝑏𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓)(1 −
𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓) 1

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
𝑃𝑃𝑃𝑃𝑈𝑈𝑈𝑈𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑

∑ 𝑃𝑃𝑃𝑃𝑈𝑈𝑈𝑈𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑 𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗∈𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖
 ,   (11) 

where the unused primary user probability is 
measured with the spectrum whichever idle in 
PU with 𝑃𝑃𝑃𝑃𝑏𝑏𝑏𝑏𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓and the PU is assumed to be 
used with BUSY/IDLE state control. The 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓  
is the second property where the idle spectrum 
is assumed to be of the progressive state in the 
formulation for the PU and the spectrum state 
is assumed to be of the state for noticing the 
unused idle spectrum. 1

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
 determines the 

winning secondary group in the CR network 
with CSS. 𝑃𝑃𝑃𝑃𝑈𝑈𝑈𝑈𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑

∑ 𝑃𝑃𝑃𝑃𝑈𝑈𝑈𝑈𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗∈𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖
 measures the secondary 

user identification in the detection capability of 
the secondary user in the predetermined SU to 
achieve group reformation with only a 
secondary group winning strategy. The 
objective function indicates that the winning 
SU has the constraint nomination in the 
maximization of the communication 
establishment and energy preservation in the 
CR network. 

9.  do the process repeatedly 
10. Winning SU = ({Si}, i ∈ N, MSi ≠Æ) 
11. for all i ∈ N do 
12.  if  MSi ≠ Æ then // Cooperative Spectrum Sensing
13.  i collects the SU from cluster Sj from "j∈N 
14.  Ei = Æ
15.  for all [ j∈[m ∈ N] MSi ≠ Æ] do
16.   if MSi  Sj ≠ Æ then
17.   add i with Si ∪ Sj to Ei

18. if  Ei = Æ then   // Winner determination
19. i selects the Si and PU by providing optimization 
20.   OPi(Ei,M) // optimization 
21. i performs the group member to collaborate
22. SU forms the selfish group formation with 

min Error prob
23.  else   // Losing case
24. i replaces the Si with Si ∪ Sj to Ei , where j∈ N, 

M Sj ≠ Æ and minimizes
25.  "j∈N, Si = {i}
26.  else
27. Until Si ∪ Sj  to Ei where j∈ N, M Sj ≠ Æ == SU     

//winning is predicted

The spectrum allocation among different Pus in a CSS 
identifies a simple idle spectrum based on the situa-
tion where the interference is not disturbing the PU 
communication. The CSS form a cluster group within 
the process of identifying the complexity and utility 
within the group schemes. The design of individual 
SU comprises of the SU group formation and the CSS 
mechanism, and the selfish group has been fixed with 
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the relationship between the PU and SU to converse 
the optimization.
Each SU identifies the transmission parameters, 
and hence the communication is established with 
the parameters in an effective way that the miss 
detection probability is assumed to follow an op-
timization in the with PU in OP(SiSi). The set of 
SUs formed is grouped together to associate in a 
manner of forming the optimal association in the 
groups with SU, and each PU is attained thereof 
with the return optimal policy prediction as shown 
in Eq. (10).

  

detection probability that prevails in the CR winner 
SU group ‘S’. The below estimation identifies the 
conditional formulation. 

𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓 = ∏ �1 − (1 − 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓)∑ 𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗∈𝑁𝑁𝑁𝑁 𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑗𝑗𝑗𝑗𝑝𝑝𝑝𝑝�𝑚𝑚𝑚𝑚∈𝑁𝑁𝑁𝑁     (8) 

𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 1 −∏ �(1 − 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓)∑ 𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗∈𝑁𝑁𝑁𝑁 𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑗𝑗𝑗𝑗𝑝𝑝𝑝𝑝�𝑚𝑚𝑚𝑚∈𝑁𝑁𝑁𝑁 .    (9) 

The group formation possibility between the SU is 
assumed to be of the same group∑ (𝑚𝑚𝑚𝑚∈𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝐻𝐻𝐻𝐻 = 1) 
and the non-linear features is directed with the 
optimization having the indicator function and the 
binary variables is followed in the relative case. 

3.1.1 Algorithm 1:  Group Formation and Selection 
of  Winning SU  

1. initialize ∀𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁, 𝑆𝑆𝑆𝑆i={𝑖𝑖𝑖𝑖} 

2. ∀𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆𝑏𝑏𝑏𝑏 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑ℎ 𝑆𝑆𝑆𝑆𝑏𝑏𝑏𝑏1,2,3,4 &5 

3. for all i ∈ 𝑁𝑁𝑁𝑁𝑑𝑑𝑑𝑑𝑏𝑏𝑏𝑏 

4. if  M𝑆𝑆𝑆𝑆i≠ ∅ then 

5.  Optimization Oi({𝑆𝑆𝑆𝑆i},𝑀𝑀𝑀𝑀) 

6.  select PU with optimized condition 

7. else 

8.  PU is selected according to  the 𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖 ∈ 𝑀𝑀𝑀𝑀 

9.  do the process repeatedly  

10. Winning SU =({𝑆𝑆𝑆𝑆i}, 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁, M𝑆𝑆𝑆𝑆i≠ ∅) 

11. for all i ∈ 𝑁𝑁𝑁𝑁𝑑𝑑𝑑𝑑𝑏𝑏𝑏𝑏 

12.  if  M𝑆𝑆𝑆𝑆i≠ ∅ then // Cooperative Spectrum Sensing 

13.  i collects the SU from cluster Sj from ∀𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 

14.  Ei = ∅ 

15.  for all [ j ∈ [𝑚𝑚𝑚𝑚 ∈ 𝑁𝑁𝑁𝑁] M𝑆𝑆𝑆𝑆i≠ ∅] do 

16.   if M𝑆𝑆𝑆𝑆i Sj  ≠ ∅ then 

17.   add i with 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ∪Sj to Ei 

18. if  Ei = ∅ then   // Winner determination 

19. i selects the 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖and PU by providing optimization  

20.   OPi(Ei,M) // optimization  

21. i performs the group member to collaborate 

22. SU forms the selfish group formation with 
min Error prob 

23.  else   // Losing case 

24.  i replaces the 𝑆𝑆𝑆𝑆i with 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ∪Sj to Ei , where j ∈ 
N, M𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗 ≠ ∅ and minimizes 

25.  ∀𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁, 𝑆𝑆𝑆𝑆i={𝑖𝑖𝑖𝑖} 

26.  else 

27. Until𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ∪Sj to Ei where j ∈ N, M𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗 ≠ ∅ == SU     
//winning is predicted 

The spectrum allocation among different Pus in 
a CSS identifies a simple idle spectrum based 
on the situation where the interference is not 
disturbing the PU communication. The CSS 
form a cluster group within the process of 
identifying the complexity and utility within 
the group schemes. The design of individual 
SU comprises of the SU group formation and 
the CSS mechanism, and the selfish group has 
been fixed with the relationship between the 
PU and SU to converse the optimization. 

Each SU identifies the transmission parameters, 
and hence the communication is established 
with the parameters in an effective way that 
the miss detection probability is assumed to 
follow an optimization in the with PU in 
OP(𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆 i). The set of SUs formed is grouped 
together to associate in a manner of forming 
the optimal association in the groups with SU, 

max
𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚∈𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚∈𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,                                                (10) 

where the transmission parameters are 
assumed of with the Tr and the secondary 
users are measured with the max

Si∈Si i ∈SM
TrSi. The 

set is marked with the Si, and the groups are 
collaborated to form the ratio of the selection 
with the SU forming a j ∈ N. The Objective 

𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 = (1 − 𝑃𝑃𝑃𝑃𝑏𝑏𝑏𝑏𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓)(1 −
𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓) 1

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
𝑃𝑃𝑃𝑃𝑈𝑈𝑈𝑈𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑

∑ 𝑃𝑃𝑃𝑃𝑈𝑈𝑈𝑈𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑 𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗∈𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖
 ,   (11) 

maximization of the communication 
establishment and energy preservation in the 
CR network. 

(10)

where the transmission parameters are assumed of 
with the Tr and the secondary users are measured 
with the 

  

detection probability that prevails in the CR winner 
SU group ‘S’. The below estimation identifies the 
conditional formulation. 

𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓 = ∏ �1 − (1 − 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓)∑ 𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗∈𝑁𝑁𝑁𝑁 𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑗𝑗𝑗𝑗𝑝𝑝𝑝𝑝�𝑚𝑚𝑚𝑚∈𝑁𝑁𝑁𝑁     (8) 

𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 1 −∏ �(1 − 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓)∑ 𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗∈𝑁𝑁𝑁𝑁 𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑗𝑗𝑗𝑗𝑝𝑝𝑝𝑝�𝑚𝑚𝑚𝑚∈𝑁𝑁𝑁𝑁 .    (9) 

The group formation possibility between the SU is 
assumed to be of the same group∑ (𝑚𝑚𝑚𝑚∈𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝐻𝐻𝐻𝐻 = 1) 
and the non-linear features is directed with the 
optimization having the indicator function and the 
binary variables is followed in the relative case. 

3.1.1 Algorithm 1:  Group Formation and Selection 
of  Winning SU  

1. initialize ∀𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁, 𝑆𝑆𝑆𝑆i={𝑖𝑖𝑖𝑖} 

2. ∀𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆𝑏𝑏𝑏𝑏 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑ℎ 𝑆𝑆𝑆𝑆𝑏𝑏𝑏𝑏1,2,3,4 &5 

3. for all i ∈ 𝑁𝑁𝑁𝑁𝑑𝑑𝑑𝑑𝑏𝑏𝑏𝑏 

4. if  M𝑆𝑆𝑆𝑆i≠ ∅ then 

5.  Optimization Oi({𝑆𝑆𝑆𝑆i},𝑀𝑀𝑀𝑀) 

6.  select PU with optimized condition 

7. else 

8.  PU is selected according to  the 𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖 ∈ 𝑀𝑀𝑀𝑀 

9.  do the process repeatedly  

10. Winning SU =({𝑆𝑆𝑆𝑆i}, 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁, M𝑆𝑆𝑆𝑆i≠ ∅) 

11. for all i ∈ 𝑁𝑁𝑁𝑁𝑑𝑑𝑑𝑑𝑏𝑏𝑏𝑏 

12.  if  M𝑆𝑆𝑆𝑆i≠ ∅ then // Cooperative Spectrum Sensing 

13.  i collects the SU from cluster Sj from ∀𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 

14.  Ei = ∅ 

15.  for all [ j ∈ [𝑚𝑚𝑚𝑚 ∈ 𝑁𝑁𝑁𝑁] M𝑆𝑆𝑆𝑆i≠ ∅] do 

16.   if M𝑆𝑆𝑆𝑆i Sj  ≠ ∅ then 

17.   add i with 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ∪Sj to Ei 

18. if  Ei = ∅ then   // Winner determination 

19. i selects the 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖and PU by providing optimization  

20.   OPi(Ei,M) // optimization  

21. i performs the group member to collaborate 

22. SU forms the selfish group formation with 
min Error prob 

23.  else   // Losing case 

24.  i replaces the 𝑆𝑆𝑆𝑆i with 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ∪Sj to Ei , where j ∈ 
N, M𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗 ≠ ∅ and minimizes 

25.  ∀𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁, 𝑆𝑆𝑆𝑆i={𝑖𝑖𝑖𝑖} 

26.  else 

27. Until𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ∪Sj to Ei where j ∈ N, M𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗 ≠ ∅ == SU     
//winning is predicted 

The spectrum allocation among different Pus in 
a CSS identifies a simple idle spectrum based 
on the situation where the interference is not 
disturbing the PU communication. The CSS 
form a cluster group within the process of 
identifying the complexity and utility within 
the group schemes. The design of individual 
SU comprises of the SU group formation and 
the CSS mechanism, and the selfish group has 
been fixed with the relationship between the 
PU and SU to converse the optimization. 

Each SU identifies the transmission parameters, 
and hence the communication is established 
with the parameters in an effective way that 
the miss detection probability is assumed to 
follow an optimization in the with PU in 
OP(𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆 i). The set of SUs formed is grouped 
together to associate in a manner of forming 
the optimal association in the groups with SU, 
and each PU is attained thereof with the return 
optimal policy prediction as shown in Eq. (10). 

max
𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚∈𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚∈𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,                                                (10) 

where the transmission parameters are 
assumed of with the Tr and the secondary 
users are measured with the max

Si∈Si i ∈SM
TrSi. The 

set is marked with the Si, and the groups are 
collaborated to form the ratio of the selection 
with the SU forming a j ∈ N. The Objective 
function is attained with the maximization of 
the group winning SU as shown in Eq. (11) 
𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 = (1 − 𝑃𝑃𝑃𝑃𝑏𝑏𝑏𝑏𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓)(1 −
𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓) 1

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
𝑃𝑃𝑃𝑃𝑈𝑈𝑈𝑈𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑

∑ 𝑃𝑃𝑃𝑃𝑈𝑈𝑈𝑈𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑 𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗∈𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖
 ,   (11) 

where the unused primary user probability is 
measured with the spectrum whichever idle in 
PU with 𝑃𝑃𝑃𝑃𝑏𝑏𝑏𝑏𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓and the PU is assumed to be 
used with BUSY/IDLE state control. The 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓  
is the second property where the idle spectrum 
is assumed to be of the progressive state in the 
formulation for the PU and the spectrum state 
is assumed to be of the state for noticing the 
unused idle spectrum. 1

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
 determines the 

winning secondary group in the CR network 
with CSS. 𝑃𝑃𝑃𝑃𝑈𝑈𝑈𝑈𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑

∑ 𝑃𝑃𝑃𝑃𝑈𝑈𝑈𝑈𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗∈𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖
 measures the secondary 

user identification in the detection capability of 
the secondary user in the predetermined SU to 
achieve group reformation with only a 
secondary group winning strategy. The 
objective function indicates that the winning 
SU has the constraint nomination in the 
maximization of the communication 
establishment and energy preservation in the 
CR network. 

. The set is marked with the Si, 
and the groups are collaborated to form the ratio of 
the selection with the SU forming a j ∈ N. The Ob-
jective function is attained with the maximization of 
the group winning SU as shown in Eq. (11)

𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖=(1−𝑃𝑃𝑃𝑃𝑏𝑏𝑏𝑏𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓)(1−𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓) 1
𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

𝑃𝑃𝑃𝑃𝑈𝑈𝑈𝑈

𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑 ∑ 𝑃𝑃𝑃𝑃𝑈𝑈𝑈𝑈𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑 𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗∈𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖
 ,  

 
(11)

where the unused primary user probability is mea-
sured with the spectrum whichever idle in PU with
PUuuuse and the PU is assumed to be used with  
BUSY/IDLE state control. The P false is the second 
property where the idle spectrum is assumed to be 
of the progressive state in the formulation for the PU 
and the spectrum state is assumed to be of the state 
for noticing the unused idle spectrum. 

  

detection probability that prevails in the CR winner 
SU group ‘S’. The below estimation identifies the 
conditional formulation. 

𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓 = ∏ �1 − (1 − 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓)∑ 𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗∈𝑁𝑁𝑁𝑁 𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑗𝑗𝑗𝑗𝑝𝑝𝑝𝑝�𝑚𝑚𝑚𝑚∈𝑁𝑁𝑁𝑁     (8) 

𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 1 −∏ �(1 − 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓)∑ 𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗∈𝑁𝑁𝑁𝑁 𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑗𝑗𝑗𝑗𝑝𝑝𝑝𝑝�𝑚𝑚𝑚𝑚∈𝑁𝑁𝑁𝑁 .    (9) 

The group formation possibility between the SU is 
assumed to be of the same group∑ (𝑚𝑚𝑚𝑚∈𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝐻𝐻𝐻𝐻 = 1) 
and the non-linear features is directed with the 
optimization having the indicator function and the 
binary variables is followed in the relative case. 

3.1.1 Algorithm 1:  Group Formation and Selection 
of  Winning SU  

1. initialize ∀𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁, 𝑆𝑆𝑆𝑆i={𝑖𝑖𝑖𝑖} 

2. ∀𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆𝑏𝑏𝑏𝑏 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑ℎ 𝑆𝑆𝑆𝑆𝑏𝑏𝑏𝑏1,2,3,4 &5 

3. for all i ∈ 𝑁𝑁𝑁𝑁𝑑𝑑𝑑𝑑𝑏𝑏𝑏𝑏 

4. if  M𝑆𝑆𝑆𝑆i≠ ∅ then 

5.  Optimization Oi({𝑆𝑆𝑆𝑆i},𝑀𝑀𝑀𝑀) 

6.  select PU with optimized condition 

7. else 

8.  PU is selected according to  the 𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖 ∈ 𝑀𝑀𝑀𝑀 

9.  do the process repeatedly  

10. Winning SU =({𝑆𝑆𝑆𝑆i}, 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁, M𝑆𝑆𝑆𝑆i≠ ∅) 

11. for all i ∈ 𝑁𝑁𝑁𝑁𝑑𝑑𝑑𝑑𝑏𝑏𝑏𝑏 

12.  if  M𝑆𝑆𝑆𝑆i≠ ∅ then // Cooperative Spectrum Sensing 

13.  i collects the SU from cluster Sj from ∀𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 

14.  Ei = ∅ 

15.  for all [ j ∈ [𝑚𝑚𝑚𝑚 ∈ 𝑁𝑁𝑁𝑁] M𝑆𝑆𝑆𝑆i≠ ∅] do 

16.   if M𝑆𝑆𝑆𝑆i Sj  ≠ ∅ then 

17.   add i with 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ∪Sj to Ei 

18. if  Ei = ∅ then   // Winner determination 

19. i selects the 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖and PU by providing optimization  

20.   OPi(Ei,M) // optimization  

21. i performs the group member to collaborate 

22. SU forms the selfish group formation with 
min Error prob 

23.  else   // Losing case 

24.  i replaces the 𝑆𝑆𝑆𝑆i with 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ∪Sj to Ei , where j ∈ 
N, M𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗 ≠ ∅ and minimizes 

25.  ∀𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁, 𝑆𝑆𝑆𝑆i={𝑖𝑖𝑖𝑖} 

26.  else 

27. Until𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ∪Sj to Ei where j ∈ N, M𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗 ≠ ∅ == SU     
//winning is predicted 

The spectrum allocation among different Pus in 
a CSS identifies a simple idle spectrum based 
on the situation where the interference is not 
disturbing the PU communication. The CSS 
form a cluster group within the process of 
identifying the complexity and utility within 
the group schemes. The design of individual 
SU comprises of the SU group formation and 
the CSS mechanism, and the selfish group has 
been fixed with the relationship between the 
PU and SU to converse the optimization. 

Each SU identifies the transmission parameters, 
and hence the communication is established 
with the parameters in an effective way that 
the miss detection probability is assumed to 
follow an optimization in the with PU in 
OP(𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆 i). The set of SUs formed is grouped 
together to associate in a manner of forming 
the optimal association in the groups with SU, 
and each PU is attained thereof with the return 
optimal policy prediction as shown in Eq. (10). 

max
𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚∈𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚∈𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,                                                (10) 

where the transmission parameters are 
assumed of with the Tr and the secondary 
users are measured with the max

Si∈Si i ∈SM
TrSi. The 

set is marked with the Si, and the groups are 
collaborated to form the ratio of the selection 
with the SU forming a j ∈ N. The Objective 
function is attained with the maximization of 
the group winning SU as shown in Eq. (11) 
𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 = (1 − 𝑃𝑃𝑃𝑃𝑏𝑏𝑏𝑏𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓)(1 −
𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓) 1

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
𝑃𝑃𝑃𝑃𝑈𝑈𝑈𝑈𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑

∑ 𝑃𝑃𝑃𝑃𝑈𝑈𝑈𝑈𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑 𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗∈𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖
 ,   (11) 

where the unused primary user probability is 
measured with the spectrum whichever idle in 
PU with 𝑃𝑃𝑃𝑃𝑏𝑏𝑏𝑏𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓and the PU is assumed to be 
used with BUSY/IDLE state control. The 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓  
is the second property where the idle spectrum 
is assumed to be of the progressive state in the 
formulation for the PU and the spectrum state 
is assumed to be of the state for noticing the 
unused idle spectrum. 1

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
 determines the 

winning secondary group in the CR network 
with CSS. 𝑃𝑃𝑃𝑃𝑈𝑈𝑈𝑈𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑

∑ 𝑃𝑃𝑃𝑃𝑈𝑈𝑈𝑈𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗∈𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖
 measures the secondary 

user identification in the detection capability of 
the secondary user in the predetermined SU to 
achieve group reformation with only a 
secondary group winning strategy. The 
objective function indicates that the winning 
SU has the constraint nomination in the 
maximization of the communication 
establishment and energy preservation in the 
CR network. 

 de-
termines the winning secondary group in the CR net-
work with CSS. 

  

detection probability that prevails in the CR winner 
SU group ‘S’. The below estimation identifies the 
conditional formulation. 

𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓 = ∏ �1 − (1 − 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓)∑ 𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗∈𝑁𝑁𝑁𝑁 𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑗𝑗𝑗𝑗𝑝𝑝𝑝𝑝�𝑚𝑚𝑚𝑚∈𝑁𝑁𝑁𝑁     (8) 

𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 1 −∏ �(1 − 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓)∑ 𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗∈𝑁𝑁𝑁𝑁 𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑗𝑗𝑗𝑗𝑝𝑝𝑝𝑝�𝑚𝑚𝑚𝑚∈𝑁𝑁𝑁𝑁 .    (9) 

The group formation possibility between the SU is 
assumed to be of the same group∑ (𝑚𝑚𝑚𝑚∈𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝐻𝐻𝐻𝐻 = 1) 
and the non-linear features is directed with the 
optimization having the indicator function and the 
binary variables is followed in the relative case. 

3.1.1 Algorithm 1:  Group Formation and Selection 
of  Winning SU  

1. initialize ∀𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁, 𝑆𝑆𝑆𝑆i={𝑖𝑖𝑖𝑖} 

2. ∀𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆𝑏𝑏𝑏𝑏 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑ℎ 𝑆𝑆𝑆𝑆𝑏𝑏𝑏𝑏1,2,3,4 &5 

3. for all i ∈ 𝑁𝑁𝑁𝑁𝑑𝑑𝑑𝑑𝑏𝑏𝑏𝑏 

4. if  M𝑆𝑆𝑆𝑆i≠ ∅ then 

5.  Optimization Oi({𝑆𝑆𝑆𝑆i},𝑀𝑀𝑀𝑀) 

6.  select PU with optimized condition 

7. else 

8.  PU is selected according to  the 𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖 ∈ 𝑀𝑀𝑀𝑀 

9.  do the process repeatedly  

10. Winning SU =({𝑆𝑆𝑆𝑆i}, 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁, M𝑆𝑆𝑆𝑆i≠ ∅) 

11. for all i ∈ 𝑁𝑁𝑁𝑁𝑑𝑑𝑑𝑑𝑏𝑏𝑏𝑏 

12.  if  M𝑆𝑆𝑆𝑆i≠ ∅ then // Cooperative Spectrum Sensing 

13.  i collects the SU from cluster Sj from ∀𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 

14.  Ei = ∅ 

15.  for all [ j ∈ [𝑚𝑚𝑚𝑚 ∈ 𝑁𝑁𝑁𝑁] M𝑆𝑆𝑆𝑆i≠ ∅] do 

16.   if M𝑆𝑆𝑆𝑆i Sj  ≠ ∅ then 

17.   add i with 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ∪Sj to Ei 

18. if  Ei = ∅ then   // Winner determination 

19. i selects the 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖and PU by providing optimization  

20.   OPi(Ei,M) // optimization  

21. i performs the group member to collaborate 

22. SU forms the selfish group formation with 
min Error prob 

23.  else   // Losing case 

24.  i replaces the 𝑆𝑆𝑆𝑆i with 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ∪Sj to Ei , where j ∈ 
N, M𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗 ≠ ∅ and minimizes 

25.  ∀𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁, 𝑆𝑆𝑆𝑆i={𝑖𝑖𝑖𝑖} 

26.  else 

27. Until𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ∪Sj to Ei where j ∈ N, M𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗 ≠ ∅ == SU     
//winning is predicted 

The spectrum allocation among different Pus in 
a CSS identifies a simple idle spectrum based 
on the situation where the interference is not 
disturbing the PU communication. The CSS 
form a cluster group within the process of 
identifying the complexity and utility within 
the group schemes. The design of individual 
SU comprises of the SU group formation and 
the CSS mechanism, and the selfish group has 
been fixed with the relationship between the 
PU and SU to converse the optimization. 

Each SU identifies the transmission parameters, 
and hence the communication is established 
with the parameters in an effective way that 
the miss detection probability is assumed to 
follow an optimization in the with PU in 
OP(𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆 i). The set of SUs formed is grouped 
together to associate in a manner of forming 
the optimal association in the groups with SU, 
and each PU is attained thereof with the return 
optimal policy prediction as shown in Eq. (10). 

max
𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚∈𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚∈𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,                                                (10) 

where the transmission parameters are 
assumed of with the Tr and the secondary 
users are measured with the max

Si∈Si i ∈SM
TrSi. The 

set is marked with the Si, and the groups are 
collaborated to form the ratio of the selection 
with the SU forming a j ∈ N. The Objective 
function is attained with the maximization of 
the group winning SU as shown in Eq. (11) 
𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 = (1 − 𝑃𝑃𝑃𝑃𝑏𝑏𝑏𝑏𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓)(1 −
𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓) 1

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
𝑃𝑃𝑃𝑃𝑈𝑈𝑈𝑈𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑

∑ 𝑃𝑃𝑃𝑃𝑈𝑈𝑈𝑈𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑 𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗∈𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖
 ,   (11) 

where the unused primary user probability is 
measured with the spectrum whichever idle in 
PU with 𝑃𝑃𝑃𝑃𝑏𝑏𝑏𝑏𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓and the PU is assumed to be 
used with BUSY/IDLE state control. The 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓  
is the second property where the idle spectrum 
is assumed to be of the progressive state in the 
formulation for the PU and the spectrum state 
is assumed to be of the state for noticing the 
unused idle spectrum. 1

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
 determines the 

winning secondary group in the CR network 
with CSS. 𝑃𝑃𝑃𝑃𝑈𝑈𝑈𝑈𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑

∑ 𝑃𝑃𝑃𝑃𝑈𝑈𝑈𝑈𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗∈𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖
 measures the secondary 

user identification in the detection capability of 
the secondary user in the predetermined SU to 
achieve group reformation with only a 
secondary group winning strategy. The 
objective function indicates that the winning 
SU has the constraint nomination in the 
maximization of the communication 
establishment and energy preservation in the 
CR network. 

 measures the secondary 

user identification in the detection capability of the 
secondary user in the predetermined SU to achieve 
group reformation with only a secondary group win-
ning strategy. The objective function indicates that 
the winning SU has the constraint nomination in the 
maximization of the communication establishment 
and energy preservation in the CR network.

3.1.2. Algorithm 2:  Group Reformation with 
Selfishness and Selection of Winning SU for 
Energy Enhancement
1.  Assume selection of  winning group Si

2.  for all i ∈Si do
3.  i performs the group analysis with the members 

 
 

 

3.1.2 Algorithm 2:  Group Reformation with 
Selfishness and Selection of Winning SU for 
Energy Enhancement 

1.  Assume selection of  winning group Si 

2.  for all  𝑖𝑖𝑖𝑖 ∈Si do 

3.     i performs the group analysis with the members 
𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  using OP(𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆i). 

4.  i communicate to all members for all  𝑗𝑗𝑗𝑗 ∈Si  of 𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚
𝑗𝑗𝑗𝑗  

5.  T=S 

6.  repeat  

7. i ∈T 

8. if ∀𝑗𝑗𝑗𝑗 ∈ 𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 == 𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚
𝑗𝑗𝑗𝑗  then 

9.  ∀𝑘𝑘𝑘𝑘 ∈ 𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑘𝑘𝑘𝑘 

10.  ∀𝑚𝑚𝑚𝑚 ∈ 𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖

𝑆𝑆𝑆𝑆
𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ{𝑚𝑚𝑚𝑚} 

11.  T=T/𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  

12. else 

13.  T=T/{i}   // Time and energy conservation 
during CSS 

14. Until T==∅ 

The above group formation concentrates the time 
and energy conservation during sensing with the 
SU. The winning SU is assumed to be of the 
opportunity in the energy conservation for the 
account of forming the relational SU with PU. The 
algorithm 1 shows the SU control access with the PU 
identification and group formation with complexity 
and overhead prediction. Each SU forms a group 
with the neighbouring SU and transmits the data in 
the near group N, and hence the data is assumed to 
be of in the miss detection probability assumption 
for the optimization analysis. The sensing lines are 
formed thereof with the cooperation assumed in the 
SU. The group updating happens till the winning SU 
is judged with the transmission parameters, and the 
remaining SU are assumed to be losing one in the 
selfish formation in the SU. 

3.2 Coalition Game Model to Enhance Security and 
Energy in CSS 

 The game model proposed here is the coalition 
game model to prevent the eavesdropping 
attack, and the noise is a parameter considered 
for enhancing the secrecy since the wireless 
transmission occupies a more discharge of 
energy in node during the communication. The 
noise in the interference has an orthogonal 
assumption that takes place in the winning SU 
and the CSS formation. The report can be 
masqueraded in the channel and hence the 
noise is observed with the attack behaviour. 
The decision making is considered as artificial 
noise interference and energy consumption to 
follow a game order. The game-based 
assumption is considered with resource 
modelling with the players having their own 
actions and strategies to infer a payoff and cost 
formation. The proposed application is 
modelled as a game formation with the 
security as the network resources, players 
formulate each node, and the noise is 
accumulated with the strategy. The decision to 
follow up a game depends on the game 
movement with the request and the 
formulation in another strategy as depicted in 
Table 1 with the assumption parameters. 

Table 1 

Coalition game for the proposed model 

Para meters Description 

AC Players action with cost 
associated 

EAC Energy consumption for Players 
action with cost associated 

EW Energy consumed in SU nodes 
using coalition game in weights 

SW Security enhanced with weight 
using coalition game 

N Nodes depicted as players  
S Strategy of players with benefit 

associated 

Table 2 

Energy and security matrix representation using payoff in coalition game 

Payoff matrix No interference 
Interference with noise in 
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Interference with noise in 
idle channel 
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3.1.2 Algorithm 2:  Group Reformation with 
Selfishness and Selection of Winning SU for 
Energy Enhancement 

1.  Assume selection of  winning group Si 

2.  for all  𝑖𝑖𝑖𝑖 ∈Si do 

3.     i performs the group analysis with the members 
𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  using OP(𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆i). 

4.  i communicate to all members for all  𝑗𝑗𝑗𝑗 ∈Si  of 𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚
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The above group formation concentrates the time 
and energy conservation during sensing with the 
SU. The winning SU is assumed to be of the 
opportunity in the energy conservation for the 
account of forming the relational SU with PU. The 
algorithm 1 shows the SU control access with the PU 
identification and group formation with complexity 
and overhead prediction. Each SU forms a group 
with the neighbouring SU and transmits the data in 
the near group N, and hence the data is assumed to 
be of in the miss detection probability assumption 
for the optimization analysis. The sensing lines are 
formed thereof with the cooperation assumed in the 
SU. The group updating happens till the winning SU 
is judged with the transmission parameters, and the 
remaining SU are assumed to be losing one in the 
selfish formation in the SU. 

3.2 Coalition Game Model to Enhance Security and 
Energy in CSS 

 The game model proposed here is the coalition 
game model to prevent the eavesdropping 
attack, and the noise is a parameter considered 
for enhancing the secrecy since the wireless 
transmission occupies a more discharge of 
energy in node during the communication. The 
noise in the interference has an orthogonal 
assumption that takes place in the winning SU 
and the CSS formation. The report can be 
masqueraded in the channel and hence the 
noise is observed with the attack behaviour. 
The decision making is considered as artificial 
noise interference and energy consumption to 
follow a game order. The game-based 
assumption is considered with resource 
modelling with the players having their own 
actions and strategies to infer a payoff and cost 
formation. The proposed application is 
modelled as a game formation with the 
security as the network resources, players 
formulate each node, and the noise is 
accumulated with the strategy. The decision to 
follow up a game depends on the game 
movement with the request and the 
formulation in another strategy as depicted in 
Table 1 with the assumption parameters. 

Table 1 

Coalition game for the proposed model 

Para meters Description 

AC Players action with cost 
associated 

EAC Energy consumption for Players 
action with cost associated 

EW Energy consumed in SU nodes 
using coalition game in weights 

SW Security enhanced with weight 
using coalition game 

N Nodes depicted as players  
S Strategy of players with benefit 

associated 

Table 2 

Energy and security matrix representation using payoff in coalition game 

Payoff matrix No interference 
Interference with noise in 
allotted channel 

Interference with noise in 
idle channel 

No interference 
Energy and security is 
same 

Security Increases with 
constant energy and 
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Selfishness and Selection of Winning SU for 
Energy Enhancement 

1.  Assume selection of  winning group Si 

2.  for all  𝑖𝑖𝑖𝑖 ∈Si do 

3.     i performs the group analysis with the members 
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12. else 

13.  T=T/{i}   // Time and energy conservation 
during CSS 

14. Until T==∅ 

The above group formation concentrates the time 
and energy conservation during sensing with the 
SU. The winning SU is assumed to be of the 
opportunity in the energy conservation for the 
account of forming the relational SU with PU. The 
algorithm 1 shows the SU control access with the PU 
identification and group formation with complexity 
and overhead prediction. Each SU forms a group 
with the neighbouring SU and transmits the data in 
the near group N, and hence the data is assumed to 
be of in the miss detection probability assumption 
for the optimization analysis. The sensing lines are 
formed thereof with the cooperation assumed in the 
SU. The group updating happens till the winning SU 
is judged with the transmission parameters, and the 
remaining SU are assumed to be losing one in the 
selfish formation in the SU. 

3.2 Coalition Game Model to Enhance Security and 
Energy in CSS 

 The game model proposed here is the coalition 
game model to prevent the eavesdropping 
attack, and the noise is a parameter considered 
for enhancing the secrecy since the wireless 
transmission occupies a more discharge of 
energy in node during the communication. The 
noise in the interference has an orthogonal 
assumption that takes place in the winning SU 
and the CSS formation. The report can be 
masqueraded in the channel and hence the 
noise is observed with the attack behaviour. 
The decision making is considered as artificial 
noise interference and energy consumption to 
follow a game order. The game-based 
assumption is considered with resource 
modelling with the players having their own 
actions and strategies to infer a payoff and cost 
formation. The proposed application is 
modelled as a game formation with the 
security as the network resources, players 
formulate each node, and the noise is 
accumulated with the strategy. The decision to 
follow up a game depends on the game 
movement with the request and the 
formulation in another strategy as depicted in 
Table 1 with the assumption parameters. 

Table 1 

Coalition game for the proposed model 

Para meters Description 

AC Players action with cost 
associated 

EAC Energy consumption for Players 
action with cost associated 

EW Energy consumed in SU nodes 
using coalition game in weights 

SW Security enhanced with weight 
using coalition game 

N Nodes depicted as players  
S Strategy of players with benefit 

associated 

Table 2 

Energy and security matrix representation using payoff in coalition game 

Payoff matrix No interference 
Interference with noise in 
allotted channel 

Interference with noise in 
idle channel 

No interference 
Energy and security is 
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constant energy and 
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Interference with noise in 
allotted channel 

Security Increases with 
constant energy and 
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3.1.2 Algorithm 2:  Group Reformation with 
Selfishness and Selection of Winning SU for 
Energy Enhancement 

1.  Assume selection of  winning group Si 

2.  for all  𝑖𝑖𝑖𝑖 ∈Si do 

3.     i performs the group analysis with the members 
𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  using OP(𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆i). 

4.  i communicate to all members for all  𝑗𝑗𝑗𝑗 ∈Si  of 𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚
𝑗𝑗𝑗𝑗  

5.  T=S 

6.  repeat  

7. i ∈T 

8. if ∀𝑗𝑗𝑗𝑗 ∈ 𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 == 𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚
𝑗𝑗𝑗𝑗  then 

9.  ∀𝑘𝑘𝑘𝑘 ∈ 𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑘𝑘𝑘𝑘 

10.  ∀𝑚𝑚𝑚𝑚 ∈ 𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖

𝑆𝑆𝑆𝑆
𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ{𝑚𝑚𝑚𝑚} 

11.  T=T/𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  

12. else 
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during CSS 

14. Until T==∅ 

The above group formation concentrates the time 
and energy conservation during sensing with the 
SU. The winning SU is assumed to be of the 
opportunity in the energy conservation for the 
account of forming the relational SU with PU. The 
algorithm 1 shows the SU control access with the PU 
identification and group formation with complexity 
and overhead prediction. Each SU forms a group 
with the neighbouring SU and transmits the data in 
the near group N, and hence the data is assumed to 
be of in the miss detection probability assumption 
for the optimization analysis. The sensing lines are 
formed thereof with the cooperation assumed in the 
SU. The group updating happens till the winning SU 
is judged with the transmission parameters, and the 
remaining SU are assumed to be losing one in the 
selfish formation in the SU. 

3.2 Coalition Game Model to Enhance Security and 
Energy in CSS 

 The game model proposed here is the coalition 
game model to prevent the eavesdropping 
attack, and the noise is a parameter considered 
for enhancing the secrecy since the wireless 
transmission occupies a more discharge of 
energy in node during the communication. The 
noise in the interference has an orthogonal 
assumption that takes place in the winning SU 
and the CSS formation. The report can be 
masqueraded in the channel and hence the 
noise is observed with the attack behaviour. 
The decision making is considered as artificial 
noise interference and energy consumption to 
follow a game order. The game-based 
assumption is considered with resource 
modelling with the players having their own 
actions and strategies to infer a payoff and cost 
formation. The proposed application is 
modelled as a game formation with the 
security as the network resources, players 
formulate each node, and the noise is 
accumulated with the strategy. The decision to 
follow up a game depends on the game 
movement with the request and the 
formulation in another strategy as depicted in 
Table 1 with the assumption parameters. 

Table 1 

Coalition game for the proposed model 

Para meters Description 

AC Players action with cost 
associated 

EAC Energy consumption for Players 
action with cost associated 

EW Energy consumed in SU nodes 
using coalition game in weights 

SW Security enhanced with weight 
using coalition game 

N Nodes depicted as players  
S Strategy of players with benefit 

associated 

Table 2 

Energy and security matrix representation using payoff in coalition game 

Payoff matrix No interference 
Interference with noise in 
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Interference with noise in 
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No interference 
Energy and security is 
same 
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constant energy and 
decreasing energy 
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Interference with noise in 
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decreasing energy 

Security Increases with 
decreasing energy 

10.  
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Selfishness and Selection of Winning SU for 
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1.  Assume selection of  winning group Si 

2.  for all  𝑖𝑖𝑖𝑖 ∈Si do 
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The above group formation concentrates the time 
and energy conservation during sensing with the 
SU. The winning SU is assumed to be of the 
opportunity in the energy conservation for the 
account of forming the relational SU with PU. The 
algorithm 1 shows the SU control access with the PU 
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the near group N, and hence the data is assumed to 
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formed thereof with the cooperation assumed in the 
SU. The group updating happens till the winning SU 
is judged with the transmission parameters, and the 
remaining SU are assumed to be losing one in the 
selfish formation in the SU. 

3.2 Coalition Game Model to Enhance Security and 
Energy in CSS 

 The game model proposed here is the coalition 
game model to prevent the eavesdropping 
attack, and the noise is a parameter considered 
for enhancing the secrecy since the wireless 
transmission occupies a more discharge of 
energy in node during the communication. The 
noise in the interference has an orthogonal 
assumption that takes place in the winning SU 
and the CSS formation. The report can be 
masqueraded in the channel and hence the 
noise is observed with the attack behaviour. 
The decision making is considered as artificial 
noise interference and energy consumption to 
follow a game order. The game-based 
assumption is considered with resource 
modelling with the players having their own 
actions and strategies to infer a payoff and cost 
formation. The proposed application is 
modelled as a game formation with the 
security as the network resources, players 
formulate each node, and the noise is 
accumulated with the strategy. The decision to 
follow up a game depends on the game 
movement with the request and the 
formulation in another strategy as depicted in 
Table 1 with the assumption parameters. 

Table 1 

Coalition game for the proposed model 

Para meters Description 

AC Players action with cost 
associated 

EAC Energy consumption for Players 
action with cost associated 

EW Energy consumed in SU nodes 
using coalition game in weights 

SW Security enhanced with weight 
using coalition game 

N Nodes depicted as players  
S Strategy of players with benefit 

associated 

Table 2 

Energy and security matrix representation using payoff in coalition game 

Payoff matrix No interference 
Interference with noise in 
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9.  ∀𝑘𝑘𝑘𝑘 ∈ 𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑘𝑘𝑘𝑘 

10.  ∀𝑚𝑚𝑚𝑚 ∈ 𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖

𝑆𝑆𝑆𝑆
𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ{𝑚𝑚𝑚𝑚} 

11.  T=T/𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  

12. else 

13.  T=T/{i}   // Time and energy conservation 
during CSS 

14. Until T==∅ 

The above group formation concentrates the time 
and energy conservation during sensing with the 
SU. The winning SU is assumed to be of the 
opportunity in the energy conservation for the 
account of forming the relational SU with PU. The 
algorithm 1 shows the SU control access with the PU 
identification and group formation with complexity 
and overhead prediction. Each SU forms a group 
with the neighbouring SU and transmits the data in 
the near group N, and hence the data is assumed to 
be of in the miss detection probability assumption 
for the optimization analysis. The sensing lines are 
formed thereof with the cooperation assumed in the 
SU. The group updating happens till the winning SU 
is judged with the transmission parameters, and the 
remaining SU are assumed to be losing one in the 
selfish formation in the SU. 

3.2 Coalition Game Model to Enhance Security and 
Energy in CSS 

 The game model proposed here is the coalition 
game model to prevent the eavesdropping 
attack, and the noise is a parameter considered 
for enhancing the secrecy since the wireless 
transmission occupies a more discharge of 
energy in node during the communication. The 
noise in the interference has an orthogonal 
assumption that takes place in the winning SU 
and the CSS formation. The report can be 
masqueraded in the channel and hence the 
noise is observed with the attack behaviour. 
The decision making is considered as artificial 
noise interference and energy consumption to 
follow a game order. The game-based 
assumption is considered with resource 
modelling with the players having their own 
actions and strategies to infer a payoff and cost 
formation. The proposed application is 
modelled as a game formation with the 
security as the network resources, players 
formulate each node, and the noise is 
accumulated with the strategy. The decision to 
follow up a game depends on the game 
movement with the request and the 
formulation in another strategy as depicted in 
Table 1 with the assumption parameters. 

Table 1 

Coalition game for the proposed model 

Para meters Description 

AC Players action with cost 
associated 

EAC Energy consumption for Players 
action with cost associated 

EW Energy consumed in SU nodes 
using coalition game in weights 

SW Security enhanced with weight 
using coalition game 

N Nodes depicted as players  
S Strategy of players with benefit 

associated 

Table 2 

Energy and security matrix representation using payoff in coalition game 

Payoff matrix No interference 
Interference with noise in 
allotted channel 

Interference with noise in 
idle channel 

No interference 
Energy and security is 
same 

Security Increases with 
constant energy and 
decreasing energy 

Security Increases with 
constant energy 

Interference with noise in 
allotted channel 

Security Increases with 
constant energy and 

Security Increases with 
decreasing energy 

Security Increases with 
decreasing energy 

12. else
13. T=T/{i} // Time and energy conservation 

during CSS
14. Until T== Æ 
The above group formation concentrates the time and 
energy conservation during sensing with the SU. The 
winning SU is assumed to be of the opportunity in the 
energy conservation for the account of forming the 
relational SU with PU. The algorithm 1 shows the SU 
control access with the PU identification and group 
formation with complexity and overhead prediction. 
Each SU forms a group with the neighbouring SU and 
transmits the data in the near group N, and hence the 
data is assumed to be of in the miss detection proba-
bility assumption for the optimization analysis. The 
sensing lines are formed thereof with the cooperation 
assumed in the SU. The group updating happens till 
the winning SU is judged with the transmission pa-
rameters, and the remaining SU are assumed to be 
losing one in the selfish formation in the SU.

3.2. Coalition Game Model to Enhance 
Security and Energy in CSS
The game model proposed here is the coalition game 
model to prevent the eavesdropping attack, and the 
noise is a parameter considered for enhancing the 
secrecy since the wireless transmission occupies a 
more discharge of energy in node during the commu-
nication. The noise in the interference has an orthog-
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onal assumption that takes place in the winning SU 
and the CSS formation. The report can be masquerad-
ed in the channel and hence the noise is observed with 
the attack behaviour. The decision making is consid-
ered as artificial noise interference and energy con-
sumption to follow a game order. The game-based as-
sumption is considered with resource modelling with 
the players having their own actions and strategies to 
infer a payoff and cost formation. The proposed appli-
cation is modelled as a game formation with the secu-
rity as the network resources, players formulate each 
node, and the noise is accumulated with the strategy. 
The decision to follow up a game depends on the game 
movement with the request and the formulation in 
another strategy as depicted in Table 1 with the as-
sumption parameters.

The CR networks work on with the awareness of the 
jamming nodes per channel and the overall perfor-
mance is assumed to be of in the increasing paradigm 
with a centralized way. The centralized approach has 
an impact on the payoffs, and network security grad-
ually decreases the energy conservation parameters. 
The payoff estimation increases the network with the 
weighted average of the actions and the strategical 
game plan. The game has no co-association with the 
players’ payoff and other players’ strategy. The calcula-
tion of the payoff matrix enables the final assumption 
in the energy increasing and decreasing with the noise 
parameters in the channel as depicted in Table 2.
The increase in the security level is assumed to be of in 
relation to the energy in each SU nodes, noise param-
eter influences the channel in the prescribed model. 
The noise causes an interference in the channel that 
may disturb the node selection and the feasible ac-
tions are assumed to be of in the number of available 
channels depends on the payoff as shown in Eq. (12)

Game Payoffi= EW x EAC + SW x S, (12)

where Energy consumption(EW )for Players action 
with cost associated (EAC) and Energy consumed in 
SU nodes with ‘S’ groups and ‘SW’ winning secondary 
users using coalition game in weights is equal when 
both summated to One as shown in Eq. (13)

EW+ SW = 1. (13)

The game identifies a payoff with the weight distrib-
uted in the security and the energy is proportional to 

Table 1
Coalition game for the proposed model

Parameters Description

AC Players action with cost associated

EAC
Energy consumption for Players action 
with cost associated

EW
Energy consumed in SU nodes using 
coalition game in weights

SW
Security enhanced with weight using 
coalition game

N Nodes depicted as players 

S Strategy of players with benefit associated

Table 2
Energy and security matrix representation using payoff in coalition game

Payoff matrix No interference Interference with noise  
in allotted channel

Interference with noise 
in idle channel

No interference Energy and security is same Security Increases with constant 
energy and decreasing energy

Security Increases with 
constant energy

Interference with noise in 
allotted channel

Security Increases with 
constant energy and 
decreasing energy

Security Increases with 
decreasing energy

Security Increases with 
decreasing energy

Interference with noise in 
idle channel

Security Increases with 
constant energy and 
decreasing energy

Security Increases with 
decreasing energy

Security Increases with 
decreasing energy
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the noise parameters. The artificial noise interfer-
ence issued in accordance with the transmission time 
is illustrated with the cost of the beneficiary in terms 
of the cost as shown in Eq. (14)

ACSU1= EW+ SW X to/ T. (14)

The cost associated creates a beneficiary that makes 
sense for the security in the associated model with 
the number of nodes transmitting in the below noise 
with the available free channel. This estimation is 
done for the secondary user 1 in the cluster forma-
tion. It has been observed that the maximal node 
transmission parameters rely on the successful ac-
cumulation. The node selected in the channel as-
sumes a cost association in order to generate a high-
er amount of noise prediction with the decrease in 
noise. The occupancy of the channel is not increased 
with the interference increasing. The time to makes 
the attacker misinterpreting form data transmis-
sion without causing a delay as shown in Eq. (15). 
The cost is delayed with the several benefits on the 
transmission delays for the second node that can be 
simplified as 

ACSU2= (EW+ SW X to/ T) x PSU. (15)

PSU  determines the noise probability within the pack-
ets transmitted with these two nodes that have not 
been overlapped. The Eq. (16) shows the noise proba-
bility estimation using the associated cost of SU

PSU = 1- ACSU1. (16)

The above condition is applied for the N number of 
nodes to determine the probable network where as-
sociated cost of SU is done with the initial time t0 as 
shown in Eq. (17).

ACSUn= (EW+ SW X to/ T) x PSun. (17)

Benefits gathered with energy in each node B=ACSUn 
/ACSU1, where PSun is assumed to be the probability of 
the non-correlating nodes  and the cost associated 
with each node is predicted based on the benefits of 
the secondary node usage in the parametric represen-
tation that fulfils the security and energy assumption 
in game modeling technique as shown in Eq. (18).

  

decreasing energy 

Interference with noise in 
idle channel 

Security Increases with 
constant energy and 
decreasing energy 

Security Increases with 
decreasing energy 

Security Increases with 
decreasing energy 

The CR networks work on with the awareness of the 
jamming nodes per channel and the overall 
performance is assumed to be of in the increasing 
paradigm with a centralized way. The centralized 
approach has an impact on the payoffs, and network 
security gradually decreases the energy 
conservation parameters. The payoff estimation 
increases the network with the weighted average of 
the actions and the strategical game plan. The game 
has no co-association with the players’ payoff and 
other players’ strategy. The calculation of the payoff 
matrix enables the final assumption in the energy 
increasing and decreasing with the noise parameters 
in the channel as depicted in Table 2. 

The increase in the security level is assumed to be of 
in relation to the energy in each SU nodes, noise 
parameter influences the channel in the prescribed 
model. The noise causes an interference in the 
channel that may disturb the node selection and the 
feasible actions are assumed to be of in the number 
of available channels depends on the payoff as 
shown in Eq. (12) 

Game Payoffi= EW x EAC + SW x S,                                   (12) 

where Energy consumption(EW )for Players action 
with cost associated (EAC) and Energy consumed in 
SU nodes with ‘S’ groups and ‘SW’ winning 
secondary users using coalition game in weights is 
equal when both summated to One as shown in Eq. 
(13) 

EW+ SW = 1.                                                                    (13) 

The game identifies a payoff with the weight 
distributed in the security and the energy is 
proportional to the noise parameters. The artificial 
noise interference issued in accordance with the 
transmission time is illustrated with the cost of the 
beneficiary in terms of the cost as shown in Eq. (14) 

ACSU1= EW+ SW X to/ T.                                                  (14) 

The cost associated creates a beneficiary that makes 
sense for the security in the associated model with 
the number of nodes transmitting in the below noise 
with the available free channel. This estimation is 
done for the secondary user 1 in the cluster 
formation. It has been observed that the maximal 
node transmission parameters rely on the successful 
accumulation. The node selected in the channel 
assumes a cost association in order to generate a 
higher amount of noise prediction with the decrease 

in noise. The occupancy of the channel is not 
increased with the interference increasing. The 
time to makes the attacker misinterpreting form 
data transmission without causing a delay as 
shown in Eq. (15). The cost is delayed with the 
several benefits on the transmission delays for 
the second node that can be simplified as  

ACSU2= (EW+ SW X to/ T) x PSU.                              (15) 

 PSU  determines the noise probability within the 
packets transmitted with these two nodes that 
have not been overlapped. The Eq. (16) shows 
the noise probability estimation using the 
associated cost of SU 

PSU = 1- ACSU1.                                                     (16) 

The above condition is applied for the N 
number of nodes to determine the probable 
network where associated cost of SU is done 
with the initial time t0 as shown in Eq. (17). 

ACSUn= (EW+ SW X to/ T) x PSun.                             (17) 

Benefits gathered with energy in each node 
B=ACSUn /ACSU1, where PSun is assumed to be the 
probability of the non-correlating nodes  and 
the cost associated with each node is predicted 
based on the benefits of the secondary node 
usage in the parametric representation that 
fulfils the security and energy assumption in 
game modeling technique as shown in Eq. (18). 

PSun=1− ∑ ACSun.
𝑁𝑁𝑁𝑁−1
𝑚𝑚𝑚𝑚=1                                            (18) 

The strategy is associated with the noise 
interference where the network information is 
shared between the SU for collaborative 
sensing each node in the network.  

• Each node in CR network uses an 
application time of weightage in the energy 
of nodes minus the transmission time is 
taken. The network lifetime varies 
according to each node with frequency 
hopping of the channel.  

• Using the game theory model, each SU 
node transfers the data with selfish opinion 
irrespective of the neighbours 

• The optimization in payoff makes energy 
conservation with the changing needs of 
the network with the applied battery 
source. 

• The time too is fixed for the travel in the SU 
node, and the security parameters with the 

(18)

The strategy is associated with the noise interference 
where the network information is shared between 
the SU for collaborative sensing each node in the net-
work. 
 _ Each node in CR network uses an application time 

of weightage in the energy of nodes minus the 
transmission time is taken. The network lifetime 
varies according to each node with frequency 
hopping of the channel. 

 _ Using the game theory model, each SU node 
transfers the data with selfish opinion irrespective 
of the neighbours

 _ The optimization in payoff makes energy 
conservation with the changing needs of the 
network with the applied battery source.

 _ The time too is fixed for the travel in the SU node, and 
the security parameters with the weight in payoff 
make the channel isle for spectrum utilization. 

 _ The payoff calculation is performed with energy 
monitoring with the previously stored information, 
and the collective information with the noise 
interference is decided in the noise interference 
channel. The evaluation results showcase that 
the results have been enriched with security 
enhancement.

The eavesdropping has been monitored with the as-
sumptions based on the multiple channels with the 
spectrum sensing if the channel has not been identi-
fied for channel sensing it will start the process from 
beginning to assume the data within the node param-
eters. The proposed method uses two monitoring 
trends with the free channel and random channel for 
security detection. 

3.3.  Reinforcement Learning with  
Q-learning Model to  Enhance Energy Model
The Q-learning model estimates the approach with 
the off-policy control algorithm where the policy 
agent is used to update the following condition for 
making the cluster head to be applied to the behaviour 
environment [23]. The time interval for the measured 
environment is observed by the knowledge of each 
agent and the Q-learning for the knowledge measured 
is denoted by the
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weight in payoff make the channel isle for 
spectrum utilization.  

• The payoff calculation is performed with energy 
monitoring with the previously stored 
information, and the collective information with 
the noise interference is decided in the noise 
interference channel. The evaluation results 
showcase that the results have been enriched 
with security enhancement. 

The eavesdropping has been monitored with the 
assumptions based on the multiple channels with 
the spectrum sensing if the channel has not been 
identified for channel sensing it will start the process 
from beginning to assume the data within the node 
parameters. The proposed method uses two 
monitoring trends with the free channel and random 
channel for security detection.  

3.3  Reinforcement Learning with  Q-learning 
Model to  Enhance Energy Model 

 The Q-learning model estimates the approach with 
the off-policy control algorithm where the policy 
agent is used to update the following condition for 
making the cluster head to be applied to the 
behaviour environment [23]. The time interval for 
the measured environment is observed by the 
knowledge of each agent and the Q-learning for the 
knowledge measured is denoted by the 
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• Initialize the Primary CR network with Q1 and 
target CR network with Qn 

• The Buffer in the CR network i assumed to be of 
B with the time limit t<<1 

• For each iteration do 

• For each operating environment do  

• Examine the state𝑑𝑑𝑑𝑑𝑈𝑈𝑈𝑈a and select gn ~𝜋𝜋𝜋𝜋(gn,sn) 

• Execute gn and predict the next state 𝑑𝑑𝑑𝑑𝑈𝑈𝑈𝑈a+1 

• Reward rn=RW(𝑑𝑑𝑑𝑑𝑈𝑈𝑈𝑈a, gn) 

• Store (𝑑𝑑𝑑𝑑𝑈𝑈𝑈𝑈a, gn, RW,𝑑𝑑𝑑𝑑𝑈𝑈𝑈𝑈+1a ) in the primary network 

• Store in buffer B 

• For each update step do 

• SampleSPn = (𝑑𝑑𝑑𝑑𝑈𝑈𝑈𝑈a, gn, RW,𝑑𝑑𝑑𝑑𝑈𝑈𝑈𝑈+1a ) ~B 

• Predict the target in CR network with Qn 

Value 

• Perform gradient descent step on (Q1(𝑑𝑑𝑑𝑑𝑈𝑈𝑈𝑈a, 
gn)- Qn(𝑑𝑑𝑑𝑑𝑈𝑈𝑈𝑈a, gn)) 

• Update target network parameter Qn←  t* 
Q1(1- t) * Qn 

• Strategy with payoff  Qn← t* Q1(1- t) * Qn /  
SUn    // payoff to enhance energy and 
security. 

The strategy supports the modelling phase 
with the game modelling to enhance each SU 
with the Q based approach that enhances the 
payoff to increase the energy and 
eavesdropping in the CR network. 

 

44..  RReessuullttss  aanndd  DDiissccuussssiioonn 
This section presents the results obtained in the 
experimental study with the proposed strategy. 
The simulations have been carried in CWSN 
simulator, and the work focuses mainly on the 
physical layer. The values of N, SU, PU, d are 
all determined with the miss detection, and 
false alarm probability count and the 
transmission ranges are assumed to be for a 
different number of cluster SUs. The simulation 
parameters are discussed below in Table 3. 
Consider a simulation area with the 70 nodes 
been taken in to consideration as secondary 
users. The frequency band is used with the 
700MHZ and the transmission power is 
maintained at the 100MW. The probability is 
analysed with the false alarm and miss 
detection ratio. The time parameter is assumed 
to be of T with the 0.3 to 0.5 seconds. The 
energy utilised with the respect to the 
secondary user is assumed to be of the ratio in 
the winning secondary users and consolidated 
with the alarm probability with 0.7 respectively 
as depicted in Table 3. 

Table 3 

Simulation parameters 

Parameter Values 
Simulation Area 250 X 250 m 
Frequency band 700 MHz 
N- Number of SU nodes 70 nodes 
Transmission power of SU  15 mW 
Transmission power of PU  100 mW 
Gaussian Noise  -80 dbm 
Path loss exponent 3 
Threshold energy 15 mW 

(19)

where 
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• The payoff calculation is performed with energy 
monitoring with the previously stored 
information, and the collective information with 
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the spectrum sensing if the channel has not been 
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the off-policy control algorithm where the policy 
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where 𝑑𝑑𝑑𝑑𝑈𝑈𝑈𝑈a represents the state of agent a at time t , 𝑎𝑎𝑎𝑎𝑈𝑈𝑈𝑈a  
represents action, 𝑟𝑟𝑟𝑟𝑈𝑈𝑈𝑈+1a (𝑑𝑑𝑑𝑑𝑈𝑈𝑈𝑈+1a )  represents delayed 
rewards for the action taken at time n and receives 
at time n+1. The learning rate I predicted with the 
€ (0 < € < 1) is the learning rate and  (0 < ¥ < 1) 
represents the cut off factor as shown in Eq. (19). 
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making the cluster head to be applied to the 
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represents the cut off factor as shown in Eq. (19). 
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• The Buffer in the CR network i assumed to be of 
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false alarm probability count and the 
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users. The frequency band is used with the 
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secondary user is assumed to be of the ratio in 
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with the alarm probability with 0.7 respectively 
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parameters. The proposed method uses two 
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channel for security detection.  

3.3  Reinforcement Learning with  Q-learning 
Model to  Enhance Energy Model 
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• Initialize the Primary CR network with Q1 and 
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• The Buffer in the CR network i assumed to be of 
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• For each iteration do 
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• Examine the state𝑑𝑑𝑑𝑑𝑈𝑈𝑈𝑈a and select gn ~𝜋𝜋𝜋𝜋(gn,sn) 

• Execute gn and predict the next state 𝑑𝑑𝑑𝑑𝑈𝑈𝑈𝑈a+1 

• Reward rn=RW(𝑑𝑑𝑑𝑑𝑈𝑈𝑈𝑈a, gn) 
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Value 
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• Update target network parameter Qn←  t* 
Q1(1- t) * Qn 

• Strategy with payoff  Qn← t* Q1(1- t) * Qn /  
SUn    // payoff to enhance energy and 
security. 

The strategy supports the modelling phase 
with the game modelling to enhance each SU 
with the Q based approach that enhances the 
payoff to increase the energy and 
eavesdropping in the CR network. 

 

44..  RReessuullttss  aanndd  DDiissccuussssiioonn 
This section presents the results obtained in the 
experimental study with the proposed strategy. 
The simulations have been carried in CWSN 
simulator, and the work focuses mainly on the 
physical layer. The values of N, SU, PU, d are 
all determined with the miss detection, and 
false alarm probability count and the 
transmission ranges are assumed to be for a 
different number of cluster SUs. The simulation 
parameters are discussed below in Table 3. 
Consider a simulation area with the 70 nodes 
been taken in to consideration as secondary 
users. The frequency band is used with the 
700MHZ and the transmission power is 
maintained at the 100MW. The probability is 
analysed with the false alarm and miss 
detection ratio. The time parameter is assumed 
to be of T with the 0.3 to 0.5 seconds. The 
energy utilised with the respect to the 
secondary user is assumed to be of the ratio in 
the winning secondary users and consolidated 
with the alarm probability with 0.7 respectively 
as depicted in Table 3. 

Table 3 

Simulation parameters 

Parameter Values 
Simulation Area 250 X 250 m 
Frequency band 700 MHz 
N- Number of SU nodes 70 nodes 
Transmission power of SU  15 mW 
Transmission power of PU  100 mW 
Gaussian Noise  -80 dbm 
Path loss exponent 3 
Threshold energy 15 mW 
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The strategy supports the modelling phase with the 
game modelling to enhance each SU with the Q based 
approach that enhances the payoff to increase the en-
ergy and eavesdropping in the CR network.

4. Results and Discussion
This section presents the results obtained in the ex-
perimental study with the proposed strategy. The sim-
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the work focuses mainly on the physical layer. The 
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detection, and false alarm probability count and the 
transmission ranges are assumed to be for a different 
number of cluster SUs. The simulation parameters are 
discussed below in Table 3. Consider a simulation area 
with the 70 nodes been taken in to consideration as 
secondary users. The frequency band is used with the 
700MHZ and the transmission power is maintained at 
the 100MW. The probability is analysed with the false 
alarm and miss detection ratio. The time parameter 
is assumed to be of T with the 0.3 to 0.5 seconds. The 
energy utilised with the respect to the secondary user 
is assumed to be of the ratio in the winning secondary 
users and consolidated with the alarm probability with 
0.7 respectively as depicted in Table 3.
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Simulation Area 250 X 250 m

Frequency band 700 MHz

N- Number of SU nodes 70 nodes

Transmission power of SU 15 mW

Transmission power of PU 100 mW

Gaussian Noise -80 dbm

Path loss exponent 3

Threshold energy 15 mW

False alarm probability 0.0.14

Miss detection probability 0.03

T 0.3-0.5 s

Number of channels 25

EW 0.3

SW 0.7

Figure 3 illustrates the relationship between the 
number of Secondary users N and the ratio of win-
ning SU with the proposed mechanism. The pro-
posed model uses the selfish group formation and 
reformation to support the CSS formation to en-
hance energy and security. The proposed model 
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uses the coalition game modelling. It also has been 
compared with the non-cooperative model and re-
call model. The proposed mechanism outlines that 
the performance enhances when the number of SU 
becomes large with N>30. The performance ratio 
is 2% when it reaches with N=50. This detection is 
obtained with the miss detection and probability of 
false alarm in the winning groups in N=50. The miss 
detection probability in the proposed mechanism 
is achieved with 0.02and the SU tries to form a ref-
ormation group that eradicates the miss detection 
probability. The proposed mechanism has a 15% 
lower than the rest methods of recall model, where 
the model is reframed with the existing parameters 
of transmission, but it does not enhance the miss de-
tection probability and the false alarm probability. 
The model has been compared with the Stackelberg 
and Bayesian game modelling, whereas the proposed 
coalition game modelling provides the best detec-
tion probability compared with other models.

The proposed model enhances the energy, and the se-
curity is enhanced since the energy spent is maximum 
in proposed, but the consumption is maintained with 
the model that supports the secrecy communication in 
a predetermined way. The model has been compared 
with the Stackelberg and Bayesian game modelling, 
whereas the proposed coalition game modelling pro-
vides the best energy enhancement. The energy con-
sumed is more in the proposed model while comparing 
with the other two game modelling approaches. The 
table below depicts the purpose of adding a detailed 
prediction of energy with the Q-learning approach.

Figure 3
Group formation in winning SU and Optimal SU for Miss 
detection and False alarm prediction

Table 4
Energy Consumed based on the energy spent with the 
EW=0 &0.7
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using coalition game in weights is assumed as '0' 
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0.2 1.3 1 0.9 
0.3 1.6 1.4 1.2 
0.4 1.8 1.5 1.3 
0.5 1.9 1.6 1.5 
0.6 2 1.9 1.7 
0.7 2.5 2.2 2 
0.8 2.7 2.5 2.3 
0.9 2.9 2.6 2.4 
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Figure 6 shows that the energy spent using Q-learn-
ing, where more energy has been spent but the energy 
consumed is at the maximum level in the CR network. 
At time t=3000 s the packets sent, and energy usage is 
moderate but the nodes alive when it reaches the time 
t=-6000 s depicts that the packet transmission is low 
but the energy consumed is high. The probability that 
the energy consumption and the tradeoff between the 
security and energy is maintained throughout in CR 
network. The overhead is measured with energy con-
sumption and spectrum utilization. The strategy has 
been assumed to be of the with the proposed model is 
higher. The simulations after time t=6000s are shown

consume less. The spectrum utilization is higher for 
the proposed model with the non-game strategy. The 
network lifetime with overhead is achievable in the 
proposed model.

Figure 5
Energy spent with EW=0.7 
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Table 5 

Spectrum utilization using Q-learning 

Energy and 
spectrum 
monitoring 

Coalition Strategy 
with Q-learning 
using battery with 
50% 

Non Coalition 
strategy using 
battery with 
50% 

Energy Spent(j) 55.2 52.1 
Energy 
Consumption 

49.1 47.2 

Spectrum 
utilization 
packets sent 

55678 50567 

The above Table 5 depicts that the energy 
consumption is higher when the node is used with 
the proposed security assumptions. The proposed 
model outlines a 26% increase in the battery level, 
and then weight /cost associated may not increase 
the battery nodes to consume less. The spectrum 
utilization is higher for the proposed model with the 
non-game strategy. The network lifetime with 
overhead is achievable in the proposed model. 
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Energy spent with different security strategies 

 
 

Figure 7 

Miss Detection probability in terms of packet 
delivery ratio 

 
Figure 7 showcase the miss detection 
probability using the Q-learning approach and 
the energy consumed is more in Q-learning 
approach since the probability ratio and the 
packet delivery ratio gradually increases the 
proposed approach and the number of SU 
nodes is increased with the proposed approach 
for deliberately improved in the ratio of 
theenergy with the secured transmission.  
Figure 8 shows the false alarm probability in 
the proposed has a closer observation in the 
proposed approach, and the Q-learning is 
compared with the Bayesian and Stackelberg 
game approach .since the proposed model has 
a probabilistic view with the increase in energy 
consumption, and it gradually increased. 

Figure 8 

False Alarm probability Using Proposed Model 
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Figure 8
False Alarm probability Using Proposed Model

SU nodes is increased with the proposed approach for 
deliberately improved in the ratio of theenergy with 
the secured transmission. Figure 8 shows the false 
alarm probability in the proposed has a closer obser-
vation in the proposed approach, and the Q-learning 
is compared with the Bayesian and Stackelberg game 
approach .since the proposed model has a probabilis-
tic view with the increase in energy consumption, and 
it gradually increased.

  

 
 

55..  CCoonncclluussiioonn  
In this paper, the spectrum sensing has been 
investigated with the collaborative manner on 
supporting the energy enhancement in multiple 
PUs. The objective function has been obtained with 
the maximum energy conservation with the winning 
SU and transmission strategies. The optimization 
has been performed with the objective function to 
monitor the network performance and secure 
transmission with selfish group formation. Through 
the simulation study, the proposed model increases 
the winning SU ratio with 2% and average miss 
detection probability with 2% compared to the 
various models. The throughput is also enhanced 
with the network performance in the winning SU 
strategy, the coalition game model enhances energy 
modelling, and Q-learning supports the game 
modelling in detecting the eavesdropping to make 
the channel to effectively allocate the SU spectrum 
allocation with 7% of attack modelling. The network 
performance is modelled with the physical layer 
contributing to the energy consumption level, and 
spectrum saturation levels are maintained. In future 
works, it has been used in multiple channels with 
the routing protocol to monitor the security and 
energy conservation with various PU activities also 
the multiple channel resource allocation can be 
provided using the proposed model. 
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