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The presented paper proposes a new speech command recognition model for novel engineering applications 
with limited resources. We built the proposed model with the help of a Convolutional Recurrent Neural Net-
work (CRNN). The use of CRNN instead of Convolutional Neural Network (CNN) helps us to reduce the model 
parameters and memory requirement as per resource constraints. Furthermore, we insert transmute and cur-
tailment layer between the layers of CRNN. By doing this we further reduce model parameters and float num-
ber of operations to half of the CRNN requirement. The proposed model is tested on Google’s speech command 
dataset. The obtained result shows that the proposed CRNN model requires 1/3 parameters as compared to the 
CNN model. The number of parameters of the CRNN model is further reduced by 45% and the float numbers of 
operations between 2% to 12 % in different recognition tasks. The recognition accuracy of the proposed model 
is 96% on Google’s speech command dataset, and on laboratory recording, its recognition accuracy is 89%.
KEYWORDS: Convolutional Neural Network; Recurrent Neural Network; Gated Recurrent Unit; Low Laten-
cy; Speech command recognition.
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1. Introduction
A natural language speech interaction system is ben-
eficial for the user because there is no learning curve 
regarding operation of the system. User can operate 
the system by communicating with it as he/she com-
municates with other people. However, the develop-
ment of a natural language speech interaction system 
is a complex task due to the ambiguous nature of nat-
ural language [3]. Scientists and researchers simplify 
the task by dividing it into two modules namely the 
speech command recognition module [31] and the nat-
ural language understanding module [11]. Moreover, 
carried out lots of research on both the modules as a 
result of their hard work today Microsoft- “Cortana”, 
Amazon- “Alexa”, Apple- “Siri”, Google-“Google assis-
tant”, etc. user-friendly natural language speech inter-
action systems are available in the market [26, 36]. 
The mentioned natural language speech interaction 
systems rely on a powerful cloud-based neural net-
work model that requires a broadband connection 
[36]. However, for novel engineering applications 
where memory and computational resources are lim-
ited, the use of a broadband-based speech interaction 
system is costly. It also compromises privacy, battery 
life [26] as well as it highly depends on external fac-
tors, for example, network quality [16], network speed 
[1], latency [27], network traffic [36], etc. 
For novel engineering applications, a simple model 
running on the device and requiring less computa-
tional complexity compared to its cloud counterpart 
is more energy-efficient [25]. Scientists and research-
ers developed some locally running (standalone [31]) 
speech interaction system for novel engineering ap-
plications, for example, voice-controlled robots, dai-
ly required voice-controlled smart home appliances, 
smart industrial assistive devices, etc. [30]. However, 
modification in the developed system (Figure 1) is 
continued for maintaining a balance between the re-
quirement of novel engineering applications and the 
state-of-the-art performance. 
Within the mentioned framework, to achieve the 
performance as per the cloud-based system with 
constraints of limited memory and computation-
al resources, the presented paper proposes a hybrid 
speech command recognition model for natural lan-
guage speech interaction system used in novel engi-
neering applications. The speech command recogni-

Figure 1
Block diagram of natural language speech interaction 
system for novel engineering applications (Time-
domain representation is of speech command- Turn the 
temperature up in the washroom)

tion model is the heart of the natural language speech 
interaction system, and its recognition accuracy de-
cides the overall performance of the natural language 
speech interaction system [36]. By achieving high 
recognition accuracy with limited model parameters, 
we try to find a new prospect for natural language 
speech interaction system used in novel engineering 
applications. 
The main objectives of the presented work are:
1 Design of a new speech command recognition 

model that achieves state-of-the-art performance 
in spoken command recognition, and it is small in 
size to fulfill the constraints of novel engineering 
applications.

2 To introduce single word as well as continuous 
speech command recognition intelligence in the 
designed model.

3 Testing of the designed model on Google speech 
command dataset.

To fulfill mentioned objectives, we chose Convolution 
Recurrent Neural Network (CRNN) [29, 37] archi-
tecture instead of Deep Neural Network (DNN) [14, 
38], Convolution Neural Network (CNN) [1, 13-14] 
and Recurrent Neural Network (RNN) [16, 23] archi-
tecture to build the model. The main reason behind 
choosing hybrid neural network architecture instead 
of pure neural network architecture is that we want 
to reduce the number of trainable parameters and 
the number of float operations that interns reduce 
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the computational complexity. The choice of CRNN 
architecture is motivated by the work of Wang and 
Zhang [37] on robust voice activity detection (a sub-
field of speech recognition).
The presented paper is structured as follows. Section 
1 is about the introduction of the topic. Section 2 dis-
cusses previous work on speech command recogni-
tion. Section 3 explains the processing of speech com-
mand for recognition purpose by layers of CRNN and 
the approach for reducing float operations, the num-
ber of trainable parameters in the proposed model. 
Section 4 discusses the dataset and implementation 
platform. Section 5 discusses the obtained results. Fi-
nally, the paper concluded with the conclusion.

2. Related Work
Natural language speech recognition is a challenging 
task. Leading commercial companies, scientists, re-
searchers, work on speech recognition technology for 
achieving high recognition accuracy with less compu-
tational complexity. As background, this section will 
discuss approaches and models suggested by scien-
tists, researchers for speech recognition. 
Speech recognition technology begins with the rec-
ognition of a single phoneme instead of recognizing a 
continuous word [27]. The phoneme recognition in the 
state-of-the-art speech recognition model is done with 
the help of the Gaussian Mixer Model (GMM)-Hid-
den Markov Model (HMM)-Language Model (LM) 
paradigm [22, 27]. In the GMM-HMM-LM paradigm, 
GMM will process input speech feature vector (i.e. 
Mel Frequency Cepstral Coefficient (MFCC) [30]) and 
emits emission probability for HMM [5, 22, 27]. The 
HMM together with LM compute the most likely se-
quence of phoneme with the help of a decoder [6]. The 
main drawback of the GMM-HMM-LM based state-
of-the-art speech recognition model is that it is unable 
to recognize the data present on the boundary line [22]. 
To solve the problem scientists, researchers replaced 
GMM with DNN [22, 25]. The new DNN-HMM-LM 
paradigm achieves high recognition accuracy as com-
pared to the GMM-HMM-LM paradigm [22].
With further advancement in technology, the DNN-
HMM-LM based speech recognition paradigm is 
modified into a single deep learning framework that 
directly recognized a continuous word instead of a sin-

gle phoneme [13]. Within a single deep learning frame-
work, Bahdanau et al. [4] and Ueno et al. [35], proposed 
RNN based attention model which automatically 
learns the alignment between the input feature and 
the respective output sequence. The advantage of the 
attention deep learning framework is that Markov’s 
assumption is not required for recognition [2]. The 
drawback of the attention deep learning framework is 
that in a noisy environment the estimated alignment is 
easily corrupted by noise and result in poor recognition 
accuracy [28]. As a solution, Miao et al. [28], Kim et al. 
[20], Li et al. [24] proposed Context Temporal Classi-
fication (CTC) speech recognition model. The CTC 
speech recognition model improves recognition accu-
racy in a noise environment. Both CTC and attention 
deep learning frameworks perform well and achieve an 
excellent result, but face challenges in incorporating 
the highly variable features of the natural language like 
accent style [22], various speaker attributes [25], speed 
of production of the speech signal [27], etc.
The advancement in deep learning technology con-
tinues and Hamid et al. [14], and Guiming et al. [12], 
replaced the attention-RNN speech recognition 
model and CTC-RNN speech recognition model 
with the CNN speech recognition model. Original-
ly CNN is used in image processing applications [1]. 
To use CNN in speech recognition applications they 
arranged speech features in the form of a two-dimen-
sional array and trained the CNN speech recognition 
model using the array. The CNN speech recognition 
model achieves high recognition accuracy by incorpo-
rating the highly variable feature of natural language. 
However, two main drawbacks of the CNN speech 
recognition model are- the large number of layers are 
required to get enough correlation between different 
frequency bands to achieve high recognition accuracy 
[32] and the CNN speech recognition model ignores 
the correlation between different frames [29]. 
The RNN or CNN employed speech recognition mod-
el performs well. However, the huge number of oper-
ations in Long Short-Term Memory (LSTM)/ Gated 
Recurrent Unit (GRU) cell [34, 37] or in the convo-
lutional and max-pooling layer [14] result in a larger 
model size and limits the use of RNN/CNN employed 
speech recognition model in novel engineering appli-
cations with limited resources.
On the other hand, with the growing demand for nat-
ural language speech interaction with devices and 
sufficient advancement in deep learning technology 
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Wang G. and Zhang W. [37], and Mukherjee et al. [29] 
tried CRNN for subfields of speech recognition, for 
example, keyword recognition, voice activity detec-
tion, categorizing sound, etc. 
To fulfill the requirement of the current technolog-
ical scenario in novel engineering applications, i.e. 
performance as per the cloud-based network, with 
constrain of limited resources, research work by re-
searchers and commercial groups is continuing.

3. Material and Method

3.1. Convolutional Recurrent Neural Network
The objective of the presented work is to develop a 
speech command recognition model that will achieve 
high recognition accuracy with limited model pa-
rameters and will suit the requirement of novel en-
gineering applications. To fulfill this objective in the 
presented work hybrid neural network architecture 
CRNN (a combination of CNN and RNN as illustrat-
ed in Figure 2) is preferred to build the model. 
The preference is given to CRNN because the CRNN 
captures the local spectral correlation in speech com-
mand by using convolutional layer and global spectral 
correlation in speech command by using recurrent 
layer [29, 37-38]. The simultaneous capturing of local 
and global spectral correlation of speech command by 
CRNN help in achieving high recognition accuracy 

Figure 2
Basic CRNN for speech command recognition (FC is 
abbreviation of fully connected layer)
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The last fully connected layer is followed by an output 
layer. The output layer computes the output word se-
quence from Equation (6) by using a soft-max activa-
tion function [15].

3.3. Method for Reducing the Number of 
Parameters and Float Operation in CRNN
In CRNN the number of parameters and the number 
of float operations is (( ) / )

nc ntf m FC×  [29]. To reduce 
the number of parameters and the number of float 
operations for fulfilling the main objective of the pre-
sented work (i.e. to achieve high recognition accura-
cy with limited model parameters) the Equations (3) 
and (5) are processed in a divergent way with the help 
of a low latency method implemented between the 
layers of CRNN. The method is illustrated in Figure 
3, and it is implemented with the help of curtailment 
and transmute layer. 
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As illustrated in Figure 3, the transmute and curtail-
ment layer will compute the linear combination of the 
output states of the respective layers in such a way that 
the number of parameters and float operations in suc-
ceeding layers will be reduced on the other hand the 
succeeding layers will get enough features from cou-
pled states to recognize speech command with high 
accuracy. Also, the arrangement makes the proposed 
model more robust to longer speech sequences with re-
duce number of parameters and float operations. 
In the presented work, for the reduction in the num-
ber of parameters and float operation, two low latency 
methods for computing a linear combination of the 
output states in the transmute and curtailment layer 
are proposed and discussed in the following text.

3.3.1. Mean-Weight-Reduction-Method
In this method, the reduction in the number of param-
eters and float operations is obtained by computing a 
linear combination of each time step with the help of 
weight vector in the curtailment layer as follows:
First, the transmute layer 

1TL  transforms the pooled 
feature maps of 

ccL  convolutional layer into a feature 
vector. Next, for a sequence of length T of feature vec-
tor the curtailment layer 

1rsL  will compute linear com-
bination as:

6 
 

sequences with reduce number of parameters and 
float operations.  

In the presented work, for the reduction in the 
number of parameters and float operation, two 
low latency methods for computing a linear 
combination of the output states in the transmute 
and curtailment layer are proposed and discussed 
in the following text. 

3.3.1 Mean-Weight-Reduction-Method 

In this method, the reduction in the number of 
parameters and float operations is obtained by 
computing a linear combination of each time step 
with the help of weight vector in the curtailment 
layer as follows: 

First, the transmute layer 
1TL  transforms the 

pooled feature maps of 
ccL  convolutional layer 

into a feature vector. Next, for a sequence of 
length T  of feature vector the curtailment layer 

1rsL  will compute linear combination as: 
1

1
0

,                                                     (7)
t

T

t
t

c R MW
−

=

= ∑
 
where tc  represent input for the succeeding 
recurrent layers, 1t

W   is the weight vector with the 

help of which curtailment layer 
1rsL  will compute 

the input for the succeeding recurrent layers. The 
weight vector 

1t
W   of the curtailment layer 

1rsL    

is computed from the weight vector of equation 
(1) and (2) as: 

1 ,
0

/ .                                                       (8)
t

I

i j
i

W w ij
=

=∑
 
Next, Equation (7) is feed as input to the 
succeeding recurrent layers and for the same 
sequence of length T  the relationship between 
input and output of Bidirectional Gated Recurrent 
Unit (BGRU) cell (consideration of BGRU instead 
of Bidirectional Long Short-Term Memory 
(BLSTM) is based on section 5.2) in the recurrent 
layer  is:   

1 1 1( .[h , c  ]+b  )                                         (9)
t r rt t rGr R W −=  

1 1 1( .[h , c  ]+b  ),                                        (10)
t u rt t UGU R W −=

where 
1t

Gr   represent the output of the reset gate 

of BGRU cell [2], 1t
GU  represent the output of the 

update gate of BGRU cell, 1 1b , bU r is bias, R is 
ReLU activation function.  

Equation (9) and (10) shows that at any time 
instant t , the output of BGRU cell is the function 
of input sequence tc  at time t  and BGRU cell 
output 

1rth −
 at time 1t −  [37]. Now transmute 

layer 
2TL  after recurrent layers will flatten the 

output of the BGRU cell from shape 
(( ) / )cnt f m×   to shape ((1 ) / )cntf m×  and 
curtailment layer 

2rsL  will concatenate the output 

of the last recurrent layer
rr

L by using the formula:

1( .[ * , ])                                (11)t h rt rt tR w Gr h c−ϒ =
h ,                                                 (12)

trst r tGU= + ϒ

where ,
t tr rGr GU  represents update gate output 

and reset gate output of the last recurrent layer 
respectively, hw  is the weight vector for 
concatenating, h rst  is concatenated output.  

Now
0 ( 1)

(h ......... )
Grrst rsth

−
 is concatenated output of 

different BGRU cell of last recurrent layer 
computed using weight vector 

0 ( 1)
(w ......... )

Grh hw
−

. 

By using equation (12) the curtailment layer 
2rsL   

will compute a linear combination of concatenated 
output for succeeding fully connected layer as: 

1

2
0

( ),                                                (13)
r

t

G

rst
t

R h W
−

=

Ζ = ∑
where Ζ  represent new input for the succeeding 
fully connected layer instead of equation (5). The 
weight vector of Equation (13) is computed as:
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3.3.2 Mean-Max-Weight-Reduction-Method 

The mean-max-weight-reduction-method for the 
reduction in the number of parameters and float 
operation is in the neighborhood of the mean- 
weight-reduction method. The variability between 
the methods lies in the computation of the weight 
vector with the help of which the curtailment 
layer computes a linear combination of the time 
steps. In this method, the computation of the 
weight vector 2t

W  of the curtailment layer is 

based on the content of each state i.e. if at a time 
instant t  a frame carries maximum information 
then the weight vector is longer for this frame as 
compared to another frame with the minimum 
information. 

(7)
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tion is in the neighborhood of the mean- weight-reduc-
tion method. The variability between the methods lies 
in the computation of the weight vector with the help 
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of which the curtailment layer computes a linear com-
bination of the time steps. In this method, the compu-
tation of the weight vector 2t

W  of the curtailment layer 
is based on the content of each state i.e. if at a time in-
stant  t a frame carries maximum information then the 
weight vector is longer for this frame as compared to 
another frame with the minimum information.
This method will follow the same procedure dis-
cussed above (Section 3.3.1). The equivalent equation 
for computing input for the succeeding recurrent lay-
er by curtailment layer 

1rsL  is the same as Equation (7) 
and (8). The equation for computing input for suc-
ceeding fully connected layer by curtailment layer 

2rsL  is as follows:
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In the CRNN architecture, the number of float 
operations is (( ) / )

nc ntf m FC×  and the number 

of parameters is (( ) / )
nc ntf m FC×   [18, 29]. With 

the help of equation (13) or equation (15), the 
proposed method will reduce the number of float 
operation to (( ) / )

nc nf t m FC+ ×   and the 

number of parameters to (( ) / )
nc nf m FC× . 

 
 3.4 High-Level Description of the Proposed 
Model 
 
The high-level architecture of the proposed hybrid 
CRNN speech command recognition model is 
illustrated in figure 4. The high-level description 
of network structure starting from the data input 
method is as follows: 
 
3.4.1 Data Input  
 
Speech commands are in the form of a one-
dimensional vector [8]. To feed it to the 2D 
convolution layer of CRNN Himid et.al. [14] 
suggest either to convert it into the spectrogram 
and feed the 

1 cc cL L∈ convolutional layer of 

CRNN with the spectrogram or extract Mel 
Frequency Spectral Coefficients (MFSCs) from the 
extremely long speech command and organized 
the extracted features in the form of a maps and 
feed 

1 cc cL L∈  convolutional layer of CRNN with 

organized feature maps i.e. with a context 
window of F log Mel band energies over T  
frames [21]. In the presented work, the second 
method is preferred to feed the proposed model.  
 
 
 
 
 

 
Figure 4 
Proposed speech command recognition model 
 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
However, in the presented work, the proposed 
model is fed with Logarithmic Mel Power Spectral 
coefficients (LMPSC) i.e. without discrete cosine 
transform instead of traditional MFCC. The reason 
behind feeding the proposed model with LMPSCs 
instead of MFCC is that spectral features (LMPSC) 
carry more information as compare to cepstral 
(MFCC) features [5]. Moreover, the computation 
of features without discrete cosine transform helps 
in reducing the overall computational complexity 
of the proposed model. 
 
 Extractions of LMPSCs– In the presented work, 
LMPSCs are extracted as per the European 
Telecommunication Standards Institute (ETSI) 
standard [7]. According to the ETSI standard first, 
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convert it into a discreet form [8]. After pre-
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converted into the Mel domain by computing 
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In the CRNN architecture, the number of float op-
erations is (( ) / )

nc ntf m FC×  and the number of pa-
rameters is (( ) / )

nc ntf m FC×  [18, 29]. With the help 
of Equation (13) or Equation (15), the proposed 
method will reduce the number of float operation to 
(( ) / )

nc nf t m FC+ ×  and the number of parameters to 
(( ) / )

nc nf m FC× .

3.4. High-Level Description of the Proposed 
Model
The high-level architecture of the proposed hybrid 
CRNN speech command recognition model is illus-
trated in Figure 4. The high-level description of net-
work structure starting from the data input method is 
as follows:

3.4.1. Data Input 
Speech commands are in the form of a one-dimen-
sional vector [8]. To feed it to the 2D convolution lay-
er of CRNN Himid et al. [14] suggest either to convert 
it into the spectrogram and feed the 
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convolu-
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the extracted features in the form of a maps and feed 

1 cc cL L∈  convolutional layer of CRNN with organized 
feature maps i.e. with a context window of F log Mel 

band energies over T frames [21]. In the presented 
work, the second method is preferred to feed the pro-
posed model. 
However, in the presented work, the proposed mod-
el is fed with Logarithmic Mel Power Spectral co-
efficients (LMPSC) i.e. without discrete cosine 
transform instead of traditional MFCC. The reason 
behind feeding the proposed model with LMPSCs 
instead of MFCC is that spectral features (LMP-
SC) carry more information as compare to cepstral 
(MFCC) features [5]. Moreover, the computation of 
features without discrete cosine transform helps in 
reducing the overall computational complexity of 
the proposed model.
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suggest either to convert it into the spectrogram 
and feed the 

1 cc cL L∈ convolutional layer of 

CRNN with the spectrogram or extract Mel 
Frequency Spectral Coefficients (MFSCs) from the 
extremely long speech command and organized 
the extracted features in the form of a maps and 
feed 

1 cc cL L∈  convolutional layer of CRNN with 

organized feature maps i.e. with a context 
window of F log Mel band energies over T  
frames [21]. In the presented work, the second 
method is preferred to feed the proposed model.  
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Figure 5
Organization of data input to proposed speech command 
recognition model

Extractions of LMPSCs – In the presented work, 
LMPSCs are extracted as per the European Tele-
communication Standards Institute (ETSI) stan-
dard [7]. According to the ETSI standard first, the 
input speech command is pre-processed to convert 
it into a discreet form [8]. After pre-processing the 
discrete-time speech signal is converted into the Mel 
domain by computing Short-Time Discrete Fouri-
er Transform (STDFT) [19] and passing the power 
spectrum of computed STDFT through a triangularly 
weighted Mel scale filter bank [8]. The resulting Mel 
power spectrum is compressed by taking its natural 
log. From the logarithmically compressed Mel power 
spectrum, LMPSCs are extracted and arranged in the 
form of feature vectors.
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In this organization, the extracted LMPSC features 
are arranged as three 2-D feature maps 
representing static, delta, and delta-delta 
representation [14] of spectral features distributed 
along both i.e. frequency (by using frequency 
band index) and time (by using frame number 
within each context window) [12]. The presented 
organization is inspired by the work of Hamid et 
al. [14].  
 
3.4.2 Convolutional Layer ( )
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The proposed speech command recognition 
model goes ahead with two-dimensional 
convolutional layer followed by max-pooling 
layer, ReLU activation. In the proposed model 
three convolutional layers 

1 2 3
, ,c c cL L L  with the 

number of filters 64cnf =  and size 

( (20,5))F Tsz sz× = , stride ( (4,1))T FS S× =  are 
sequentially placed. The convolutional layer 

1 2 3
, ,c c cL L L  will process the input speech features 

as discussed in Section 3.1.2. 

3.4.3 Transmute Layer ( )
TTL     

In the proposed model transmute layer is placed 
after the convolutional layer 

3cL  and the recurrent 

layer 
3r

L   for the reduction in the number of 

parameters and float operation. This layer is 
implemented with the feed-forward concept with 
32 units in it. 

3.4.4 Curtailment Layer ( )
rsrsL     

In the proposed model, each transmute layer is 
followed by a curtailment layer to compute a 
linear combination of time steps with the help of 
equation (7) to equation (16) for the reduction in 
the number of parameters and float operation. 
This layer is implemented with 64 numbers of 
units in it. 

3.4.5 Bidirectional Recurrent Layer ( )
rr

L     

In the proposed model, the curtailment layer
1rsL  

is followed by bidirectional recurrent layers with 
64NR =  numbers of hidden units in its BGRU 

cell. Bidirectional GRU cell is preferred in the 
proposed model because the bidirectional GRU 
cell considers present time steps as well as future 
time steps. This will help optimally incorporating 
the time dimensional features. In the proposed 
model, three bidirectional recurrent layers 

1 2 3
, ,r r rL L L  are sequentially placed and will 

process the speech features as discussed in Section 
3.1.3. 

 3.4.6 Fully Connected Layer ( )
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In the proposed model the curtailment layer 
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is followed by the fully connected layer with the 
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1 2
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sequentially placed and process the received data 
as discussed in Section 3.1.4. The fully connected 
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generates the output word sequence using the 
soft-max activation function. 
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In this organization, the extracted LMPSC features 
are arranged as three 2-D feature maps representing 
static, delta, and delta-delta representation [14] of 
spectral features distributed along both i.e. frequency 
(by using frequency band index) and time (by using 
frame number within each context window) [12]. The 
presented organization is inspired by the work of Ha-
mid et al. [14]. 

3.4.2. Convolutional Layer (Lcc
) 

The proposed speech command recognition model 
goes ahead with two-dimensional convolutional lay-
er followed by max-pooling layer, ReLU activation. 
In the proposed model three convolutional layers 

1 2 3
, ,c c cL L L  with the number of filters 64cnf =  and size 

( (20,5))F Tsz sz× = , stride ( (4,1))T FS S× =  are sequen-
tially placed. The convolutional layer 

1 2 3
, ,c c cL L L  will 

process the input speech features as discussed in Sec-
tion 3.2.1.

3.4.3. Transmute Layer (LTT
) 

In the proposed model transmute layer is placed af-
ter the convolutional layer 

3cL  and the recurrent lay-
er 

3r
L  for the reduction in the number of parameters 

and float operation. This layer is implemented with 
the feed-forward concept with 32 units in it.

3.4.4. Curtailment Layer (Lrsrs
) 

In the proposed model, each transmute layer is fol-
lowed by a curtailment layer to compute a linear 
combination of time steps with the help of equation 
(7) to equation (16) for the reduction in the number 
of parameters and float operation. This layer is imple-
mented with 64 numbers of units in it.

3.4.5. Bidirectional Recurrent Layer (Lrr
) 

In the proposed model, the curtailment layer 
1rsL  is fol-

lowed by bidirectional recurrent layers with 64NR =  
numbers of hidden units in its BGRU cell. Bidirection-
al GRU cell is preferred in the proposed model because 
the bidirectional GRU cell considers present time 
steps as well as future time steps. This will help opti-
mally incorporating the time dimensional features. In 
the proposed model, three bidirectional recurrent lay-
ers 

1 2 3
, ,r r rL L L  are sequentially placed and will process 

the speech features as discussed in Section 3.2.2.

3.4.6. Fully Connected Layer (LFCFC
) 

In the proposed model the curtailment layer 
2rsL
 
is fol-

lowed by the fully connected layer with the number of 
units 64nFC =  in it. In the proposed model two fully 
connected layers 

1 2
,FC FCL L  are sequentially placed 

and process the received data as discussed in Sec-
tion 3.2.3. The fully connected layer 

2FCL  is followed 
by the output layer which generates the output word 
sequence using the soft-max activation function.
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4. Experimental Setup
4.1. Dataset
The proposed model is tested on two datasets devel-
oped by the Google group for academic research. The 
first dataset is Google’s single word speech command 
dataset developed by TensorFlow and AIY team [33]. 
This dataset consists of 65000 audio utterances spo-
ken by male and female speakers. The duration of 
each audio utterance in this dataset is of one second. 
This dataset consists of 30 single word commands in-
cluding digits from zero to nine. The second dataset 
is a fluent speech command (Flu. comm.) dataset de-
veloped by the Google group [9]. This dataset consists 
of 30,043 utterances, spoken by 97 male and female 
speakers. Each utterance of this dataset is a continu-
ous sentence that is used to control smart home ap-
pliances or virtual assistants, for example, “put on the 
music” or “turn on the lights”. The utterances of both 
the datasets are recorded with phone and laptop as a 
.wav file. The recorded utterances are sampled at 16 
kHz as a single-channel signal. 

4.2. Implementation
The proposed model is implemented on the python- 
Tensorflow platform using the Keras interface [15, 
17-18]. Among available platforms, preference is giv-
en to this platform because of its data handling ca-
pacity and flexibility to model predictive modeling 
problems with few lines of codes [15, 17]. In Keras, the 
proposed model is implemented via sub-classing [10]. 
Transmute and curtailment layers are implemented 
via layer class definition of the customize layer using 
the build, call, add function, and setting the trainable 
weight argument [18]. The data input for the proposed 
model from the speech command dataset is computed 
according to the ETSI standard [7]. As per the ETSI 
standard, the speech command pre-processing spec-
ifications are tabulated in Table 1, and LMPSCs com-
putation parameters are tabulated in Table 2. 

 5. Result and Discussion
To test the proposed model, series of experiments are 
performed on both the datasets (single word, and flu-
ent command). The obtained results of different ex-
periments are discussed in this section. 

5.1. Impact of Convolutional Layer and 
Recurrent Layer on the Performance of the 
Proposed Model
The proposed model is built using CRNN. The CRNN 
is the combination of CNN and RNN [29]. Therefore 
the number of convolutional layers and the number of 
recurrent layers in CRNN will decide the recognition 
accuracy of the proposed model. In the first experi-
ment, the impact of the number of convolutional lay-
ers, number of convolution filters, number of hidden 
units in the recurrent layer, the number of recurrent 
layers on the performance of the proposed model is 
analyzed. To analyze the impact, both the dataset 
(single word dataset and fluent command dataset) are 
split into training, validation, and testing sets with a 
ratio 6-1-1 [38]. The batch size is 45. The training is 
done until convergence though the different compo-
sition of CRNN requires a different number of ep-
ochs. The initial learning rate of each composition 
of CRNN is 0.001, with a decay of 0.5 after every ten 
epochs. The obtained recognition accuracies along 
with detailed specifications of the number of convo-
lutional layers, size of convolution filter, the number 
of recurrent layers, number of hidden units in the re-
current layer, number of units in the fully connected 
layer are tabulated in Table 3.
The exploration of experimentally obtained results 
shows that CRNN composition with two convolu-
tion layers and a single recurrent layer requires the 
number of parameters around 178K to 266K with an 
average recognition accuracy of 86% in different rec-
ognition tasks. This recognition accuracy is below the 
threshold recognition accuracy of the cloud-based 

Table 1 
ETSI standard signal pre-processing parameters

ἀ Frame size Frame stride Window type

0.97 25ms 10ms Hamming

Table 2
ETSI standard feature vector computation parameters

N-point STDFT No. of triangular filters

512 40
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Table 3  
Impact of the number of convolutional and recurrent layers on the performance of the proposed model (hidden unit is 
abbreviated as hi. un. number of parameters is abbreviated as NOP, recognition accuracy is abbreviated as RA)

Convolutional layer Recurrent layer FC 
layer Word Digit Flu. comm.

No. of 
layer

No. of  
filters

Size of 
filter Strides No. of  

layer
No. of  
hi.un. 

No. of 
units NOP RA NOP RA NOP RA

2 32 (20,5) (4,1) 1 32 32 189K 0.8836 178K 0.8644 266K 0.8677

2 32 (20,5) (4,1) 2 64 64 196K 0.9069 189K 0.8869 289K 0.8825

3 64 (20,5) (4,1) 1 32 32 225K 0.9128 214K 0.9005 303K 0.8966

3 32 (20,5) (4,1) 2 32 32 246K 0.9328 237K 0.9255 328K 0.9166

3 64 (20,5) (4,1) 3 64 64 268K 0.9634 259K 0.9606 354K 0.9533

3 32 (20,5) (4,1) 3 32 32 250K 0.9542 243K 0.9513 345K 0.9421

3 64 (20,5) (4,1) 4 32 32 292K 0.9601 287K 0.9589 408K 0.9541

system (Microsoft Cortana-95%, Apple siri-95%). 
Whereas CRNN composition with three convolution 
layers and three recurrent layers require trainable 
parameters around 259K to 354K, but this composi-
tion achieves recognition accuracy of the cloud-based 
system i.e. around 95% in different recognition tasks. 
The CRNN composition with three convolution lay-
ers and four recurrent layers has a limited impact on 
improvement in recognition accuracy. By increasing 
one more recurrent layer, only 1% improvement in 
recognition accuracy is observed whereas the model 
parameters are increased as an average of around 35K 
in different recognition tasks.
The size of the CRNN model in terms of the number 
of parameters and recognition accuracy is directly 
proportional to the number of convolutional filters, 
the number of hidden units in the recurrent layers, 
and the number of units in the fully connected lay-
er. By increasing them, recognition accuracy and the 
number of parameters increase. 
From the obtained result of the first experiment, 
(highlighted in Table 3) the high-level architecture of 
the proposed model in Figure 4 is drawn. The chosen 
size is approximately half of the depth wise separable 
CNN model [2].

5.2. Impact of RNN Variants on the 
Performance of the Proposed Model
In the first experiment, the recurrent layer is imple-
mented with BGRU; However, BGRU and BLSTM 

both are popular variants of RNN. Scientists and re-
searchers use both to build RNN based speech rec-
ognition model [16, 23]. So the second experiment is 
performed to inspect which one BGRU or BLSTM is 
better for fulfilling the main objective of the present-
ed work.
In the second experiment, the convolutional layer is 
implemented with highlighted specifications of Table 
3, and the recurrent layer is implemented with the 
help of BLSTM and BGRU one by one. Both the times 
the number of units of fully connected layer after re-
current layer is kept constant. The computational 
complexity (number of model parameters) and rec-
ognition accuracy of both the variants is computed to 
compare their impact on the proposed model. 
The comparison is made on three tasks i.e. word, dig-
it, and fluent command recognition task. For each 
task, the proposed model is trained for maximum 40 
epochs [38]. The training of the proposed model will 
stop if no improvement is observed after ten consec-
utive epochs. The initial learning rate of the proposed 
model is 0.001 and decay of 0.5 after every ten epochs. 
The batch size is 45. The training, validation, and test-
ing dataset in the second experiment is the same set 
as the first experiment.
The obtained result of the word, digit, and fluent com-
mand recognition task is tabulated in Table 4.
Analysis of obtained results of the second experiment 
shows that when the recurrent layer in the proposed 
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Table 4 
Comparison of RNN variants in the proposed model when number of units of fully connected layer is 64 (NOP is abbreviation 
of number of parameters, TR is abbreviation of training, TE is abbreviation of testing, VA is abbreviation of validation, Mean 
WR is abbreviation of  mean-weight-reduction-method, Max WR is abbreviation of mean-max-weight-reduction method)

Model
Word recognition accuracy  Digit recognition accuracy Flu. comm. recognition accuracy

NOP TR TE VA NOP TR TE VA NOP TR TE VA

CNN+ BGRU+FC 268K 0.9808 0.9583 0.9634 259K 0.9815 0.9527 0.9606 372K 0.9678 0.9361 0.9533

CNN+BGRU+ Mean WR + FC 148K 0.9823 0.9752 0.9648 136K 0.9863 0.9579 0.9631 198K 0.9699 0.9523 0.9585

CNN+BGRU+ Max WR +FC 148K 0.9818 0.9631 0.9641 136K 0.9843 0.9608 0.9602 198K 0.9718 0.9423 0.9543

CNN+ BLSTM+FC 539K 0.9801 0.9512 0.9512 492K 0.98 0.9411 0.9567 713K 0.9651 0.9334 0.9431

CNN+BLSTM+ + Mean WR + FC 273K 0.9811 0.9651 0.9501 252K 0.9833 0.9514 0.9579 372K 0.9702 0.9461 0.9418

CNN+BLSTM+ Max WR +FC 273K 0.9803 0.9563 0.9504 252K 0.9825 0.9516 0.9562 372K 0.9701 0.9411 0.9413

Figure 6 (a)
Learning curve of the proposed model during word recognition task by implementing RNN layer with BGRU and BLSTM

Figure 6 (b)
Learning curve of the proposed model during digit recognition task by implementing RNN layer with BGRU & BLSTM

(ii) CNN+BLSTM+ Mean WR + FC
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Analysis of obtained results of the second 
experiment shows that when the recurrent layer in 
the proposed model is implemented with BLSTM, 
the model can recognize 95% word, 95% digit, and 
94% fluent command correctly (figure 6(a)-(ii) to 
Figure 6(c)-(ii). Whereas when the recurrent layer 
is implemented with BGRU, the proposed model 
can recognize 96% word, 96% digit, and 95% 
fluent command correctly ((Figure 6(a)-(i) to 
Figure 6(c)-(i)). The recognition accuracy around 
95% with the help of both variants i.e. BGRU and 
BLSTM will is as good as a cloud-based system.  
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six percent less for digit recognition and forty-
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method in BLSTM makes it compatible with 
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Whereas the use mean/mean-max-weigh- 
reduction method in BGRU further reduces the 
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model is implemented with BLSTM, the model can rec-
ognize 95% word, 95% digit, and 94% fluent command 
correctly (Figure 6(a)-(ii) to Figure 6(c)-(ii). Whereas 
when the recurrent layer is implemented with BGRU, 
the proposed model can recognize 96% word, 96% digit, 
and 95% fluent command correctly ((Figure 6(a)-(i) to 
Figure 6(c)-(i)). The recognition accuracy around 95% 
with the help of both variants i.e. BGRU and BLSTM 
will is as good as a cloud-based system. 
The comparison of the required number of parame-
ters by BLSTM and BGRU shows that BGRU requires 
around forty-seven percent fewer parameters as com-
pared to BLSTM (specifically fifty percent less for word 
recognition and forty-six percent less for digit recogni-
tion and forty-seven percent for fluent command rec-
ognition). The use of the mean/mean-max weight-re-
duction method in BLSTM makes it compatible with 
BGRU in terms of the number of parameters. Whereas 
the use mean/mean-max-weigh- reduction method in 
BGRU further reduces the model parameters.
From the analysis of the obtained result of the second 
experiment, it is confirmed that BGRU is more suit-
able in the recurrent layer of the proposed model to 
reduce complexity and memory requirement as per 
the requirement of novel engineering applications. 

5.3. Impact of Proposed Reduction Method 
on the Performance of the Proposed Model

To make the proposed model more robust to longer 
speech sequences with the reduced number of pa-

Figure 6 (c)
Learning curve of the proposed model in fluent command recognition task by implementing RNN layer with BGRU and BLSTM
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rameters and float operations, transmute and cur-
tailment layers are inserted. The transmute and cur-
tailment layers will compute linear combination of 
states of CNN layer and RNN layer with the help of 
mean-weight-reduction method or mean-max-weight-
reduction method. In the third experiment, both meth-
ods are tested for different numbers of units in the last 
fully connected layer.
The batch size, learning rate in the third experiment 
is the same as the second experiment, but this time 
to get more accurate results, we train the proposed 
model for maximum 50 epochs [38]. The obtained 
recognition accuracies of the word, digit, and fluent 
commands recognition task along with the number of 
units of fully connected layer, the number of parame-
ters, and float number of operations are tabulated in 
Table 5(a), 5(b), 5(c), 5(d).
Analysis of the obtained result shows that for word 
recognition accuracy around 96%, digit recognition, 
and fluent command recognition accuracy around 
95% (which is as good as a cloud-based system) the 
proposed reduction approach with the help of trans-
mute and curtailment layers reduces float number of 
operations which in turn reduces the number of pa-
rameters. Specifically, if 32 units of fully connected 
layers are used to implement the proposed model, then 
the parameters are reduced by 43% (compared with 
the basic CNN+ BGRU+FC model) as illustrated in fig-
ure 7(a). If 64/128/256 units of fully connected layers 
are used to implement the proposed model, then the 
reduction is 45%, 53%, 64% respectively (figure 7(b) 



Information Technology and Control 2021/4/50668

Table 5 (a)
Comparison between number of units of fully connected layer and number of parameters and float number of operations 
in the proposed model (NOP is abbreviation of number of parameters, NFO is abbreviation of number of float operations, 
RA is abbreviation of recognition accuracy)

No. of 
unit of 

FC layer
Model

Word recognition accuracy Digit recognition accuracy Flu. comm. recognition 
accuracy

NOP NFO RA NOP NFO RA NOP NFO RA

32

CNN+ BGRU+FC 250K 4.471M 0.9542 243K 4.471M 0.9513 345K 6.379M 0.9421

CNN+BGRU+ Mean WR+ FC 144K 4.349M 0.9634 130K 4.349M 0.9589 195K 6.282M 0.9523

CNN+BGRU+ Max WR+FC 144K 4.349M 0.9631 130K 4.349M 0.9571 195K 6.282M 0.9499

Figure 7 (a)
For 32 unit of fully connected layer obtained reduction in number of parameters and float number of operations 
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Table 5 (c)
Comparison between number of units of fully connected layer and number of parameters and float number of operations 
in proposed model (NOP is abbreviation of number of parameters, NFO is abbreviation of number of float operations, RA 
is abbreviation of recognition accuracy)
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to 7(d)). However, for a higher number of units of the 
fully connected layer (256 unit), only model parame-
ters increases (from 144K -198K); the recognition ac-
curacy remains almost constant. 
The comparison between the mean-weight-reduction 
method and the mean-max-weight-reduction meth-
od shows that both methods are nearly equal to each 
other and reduce the number of float operations and 
the number of model parameters approximately by an 
equal amount. However, the recognition accuracy by 
mean-weight–reduction method is slightly better than 
the mean-max-weight-reduction method. Specifical-
ly, the mean-weight–reduction method achieves the 
highest recognition accuracy for 64 units of the fully 
connected layer with a moderated number of param-
eters during testing of the proposed model. From the 
comparison, we can say that the mean-weight–reduc-
tion method represents better performance to get an 
acceptable threshold (by reducing the number of pa-
rameters to 1/3 of the depth wise separable CNN model 
[2]) for the natural language speech interaction system 
used in novel engineering applications.
Analysis of obtained result in concern with float num-
ber of operation shows that both the method reduces 
the float number of operation between 2% to 12% in 
different recognition tasks (figure 7(a) to 7(d)).
Investigations about the number of units of the fully 
connected layers and its impact on the recognition 
accuracy of the proposed model show that the differ-
ent number of units of fully connected layers has little 
impact on recognition accuracy. The convolutional 
and recurrent part has more influence on the recogni-
tion accuracy of the proposed model. 

5.4. Comparison with Other Models
The proposed model is compared with the attention 
RNN model and depth wise separable CNN model [2]. 
To make the comparison with both the models the 
testing dataset of the proposed model contains the 
word of Google’s single word speech commands data-
set. Digit and fluent command recognition tasks are 
not compared because the published article contains 
the result of the word recognition task. The compari-
son is shown in Table 6. 
The comparison table shows that the proposed model 
is compatible with other models. With the proposed 
model we get high recognition accuracy with the low-

est number of trainable parameters. The recognition 
accuracy of the attention RNN model is higher than 
the proposed model but for 0.4% higher recognition 
accuracy this model compromises with 26% more 
model parameters.

5.5. Performance of the Proposed Model on 
Realistic Recording
In the fourth experiment, the proposed model was 
tested on realistic recordings [22]. The main aim be-
hind this testing is to check the performance of the 
proposed model, which is trained on lots of data re-
corded in a clean and control environment on field 
data [5]. For this, the same commands of both the 
dataset are recorded in a laboratory. The details of 
laboratory recordings are tabulated in the appendix 
section. The testing dataset consists of 563 utteranc-
es of the word, 254 utterances of digits, and 384 utter-
ances of fluent commands. All other setting is as per 
experiment three. The obtained recognition accura-
cies are tabulated in Table 7.

Table 6
Comparison with other models

Model Accuracy 
(%) 

Model pa-
rameters

Attention RNN 96.9 202K

Depth wise separable CNN 95.4 498K

CNN+RNN+MeanWR+FC 96.5 148K

Table 7
Recognition accuracy of the proposed model on field data

Flu.comm. Word Digit

89% 90% 87%

The recognition accuracy of the proposed model on 
field data is low as compared to data recorded in a 
clean and control environment. This may be due to 
the mismatch between accent styles, or mixing of 
echoes with the recorded signal, or due to the differ-
ent recording protocol, etc. but recognition accuracy 
of the proposed model is within the acceptable range 
to use it, in the natural language speech interaction 
system of novel engineering applications. 
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To improve the recognition accuracy on field data 
some modification are needed in the feature ex-
traction process so that clean speech features are 
extracted from recorded speech (in the realistic envi-
ronment echoes from the surrounding environment 
mix with recordings). 

6. Conclusion
By implementing the proposed speech command rec-
ognition model in a hybrid way i.e. by using CRNN, 
transmute, and curtailment layers instead of a con-
ventional way, we try to find a new solution for natural 
language speech interaction system used in novel en-
gineering applications. The main constrains of these 
applications (limited resources) is fulfilled by re-

Table 8 
Details of laboratory recordings

ducing the computational complexity in terms of the 
number of parameters and the number of float opera-
tion which in turn reduces the memory requirement.
The experimental investigation on Google’s speech 
command dataset shows that the proposed model can 
recognize 96% word, 95% digit, and 95% fluent com-
mands correctly with 2%-12% less number of float op-
erations and around 45% fewer trainable parameters 
in different recognition tasks. Testing of the proposed 
model on field data shows that the proposed model 
can achieve recognition accuracy around 89% on field 
data. 
The future work will include testing of different train-
ing strategies (for example data augmented method) 
on the proposed model to overcome its performance 
limitation on realistic recordings.

Appendix
The details of laboratory recording are tabulated in Table 8. The audio recordings are captured by using Py-Au-
dio package 0.20.11 [36] and sampled at 16 kHz

Laboratory Age group
No. of person participated in recording 

Total Recordings
F M

Lab1
(H*W*L=  10*8*8)

10 to 15 11 8

42920 to 25 6 8

40 to 50 3 4

Lab2
(H*W*L= 10*20*10)

10 to 15 9 7

65220 to 25 8 10

40 to 50 3 2

Lab3
(H*W*L= 10*15*20)

10 to 15 9 7

47920 to 25 9 10

40 to 50 2 3
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