
Information Technology and Control 2021/4/50656

Low Latency Based
Convolutional Recurrent Neural
Network Model for Speech
Command Recognition

ITC 4/50
Information Technology
and Control
Vol. 50 / No. 4 / 2021
pp. 656-673
DOI 10.5755/j01.itc.50.4.27352

Low Latency Based Convolutional Recurrent Neural Network
Model for Speech Command Recognition

Received 2020/07/18 Accepted after revision 2021/07/09

 http://dx.doi.org/10.5755/j01.itc.50.4.27352

HOW TO CITE: Kinkar, C. R., Jain, Y. K. (2021). Low Latency Based Convolutional Recurrent Neural Network Model for Speech Command
Recognition. Information Technology and Control, 50(4), 656-673. https://doi.org/10.5755/j01.itc.50.4.27352

Corresponding author: Chhayakinkar@gmail.com

Chhayarani Ram Kinkar
Electronics & Communication Department, Smarat Ashok Technological Institute, Civil Lines, Vidisha, M.P.
India; e-mail: chhayakinkar@gmail.com

Yogendra Kumar Jain
Electronics & Instrumentation Department, Smarat Ashok Technological Institute, Civil Lines, Vidisha, M.P.
India; e-mail: ykjain_p@yahoo.co.in

The presented paper proposes a new speech command recognition model for novel engineering applications
with limited resources. We built the proposed model with the help of a Convolutional Recurrent Neural Net-
work (CRNN). The use of CRNN instead of Convolutional Neural Network (CNN) helps us to reduce the model
parameters and memory requirement as per resource constraints. Furthermore, we insert transmute and cur-
tailment layer between the layers of CRNN. By doing this we further reduce model parameters and float num-
ber of operations to half of the CRNN requirement. The proposed model is tested on Google’s speech command
dataset. The obtained result shows that the proposed CRNN model requires 1/3 parameters as compared to the
CNN model. The number of parameters of the CRNN model is further reduced by 45% and the float numbers of
operations between 2% to 12 % in different recognition tasks. The recognition accuracy of the proposed model
is 96% on Google’s speech command dataset, and on laboratory recording, its recognition accuracy is 89%.
KEYWORDS: Convolutional Neural Network; Recurrent Neural Network; Gated Recurrent Unit; Low Laten-
cy; Speech command recognition.

657Information Technology and Control 2021/4/50

1. Introduction
A natural language speech interaction system is ben-
eficial for the user because there is no learning curve
regarding operation of the system. User can operate
the system by communicating with it as he/she com-
municates with other people. However, the develop-
ment of a natural language speech interaction system
is a complex task due to the ambiguous nature of nat-
ural language [3]. Scientists and researchers simplify
the task by dividing it into two modules namely the
speech command recognition module [31] and the nat-
ural language understanding module [11]. Moreover,
carried out lots of research on both the modules as a
result of their hard work today Microsoft- “Cortana”,
Amazon- “Alexa”, Apple- “Siri”, Google-“Google assis-
tant”, etc. user-friendly natural language speech inter-
action systems are available in the market [26, 36].
The mentioned natural language speech interaction
systems rely on a powerful cloud-based neural net-
work model that requires a broadband connection
[36]. However, for novel engineering applications
where memory and computational resources are lim-
ited, the use of a broadband-based speech interaction
system is costly. It also compromises privacy, battery
life [26] as well as it highly depends on external fac-
tors, for example, network quality [16], network speed
[1], latency [27], network traffic [36], etc.
For novel engineering applications, a simple model
running on the device and requiring less computa-
tional complexity compared to its cloud counterpart
is more energy-efficient [25]. Scientists and research-
ers developed some locally running (standalone [31])
speech interaction system for novel engineering ap-
plications, for example, voice-controlled robots, dai-
ly required voice-controlled smart home appliances,
smart industrial assistive devices, etc. [30]. However,
modification in the developed system (Figure 1) is
continued for maintaining a balance between the re-
quirement of novel engineering applications and the
state-of-the-art performance.
Within the mentioned framework, to achieve the
performance as per the cloud-based system with
constraints of limited memory and computation-
al resources, the presented paper proposes a hybrid
speech command recognition model for natural lan-
guage speech interaction system used in novel engi-
neering applications. The speech command recogni-

Figure 1
Block diagram of natural language speech interaction
system for novel engineering applications (Time-
domain representation is of speech command- Turn the
temperature up in the washroom)

tion model is the heart of the natural language speech
interaction system, and its recognition accuracy de-
cides the overall performance of the natural language
speech interaction system [36]. By achieving high
recognition accuracy with limited model parameters,
we try to find a new prospect for natural language
speech interaction system used in novel engineering
applications.
The main objectives of the presented work are:
1 Design of a new speech command recognition

model that achieves state-of-the-art performance
in spoken command recognition, and it is small in
size to fulfill the constraints of novel engineering
applications.

2 To introduce single word as well as continuous
speech command recognition intelligence in the
designed model.

3 Testing of the designed model on Google speech
command dataset.

To fulfill mentioned objectives, we chose Convolution
Recurrent Neural Network (CRNN) [29, 37] archi-
tecture instead of Deep Neural Network (DNN) [14,
38], Convolution Neural Network (CNN) [1, 13-14]
and Recurrent Neural Network (RNN) [16, 23] archi-
tecture to build the model. The main reason behind
choosing hybrid neural network architecture instead
of pure neural network architecture is that we want
to reduce the number of trainable parameters and
the number of float operations that interns reduce

2

computational resources are limited, the use of a
broadband-based speech interaction system is
costly. It also compromises privacy, battery life
[26] as well as it highly depends on external
factors, for example, network quality [16],
network speed [1], latency [27], network traffic
[36], etc.

For novel engineering applications, a simple
model running on the device and requiring less
computational complexity compared to its cloud
counterpart is more energy-efficient [25].
Scientists and researchers developed some locally
running (standalone [31]) speech interaction
system for novel engineering applications, for
example, voice-controlled robots, daily required
voice-controlled smart home appliances, smart
industrial assistive devices, etc. [30]. However,
modification in the developed system (figure 1) is
continued for maintaining a balance between the
requirement of novel engineering applications
and the state-of-the-art performance.

Figure1
Block diagram of natural language speech interaction
system for novel engineering applications (Time-
domain representation is of speech command- Turn the
temperature up in the washroom)

Within the mentioned framework, to achieve the
performance as per the cloud-based system with
constraints of limited memory and computational
resources, the presented paper proposes a hybrid
speech command recognition model for natural
language speech interaction system used in novel
engineering applications. The speech command
recognition model is the heart of the natural
language speech interaction system, and its
recognition accuracy decides the overall
performance of the natural language speech
interaction system [36]. By achieving high
recognition accuracy with limited model
parameters, we try to find a new prospect for

natural language speech interaction system used
in novel engineering applications.

The main objectives of the presented work are:

1. Design of a new speech command recognition
model that achieves state-of-the-art performance
in spoken command recognition, and it is small in
size to fulfill the constraints of novel engineering
applications.
 2. To introduce single word as well as continuous
speech command recognition intelligence in the
designed model.
3. Testing of the designed model on Google
speech command dataset.

To fulfill mentioned objectives, we chose
Convolution Recurrent Neural Network (CRNN)
[29, 37] architecture instead of Deep Neural
Network (DNN) [14, 38], Convolution Neural
Network (CNN) [1, 13-14] and Recurrent Neural
Network (RNN) [16, 23] architecture to build the
model. The main reason behind choosing hybrid
neural network architecture instead of pure neural
network architecture is that we want to reduce the
number of trainable parameters and the number
of float operations that interns reduce the
computational complexity. The choice of CRNN
architecture is motivated by the work of Wang
and Zhang [37] on robust voice activity detection
(a subfield of speech recognition).

The presented paper is structured as follows.
Section 1 is about the introduction of the topic.
Section 2 discusses previous work on speech
command recognition. Section 3 explains the
processing of speech command for recognition
purpose by layers of CRNN and the approach for
reducing float operations, the number of trainable
parameters in the proposed model. Section 4
discusses the dataset and implementation
platform. Section 5 discusses the obtained results.
Finally, the paper concluded with the conclusion.

2. Related Work

Natural language speech recognition is a
challenging task. Leading commercial companies,
scientists, researchers, work on speech recognition
technology for achieving high recognition
accuracy with less computational complexity. As
background, this section will discuss approaches

Speech
command

CNN/RNN
based
speech

command
recognition

model

DNN based
NLP & NLU model

segmentation and
tagging

language
understanding

rules

Device
response
Action:up
location:

washroom
object:temp-

erature

Information Technology and Control 2021/4/50658

the computational complexity. The choice of CRNN
architecture is motivated by the work of Wang and
Zhang [37] on robust voice activity detection (a sub-
field of speech recognition).
The presented paper is structured as follows. Section
1 is about the introduction of the topic. Section 2 dis-
cusses previous work on speech command recogni-
tion. Section 3 explains the processing of speech com-
mand for recognition purpose by layers of CRNN and
the approach for reducing float operations, the num-
ber of trainable parameters in the proposed model.
Section 4 discusses the dataset and implementation
platform. Section 5 discusses the obtained results. Fi-
nally, the paper concluded with the conclusion.

2. Related Work
Natural language speech recognition is a challenging
task. Leading commercial companies, scientists, re-
searchers, work on speech recognition technology for
achieving high recognition accuracy with less compu-
tational complexity. As background, this section will
discuss approaches and models suggested by scien-
tists, researchers for speech recognition.
Speech recognition technology begins with the rec-
ognition of a single phoneme instead of recognizing a
continuous word [27]. The phoneme recognition in the
state-of-the-art speech recognition model is done with
the help of the Gaussian Mixer Model (GMM)-Hid-
den Markov Model (HMM)-Language Model (LM)
paradigm [22, 27]. In the GMM-HMM-LM paradigm,
GMM will process input speech feature vector (i.e.
Mel Frequency Cepstral Coefficient (MFCC) [30]) and
emits emission probability for HMM [5, 22, 27]. The
HMM together with LM compute the most likely se-
quence of phoneme with the help of a decoder [6]. The
main drawback of the GMM-HMM-LM based state-
of-the-art speech recognition model is that it is unable
to recognize the data present on the boundary line [22].
To solve the problem scientists, researchers replaced
GMM with DNN [22, 25]. The new DNN-HMM-LM
paradigm achieves high recognition accuracy as com-
pared to the GMM-HMM-LM paradigm [22].
With further advancement in technology, the DNN-
HMM-LM based speech recognition paradigm is
modified into a single deep learning framework that
directly recognized a continuous word instead of a sin-

gle phoneme [13]. Within a single deep learning frame-
work, Bahdanau et al. [4] and Ueno et al. [35], proposed
RNN based attention model which automatically
learns the alignment between the input feature and
the respective output sequence. The advantage of the
attention deep learning framework is that Markov’s
assumption is not required for recognition [2]. The
drawback of the attention deep learning framework is
that in a noisy environment the estimated alignment is
easily corrupted by noise and result in poor recognition
accuracy [28]. As a solution, Miao et al. [28], Kim et al.
[20], Li et al. [24] proposed Context Temporal Classi-
fication (CTC) speech recognition model. The CTC
speech recognition model improves recognition accu-
racy in a noise environment. Both CTC and attention
deep learning frameworks perform well and achieve an
excellent result, but face challenges in incorporating
the highly variable features of the natural language like
accent style [22], various speaker attributes [25], speed
of production of the speech signal [27], etc.
The advancement in deep learning technology con-
tinues and Hamid et al. [14], and Guiming et al. [12],
replaced the attention-RNN speech recognition
model and CTC-RNN speech recognition model
with the CNN speech recognition model. Original-
ly CNN is used in image processing applications [1].
To use CNN in speech recognition applications they
arranged speech features in the form of a two-dimen-
sional array and trained the CNN speech recognition
model using the array. The CNN speech recognition
model achieves high recognition accuracy by incorpo-
rating the highly variable feature of natural language.
However, two main drawbacks of the CNN speech
recognition model are- the large number of layers are
required to get enough correlation between different
frequency bands to achieve high recognition accuracy
[32] and the CNN speech recognition model ignores
the correlation between different frames [29].
The RNN or CNN employed speech recognition mod-
el performs well. However, the huge number of oper-
ations in Long Short-Term Memory (LSTM)/ Gated
Recurrent Unit (GRU) cell [34, 37] or in the convo-
lutional and max-pooling layer [14] result in a larger
model size and limits the use of RNN/CNN employed
speech recognition model in novel engineering appli-
cations with limited resources.
On the other hand, with the growing demand for nat-
ural language speech interaction with devices and
sufficient advancement in deep learning technology

659Information Technology and Control 2021/4/50

Wang G. and Zhang W. [37], and Mukherjee et al. [29]
tried CRNN for subfields of speech recognition, for
example, keyword recognition, voice activity detec-
tion, categorizing sound, etc.
To fulfill the requirement of the current technolog-
ical scenario in novel engineering applications, i.e.
performance as per the cloud-based network, with
constrain of limited resources, research work by re-
searchers and commercial groups is continuing.

3. Material and Method

3.1. Convolutional Recurrent Neural Network
The objective of the presented work is to develop a
speech command recognition model that will achieve
high recognition accuracy with limited model pa-
rameters and will suit the requirement of novel en-
gineering applications. To fulfill this objective in the
presented work hybrid neural network architecture
CRNN (a combination of CNN and RNN as illustrat-
ed in Figure 2) is preferred to build the model.
The preference is given to CRNN because the CRNN
captures the local spectral correlation in speech com-
mand by using convolutional layer and global spectral
correlation in speech command by using recurrent
layer [29, 37-38]. The simultaneous capturing of local
and global spectral correlation of speech command by
CRNN help in achieving high recognition accuracy

Figure 2
Basic CRNN for speech command recognition (FC is
abbreviation of fully connected layer)

4

The objective of the presented work is to develop
a speech command recognition model that will
achieve high recognition accuracy with limited
model parameters and will suit the requirement of
novel engineering applications. To fulfill this
objective in the presented work hybrid neural
network architecture CRNN (a combination of
CNN and RNN as illustrated in figure 2) is
preferred to build the model.

The preference is given to CRNN because the
CRNN captures the local spectral correlation in
speech command by using convolutional layer
and global spectral correlation in speech
command by using recurrent layer [29, 37-38]. The
simultaneous capturing of local and global
spectral correlation of speech command by CRNN
help in achieving high recognition accuracy with
few layers, that intern helps in reducing
computational complexity and model size.

Figure 2
Basic CRNN for speech command recognition (FC is
abbreviation of fully connected layer)

3.2 Speech Command Recognition Using CRNN

The convolutional and recurrent layers of CRNN
process the input speech command in the
following manner to recognize it.

3.2.1 Processing of Input Speech Command by
Convolutional Layer

The first layer in the CRNN architecture is the
convolutional layer and the speech command
recognition process begin with the convolutional
layer

1cL .

The convolutional layer
1cL of CRNN consists of

two-dimensional convolution filter (number of
filters -

ncf , size of filter -
F Ts z s z , and strides-

,T FS S) [1]. The convolutional filter extract
information either from the received spectrogram
[22] of the speech command or from the speech
feature vector i.e. a context window of F log Mel
band energies F TE S [21] by performing
convolution and pooling operations over it.
Moreover, pass the extracted information to the
next layer through the ReLU activation function
[14]. Mathematically the convolution and pooling
operation of convolutional layer

1cL is

expressed as:

,
1

(*) (1)
I

j i i j j
i

O R a w b

Б

i, m n=1 i, m-1 × s + n , (2)P = max O

where * represent convolution operation, ,i jw
represent weighted matrix, (1,)ia i I is input
feature map (1,)JO J J is convolutional
feature map,

jb is bias, I is the number of the

input feature map, R is ReLU activation function,
Б represent pooling size, s represent shift size.

The output of the convolutional layer

1cL is fed as

an input to the next convolutional layer
2

L c
and

the process will continue till the last convolutional
layer. In CRNN there are L

cc
 number of

convolutional layer stack together, and the output
of the last convolutional layer L

cc is a tensor and

mathematically expressed as:
' , (3)F TM R A

where A represent the number of feature maps of
the last convolutional layer, 'F is the number of
frequency bands reaming after several pooling
operations by convolutional layers, T represent
the length of the sequence.

3.2.2 Processing of Input Data by Recurrent
Layer

The output of the last convolutional layer

'()
c

F T
cL M R A

is feed as input to the second

layer of CRNN i.e. recurrent layer as a sequence of
frame ccL

c th .

The recurrent layer

1r
L consists of NR numbers of

hidden units in its GRU cell and scans the frame

FC
layer

 Data
Input

Convolution
layer

Recurrent
layer

Output
layer

Feature
maps
+ Relu Pooled

feature

LSTM or GRU

Poo-
ling
layer

with few layers, that intern helps in reducing compu-
tational complexity and model size.

3.2. Speech Command Recognition Using
CRNN
The convolutional and recurrent layers of CRNN pro-
cess the input speech command in the following man-
ner to recognize it.

3.2.1. Processing of Input Speech Command by
Convolutional Layer
The first layer in the CRNN architecture is the con-
volutional layer and the speech command recognition
process begin with the convolutional layer

1c
L .

The convolutional layer
1c

L
of CRNN consists of

two-dimensional convolution filter (number of filters
-

ncf , size of filter - F Tsz sz× , and strides- ,T FS S) [1]. The
convolutional filter extract information either from
the received spectrogram [22] of the speech com-
mand or from the speech feature vector i.e. a context
window of F log Mel band energies

4

3. Material and Method

3.1 Convolutional Recurrent Neural Network

The objective of the presented work is to develop
a speech command recognition model that will
achieve high recognition accuracy with limited
model parameters and will suit the requirement of
novel engineering applications. To fulfill this
objective in the presented work hybrid neural
network architecture CRNN (a combination of
CNN and RNN as illustrated in figure 2) is
preferred to build the model.

The preference is given to CRNN because the
CRNN captures the local spectral correlation in
speech command by using convolutional layer
and global spectral correlation in speech
command by using recurrent layer [29, 37-38]. The
simultaneous capturing of local and global
spectral correlation of speech command by CRNN
help in achieving high recognition accuracy with
few layers, that intern helps in reducing
computational complexity and model size.

Figure 2
Basic CRNN for speech command recognition (FC is
abbreviation of fully connected layer)

3.2 Speech Command Recognition Using CRNN

The convolutional and recurrent layers of CRNN
process the input speech command in the
following manner to recognize it.

3.2.1 Processing of Input Speech Command by
Convolutional Layer

The first layer in the CRNN architecture is the
convolutional layer and the speech command
recognition process begin with the convolutional
layer

1c
L .

The convolutional layer
1c

L of CRNN consists of

two-dimensional convolution filter (number of
filters -

ncf , size of filter -
F Tsz sz× , and strides-

,T FS S) [1]. The convolutional filter extract
information either from the received spectrogram
[22] of the speech command or from the speech
feature vector i.e. a context window of F log Mel
band energies F TE ×∈ [21] by performing
convolution and pooling operations over it.
Moreover, pass the extracted information to the
next layer through the ReLU activation function
[14]. Mathematically the convolution and pooling
operation of convolutional layer

1c
L is

expressed as:

,
1

(*) (1)
I

j i i j j
i

O R a w b
=

= +∑

()
Б

i, m n=1 i, m-1 × s + n , (2)P = max O

where *represent convolution operation, ,i jw
represent weighted matrix, (1,.....)ia i I= is input
feature map (1,....)JO J J= is convolutional
feature map,

jb is bias, I is the number of the

input feature map, R is ReLU activation function,
Б represent pooling size, s represent shift size.

The output of the convolutional layer

1c
L is fed as

an input to the next convolutional layer
2

Lc
and

the process will continue till the last convolutional
layer. In CRNN there are L

cc
 number of

convolutional layer stack together, and the output
of the last convolutional layer L

cc is a tensor and

mathematically expressed as:
' , (3)F TM R × ×∈ A

where A represent the number of feature maps of
the last convolutional layer, 'F is the number of
frequency bands reaming after several pooling
operations by convolutional layers, T represent
the length of the sequence.

3.2.2 Processing of Input Data by Recurrent
Layer

The output of the last convolutional layer

'()
c

F T
cL M R × ×∈ A

is feed as input to the second

FC
layer

 Data
Input

Convolution
layer

Recurrent
layer

Output
layer

Feature
maps
+ Relu

Pooled
feature

LSTM or GRU

Poo-
ling
layer

 [21] by
performing convolution and pooling operations over
it. Moreover, pass the extracted information to the
next layer through the ReLU activation function [14].
Mathematically the convolution and pooling opera-
tion of convolutional layer

1c
L is expressed as:

4

3. Material and Method

3.1 Convolutional Recurrent Neural Network

The objective of the presented work is to develop
a speech command recognition model that will
achieve high recognition accuracy with limited
model parameters and will suit the requirement of
novel engineering applications. To fulfill this
objective in the presented work hybrid neural
network architecture CRNN (a combination of
CNN and RNN as illustrated in figure 2) is
preferred to build the model.

The preference is given to CRNN because the
CRNN captures the local spectral correlation in
speech command by using convolutional layer
and global spectral correlation in speech
command by using recurrent layer [29, 37-38]. The
simultaneous capturing of local and global
spectral correlation of speech command by CRNN
help in achieving high recognition accuracy with
few layers, that intern helps in reducing
computational complexity and model size.

Figure 2
Basic CRNN for speech command recognition (FC is
abbreviation of fully connected layer)

3.2 Speech Command Recognition Using CRNN

The convolutional and recurrent layers of CRNN
process the input speech command in the
following manner to recognize it.

3.2.1 Processing of Input Speech Command by
Convolutional Layer

The first layer in the CRNN architecture is the
convolutional layer and the speech command
recognition process begin with the convolutional
layer

1c
L .

The convolutional layer
1c

L of CRNN consists of

two-dimensional convolution filter (number of
filters -

ncf , size of filter -
F Tsz sz× , and strides-

,T FS S) [1]. The convolutional filter extract
information either from the received spectrogram
[22] of the speech command or from the speech
feature vector i.e. a context window of F log Mel
band energies F TE ×∈ [21] by performing
convolution and pooling operations over it.
Moreover, pass the extracted information to the
next layer through the ReLU activation function
[14]. Mathematically the convolution and pooling
operation of convolutional layer

1c
L is

expressed as:

,
1

(*) (1)
I

j i i j j
i

O R a w b
=

= +∑

()
Б

i, m n=1 i, m-1 × s + n , (2)P = max O

where *represent convolution operation, ,i jw
represent weighted matrix, (1,.....)ia i I= is input
feature map (1,....)JO J J= is convolutional
feature map,

jb is bias, I is the number of the

input feature map, R is ReLU activation function,
Б represent pooling size, s represent shift size.

The output of the convolutional layer

1c
L is fed as

an input to the next convolutional layer
2

Lc
and

the process will continue till the last convolutional
layer. In CRNN there are L

cc
 number of

convolutional layer stack together, and the output
of the last convolutional layer L

cc is a tensor and

mathematically expressed as:
' , (3)F TM R × ×∈ A

where A represent the number of feature maps of
the last convolutional layer, 'F is the number of
frequency bands reaming after several pooling
operations by convolutional layers, T represent
the length of the sequence.

3.2.2 Processing of Input Data by Recurrent
Layer

The output of the last convolutional layer

'()
c

F T
cL M R × ×∈ A

is feed as input to the second

FC
layer

 Data
Input

Convolution
layer

Recurrent
layer

Output
layer

Feature
maps
+ Relu

Pooled
feature

LSTM or GRU

Poo-
ling
layer

(1)

4

3. Material and Method

3.1 Convolutional Recurrent Neural Network

The objective of the presented work is to develop
a speech command recognition model that will
achieve high recognition accuracy with limited
model parameters and will suit the requirement of
novel engineering applications. To fulfill this
objective in the presented work hybrid neural
network architecture CRNN (a combination of
CNN and RNN as illustrated in figure 2) is
preferred to build the model.

The preference is given to CRNN because the
CRNN captures the local spectral correlation in
speech command by using convolutional layer
and global spectral correlation in speech
command by using recurrent layer [29, 37-38]. The
simultaneous capturing of local and global
spectral correlation of speech command by CRNN
help in achieving high recognition accuracy with
few layers, that intern helps in reducing
computational complexity and model size.

Figure 2
Basic CRNN for speech command recognition (FC is
abbreviation of fully connected layer)

3.2 Speech Command Recognition Using CRNN

The convolutional and recurrent layers of CRNN
process the input speech command in the
following manner to recognize it.

3.2.1 Processing of Input Speech Command by
Convolutional Layer

The first layer in the CRNN architecture is the
convolutional layer and the speech command
recognition process begin with the convolutional
layer

1c
L .

The convolutional layer
1c

L of CRNN consists of

two-dimensional convolution filter (number of
filters -

ncf , size of filter -
F Tsz sz× , and strides-

,T FS S) [1]. The convolutional filter extract
information either from the received spectrogram
[22] of the speech command or from the speech
feature vector i.e. a context window of F log Mel
band energies F TE ×∈ [21] by performing
convolution and pooling operations over it.
Moreover, pass the extracted information to the
next layer through the ReLU activation function
[14]. Mathematically the convolution and pooling
operation of convolutional layer

1c
L is

expressed as:

,
1

(*) (1)
I

j i i j j
i

O R a w b
=

= +∑

()
Б

i, m n=1 i, m-1 × s + n , (2)P = max O

where *represent convolution operation, ,i jw
represent weighted matrix, (1,.....)ia i I= is input
feature map (1,....)JO J J= is convolutional
feature map,

jb is bias, I is the number of the

input feature map, R is ReLU activation function,
Б represent pooling size, s represent shift size.

The output of the convolutional layer

1c
L is fed as

an input to the next convolutional layer
2

Lc
and

the process will continue till the last convolutional
layer. In CRNN there are L

cc
 number of

convolutional layer stack together, and the output
of the last convolutional layer L

cc is a tensor and

mathematically expressed as:
' , (3)F TM R × ×∈ A

where A represent the number of feature maps of
the last convolutional layer, 'F is the number of
frequency bands reaming after several pooling
operations by convolutional layers, T represent
the length of the sequence.

3.2.2 Processing of Input Data by Recurrent
Layer

The output of the last convolutional layer

'()
c

F T
cL M R × ×∈ A

is feed as input to the second

FC
layer

 Data
Input

Convolution
layer

Recurrent
layer

Output
layer

Feature
maps
+ Relu

Pooled
feature

LSTM or GRU

Poo-
ling
layer

(2)

where *represent convolution operation, ,i jw

repre-

sent weighted matrix, (1,.....)ia i I= is input feature
map (1,....)JO J J= is convolutional feature map,

jb
is bias, I is the number of the input feature map, R is
ReLU activation function,

4

3. Material and Method

3.1 Convolutional Recurrent Neural Network

The objective of the presented work is to develop
a speech command recognition model that will
achieve high recognition accuracy with limited
model parameters and will suit the requirement of
novel engineering applications. To fulfill this
objective in the presented work hybrid neural
network architecture CRNN (a combination of
CNN and RNN as illustrated in figure 2) is
preferred to build the model.

The preference is given to CRNN because the
CRNN captures the local spectral correlation in
speech command by using convolutional layer
and global spectral correlation in speech
command by using recurrent layer [29, 37-38]. The
simultaneous capturing of local and global
spectral correlation of speech command by CRNN
help in achieving high recognition accuracy with
few layers, that intern helps in reducing
computational complexity and model size.

Figure 2
Basic CRNN for speech command recognition (FC is
abbreviation of fully connected layer)

3.2 Speech Command Recognition Using CRNN

The convolutional and recurrent layers of CRNN
process the input speech command in the
following manner to recognize it.

3.2.1 Processing of Input Speech Command by
Convolutional Layer

The first layer in the CRNN architecture is the
convolutional layer and the speech command
recognition process begin with the convolutional
layer

1c
L .

The convolutional layer
1c

L of CRNN consists of

two-dimensional convolution filter (number of
filters -

ncf , size of filter -
F Tsz sz× , and strides-

,T FS S) [1]. The convolutional filter extract
information either from the received spectrogram
[22] of the speech command or from the speech
feature vector i.e. a context window of F log Mel
band energies F TE ×∈ [21] by performing
convolution and pooling operations over it.
Moreover, pass the extracted information to the
next layer through the ReLU activation function
[14]. Mathematically the convolution and pooling
operation of convolutional layer

1c
L is

expressed as:

,
1

(*) (1)
I

j i i j j
i

O R a w b
=

= +∑

()
Б

i, m n=1 i, m-1 × s + n , (2)P = max O

where *represent convolution operation, ,i jw
represent weighted matrix, (1,.....)ia i I= is input
feature map (1,....)JO J J= is convolutional
feature map,

jb is bias, I is the number of the

input feature map, R is ReLU activation function,
Б represent pooling size, s represent shift size.

The output of the convolutional layer

1c
L is fed as

an input to the next convolutional layer
2

Lc
and

the process will continue till the last convolutional
layer. In CRNN there are L

cc
 number of

convolutional layer stack together, and the output
of the last convolutional layer L

cc is a tensor and

mathematically expressed as:
' , (3)F TM R × ×∈ A

where A represent the number of feature maps of
the last convolutional layer, 'F is the number of
frequency bands reaming after several pooling
operations by convolutional layers, T represent
the length of the sequence.

3.2.2 Processing of Input Data by Recurrent
Layer

The output of the last convolutional layer

'()
c

F T
cL M R × ×∈ A

is feed as input to the second

FC
layer

 Data
Input

Convolution
layer

Recurrent
layer

Output
layer

Feature
maps
+ Relu

Pooled
feature

LSTM or GRU

Poo-
ling
layer

 represent pooling size, s
represent shift size.
The output of the convolutional layer

1c
L

is fed as an
input to the next convolutional layer

2
Lc

and the pro-
cess will continue till the last convolutional layer. In
CRNN there are L

cc number of convolutional layer
stack together, and the output of the last convolutional
layer L

cc
is a tensor and mathematically expressed as:

4

3. Material and Method

3.1 Convolutional Recurrent Neural Network

The objective of the presented work is to develop
a speech command recognition model that will
achieve high recognition accuracy with limited
model parameters and will suit the requirement of
novel engineering applications. To fulfill this
objective in the presented work hybrid neural
network architecture CRNN (a combination of
CNN and RNN as illustrated in figure 2) is
preferred to build the model.

The preference is given to CRNN because the
CRNN captures the local spectral correlation in
speech command by using convolutional layer
and global spectral correlation in speech
command by using recurrent layer [29, 37-38]. The
simultaneous capturing of local and global
spectral correlation of speech command by CRNN
help in achieving high recognition accuracy with
few layers, that intern helps in reducing
computational complexity and model size.

Figure 2
Basic CRNN for speech command recognition (FC is
abbreviation of fully connected layer)

3.2 Speech Command Recognition Using CRNN

The convolutional and recurrent layers of CRNN
process the input speech command in the
following manner to recognize it.

3.2.1 Processing of Input Speech Command by
Convolutional Layer

The first layer in the CRNN architecture is the
convolutional layer and the speech command
recognition process begin with the convolutional
layer

1c
L .

The convolutional layer
1c

L of CRNN consists of

two-dimensional convolution filter (number of
filters -

ncf , size of filter -
F Tsz sz× , and strides-

,T FS S) [1]. The convolutional filter extract
information either from the received spectrogram
[22] of the speech command or from the speech
feature vector i.e. a context window of F log Mel
band energies F TE ×∈ [21] by performing
convolution and pooling operations over it.
Moreover, pass the extracted information to the
next layer through the ReLU activation function
[14]. Mathematically the convolution and pooling
operation of convolutional layer

1c
L is

expressed as:

,
1

(*) (1)
I

j i i j j
i

O R a w b
=

= +∑

()
Б

i, m n=1 i, m-1 × s + n , (2)P = max O

where *represent convolution operation, ,i jw
represent weighted matrix, (1,.....)ia i I= is input
feature map (1,....)JO J J= is convolutional
feature map,

jb is bias, I is the number of the

input feature map, R is ReLU activation function,
Б represent pooling size, s represent shift size.

The output of the convolutional layer

1c
L is fed as

an input to the next convolutional layer
2

Lc
and

the process will continue till the last convolutional
layer. In CRNN there are L

cc
 number of

convolutional layer stack together, and the output
of the last convolutional layer L

cc is a tensor and

mathematically expressed as:
' , (3)F TM R × ×∈ A

where A represent the number of feature maps of
the last convolutional layer, 'F is the number of
frequency bands reaming after several pooling
operations by convolutional layers, T represent
the length of the sequence.

3.2.2 Processing of Input Data by Recurrent
Layer

The output of the last convolutional layer

'()
c

F T
cL M R × ×∈ A

is feed as input to the second

FC
layer

 Data
Input

Convolution
layer

Recurrent
layer

Output
layer

Feature
maps
+ Relu

Pooled
feature

LSTM or GRU

Poo-
ling
layer

(3)

where

4

3. Material and Method

3.1 Convolutional Recurrent Neural Network

The objective of the presented work is to develop
a speech command recognition model that will
achieve high recognition accuracy with limited
model parameters and will suit the requirement of
novel engineering applications. To fulfill this
objective in the presented work hybrid neural
network architecture CRNN (a combination of
CNN and RNN as illustrated in figure 2) is
preferred to build the model.

The preference is given to CRNN because the
CRNN captures the local spectral correlation in
speech command by using convolutional layer
and global spectral correlation in speech
command by using recurrent layer [29, 37-38]. The
simultaneous capturing of local and global
spectral correlation of speech command by CRNN
help in achieving high recognition accuracy with
few layers, that intern helps in reducing
computational complexity and model size.

Figure 2
Basic CRNN for speech command recognition (FC is
abbreviation of fully connected layer)

3.2 Speech Command Recognition Using CRNN

The convolutional and recurrent layers of CRNN
process the input speech command in the
following manner to recognize it.

3.2.1 Processing of Input Speech Command by
Convolutional Layer

The first layer in the CRNN architecture is the
convolutional layer and the speech command
recognition process begin with the convolutional
layer

1c
L .

The convolutional layer
1c

L of CRNN consists of

two-dimensional convolution filter (number of
filters -

ncf , size of filter -
F Tsz sz× , and strides-

,T FS S) [1]. The convolutional filter extract
information either from the received spectrogram
[22] of the speech command or from the speech
feature vector i.e. a context window of F log Mel
band energies F TE ×∈ [21] by performing
convolution and pooling operations over it.
Moreover, pass the extracted information to the
next layer through the ReLU activation function
[14]. Mathematically the convolution and pooling
operation of convolutional layer

1c
L is

expressed as:

,
1

(*) (1)
I

j i i j j
i

O R a w b
=

= +∑

()
Б

i, m n=1 i, m-1 × s + n , (2)P = max O

where *represent convolution operation, ,i jw
represent weighted matrix, (1,.....)ia i I= is input
feature map (1,....)JO J J= is convolutional
feature map,

jb is bias, I is the number of the

input feature map, R is ReLU activation function,
Б represent pooling size, s represent shift size.

The output of the convolutional layer

1c
L is fed as

an input to the next convolutional layer
2

Lc
and

the process will continue till the last convolutional
layer. In CRNN there are L

cc
 number of

convolutional layer stack together, and the output
of the last convolutional layer L

cc is a tensor and

mathematically expressed as:
' , (3)F TM R × ×∈ A

where A represent the number of feature maps of
the last convolutional layer, 'F is the number of
frequency bands reaming after several pooling
operations by convolutional layers, T represent
the length of the sequence.

3.2.2 Processing of Input Data by Recurrent
Layer

The output of the last convolutional layer

'()
c

F T
cL M R × ×∈ A

is feed as input to the second

FC
layer

 Data
Input

Convolution
layer

Recurrent
layer

Output
layer

Feature
maps
+ Relu

Pooled
feature

LSTM or GRU

Poo-
ling
layer

 represent the number of feature maps of the
last convolutional layer, 'F is the number of frequen-

Information Technology and Control 2021/4/50660

cy bands reaming after several pooling operations by
convolutional layers, T represent the length of the se-
quence.

3.2.2. Processing of Input Data by Recurrent Layer
The output of the last convolutional layer

4

3. Material and Method

3.1 Convolutional Recurrent Neural Network

The objective of the presented work is to develop
a speech command recognition model that will
achieve high recognition accuracy with limited
model parameters and will suit the requirement of
novel engineering applications. To fulfill this
objective in the presented work hybrid neural
network architecture CRNN (a combination of
CNN and RNN as illustrated in figure 2) is
preferred to build the model.

The preference is given to CRNN because the
CRNN captures the local spectral correlation in
speech command by using convolutional layer
and global spectral correlation in speech
command by using recurrent layer [29, 37-38]. The
simultaneous capturing of local and global
spectral correlation of speech command by CRNN
help in achieving high recognition accuracy with
few layers, that intern helps in reducing
computational complexity and model size.

Figure 2
Basic CRNN for speech command recognition (FC is
abbreviation of fully connected layer)

3.2 Speech Command Recognition Using CRNN

The convolutional and recurrent layers of CRNN
process the input speech command in the
following manner to recognize it.

3.2.1 Processing of Input Speech Command by
Convolutional Layer

The first layer in the CRNN architecture is the
convolutional layer and the speech command
recognition process begin with the convolutional
layer

1c
L .

The convolutional layer
1c

L of CRNN consists of

two-dimensional convolution filter (number of
filters -

ncf , size of filter -
F Tsz sz× , and strides-

,T FS S) [1]. The convolutional filter extract
information either from the received spectrogram
[22] of the speech command or from the speech
feature vector i.e. a context window of F log Mel
band energies F TE ×∈ [21] by performing
convolution and pooling operations over it.
Moreover, pass the extracted information to the
next layer through the ReLU activation function
[14]. Mathematically the convolution and pooling
operation of convolutional layer

1c
L is

expressed as:

,
1

(*) (1)
I

j i i j j
i

O R a w b
=

= +∑

()
Б

i, m n=1 i, m-1 × s + n , (2)P = max O

where *represent convolution operation, ,i jw
represent weighted matrix, (1,.....)ia i I= is input
feature map (1,....)JO J J= is convolutional
feature map,

jb is bias, I is the number of the

input feature map, R is ReLU activation function,
Б represent pooling size, s represent shift size.

The output of the convolutional layer

1c
L is fed as

an input to the next convolutional layer
2

Lc
and

the process will continue till the last convolutional
layer. In CRNN there are L

cc
 number of

convolutional layer stack together, and the output
of the last convolutional layer L

cc is a tensor and

mathematically expressed as:
' , (3)F TM R × ×∈ A

where A represent the number of feature maps of
the last convolutional layer, 'F is the number of
frequency bands reaming after several pooling
operations by convolutional layers, T represent
the length of the sequence.

3.2.2 Processing of Input Data by Recurrent
Layer

The output of the last convolutional layer

'()
c

F T
cL M R × ×∈ A

is feed as input to the second

FC
layer

 Data
Input

Convolution
layer

Recurrent
layer

Output
layer

Feature
maps
+ Relu

Pooled
feature

LSTM or GRU

Poo-
ling
layer

is feed as input to the second layer of

CRNN i.e. recurrent layer as a sequence of frame ccL
cth .

The recurrent layer
1r

L consists of NR numbers of hid-
den units in its GRU cell and scans the frame ccL

cth , after
scanning the recurrent layer

1r
L computes a hidden

vector
rth for each frame as:

5

layer of CRNN i.e. recurrent layer as a sequence of
frame ccL

cth .

The recurrent layer

1r
L consists of NR numbers of

hidden units in its GRU cell and scans the frame
ccL

cth , after scanning the recurrent layer
1r

L

computes a hidden vector
rth for each frame as:

(1) (1)
1(), (4)c c cc c cL L L

rt ct rth h hϖ+ +
−= +

where the symbolϖ represent GRU [16, 23] with
two inputs i.e. the output of the current frame of
the previous layer ccL

cth , and the output of the

previous frame of the current layer (1)
1

ccL
rth +
−

 .

The output of the recurrent layer

1r
L is feed as

input next recurrent layer
2r

L and the process will

continue till the last recurrent layer. In CRNN
there are

rr
L number of recurrent layer stack

together, and the last recurrent layer
rr

L computes

Figure3
Proposed hybrid CRNN speech command recognition method

input for succeeding fully connected layer as:

() (1) ()
1(). (5)c r c r c rc r c r c rL L L L L L

rt ct rth h hϖ+ + − +
−= +

3.2.3 Processing of Input Data by Fully
Connected Layer

The output of the last recurrent layer i.e. equation
(5) is feed as an input to the third layer of CRNN
i.e. fully connected layer [10, 38]. Each fully
connected layer consists of

nFC numbers of units
in it. In CRNN there is L

FCFC
number of fully

connected layers stack together. The output of the
last fully connected layer is computed as:

() ()(). (6)c r FC c rc r FC c rL L L L L
FCt rth R h+ + +=

The last fully connected layer is followed by an
output layer. The output layer computes the
output word sequence from equation (6) by using
a soft-max activation function [15].

3.3 Method for Reducing the Number of
Parameters and Float Operation in CRNN

In CRNN the number of parameters and the
number of float operations is (() /)

nc ntf m FC×

[29]. To reduce the number of parameters and the
number of float operations for fulfilling the main
objective of the presented work (i.e. to achieve
high recognition accuracy with limited model
parameters) the Equations (3) and (5) are
processed in a divergent way with the help of a
low latency
method implemented between the layers of
CRNN. The method is illustrated in figure 3, and
it is implemented with the help of curtailment and
transmute layer.

As illustrated in Figure 3, the transmute and
curtailment layer will compute the linear
combination of the output states of the respective
layers in such a way that the number of
parameters and float operations in succeeding
layers will be reduced on the other hand the
succeeding layers will get enough features from
coupled states to recognize speech command with
high accuracy. Also, the arrangement makes the
proposed model more robust to longer speech

Logarithmic Mel power
spectral coefficients
 LMPSC

Convolution layer

M0

ct

c2

c1

Feature maps
+ Relu

 Pooled feature
maps

Poo-ling layer

Transmute layer

Curtailment
layer Recurrent layer

BGRU

Curtailment
layer

h rt2

h rt

h rt1

Transmute layer

FC
layer

Output
layer

h
r
s
t

(4)

where the symbol ϖ represent GRU [16, 23] with two
inputs i.e. the output of the current frame of the previ-
ous layer ccL

cth , and the output of the previous frame of
the current layer (1)

1
ccL

rth +
− .

The output of the recurrent layer
1r

L is feed as input
next recurrent layer

2r
L

and the process will
continue till the last recurrent layer. In CRNN there
are

rr
L

number of recurrent layer stack together, and
the last recurrent layer

rr
L

computes input for suc-
ceeding fully connected layer as:

5

layer of CRNN i.e. recurrent layer as a sequence of
frame ccL

cth .

The recurrent layer

1r
L consists of NR numbers of

hidden units in its GRU cell and scans the frame
ccL

cth , after scanning the recurrent layer
1r

L

computes a hidden vector
rth for each frame as:

(1) (1)
1(), (4)c c cc c cL L L

rt ct rth h hϖ+ +
−= +

where the symbolϖ represent GRU [16, 23] with
two inputs i.e. the output of the current frame of
the previous layer ccL

cth , and the output of the

previous frame of the current layer (1)
1

ccL
rth +
−

 .

The output of the recurrent layer

1r
L is feed as

input next recurrent layer
2r

L and the process will

continue till the last recurrent layer. In CRNN
there are

rr
L number of recurrent layer stack

together, and the last recurrent layer
rr

L computes

Figure3
Proposed hybrid CRNN speech command recognition method

input for succeeding fully connected layer as:

() (1) ()
1(). (5)c r c r c rc r c r c rL L L L L L

rt ct rth h hϖ+ + − +
−= +

3.2.3 Processing of Input Data by Fully
Connected Layer

The output of the last recurrent layer i.e. equation
(5) is feed as an input to the third layer of CRNN
i.e. fully connected layer [10, 38]. Each fully
connected layer consists of

nFC numbers of units
in it. In CRNN there is L

FCFC
number of fully

connected layers stack together. The output of the
last fully connected layer is computed as:

() ()(). (6)c r FC c rc r FC c rL L L L L
FCt rth R h+ + +=

The last fully connected layer is followed by an
output layer. The output layer computes the
output word sequence from equation (6) by using
a soft-max activation function [15].

3.3 Method for Reducing the Number of
Parameters and Float Operation in CRNN

In CRNN the number of parameters and the
number of float operations is (() /)

nc ntf m FC×

[29]. To reduce the number of parameters and the
number of float operations for fulfilling the main
objective of the presented work (i.e. to achieve
high recognition accuracy with limited model
parameters) the Equations (3) and (5) are
processed in a divergent way with the help of a
low latency
method implemented between the layers of
CRNN. The method is illustrated in figure 3, and
it is implemented with the help of curtailment and
transmute layer.

As illustrated in Figure 3, the transmute and
curtailment layer will compute the linear
combination of the output states of the respective
layers in such a way that the number of
parameters and float operations in succeeding
layers will be reduced on the other hand the
succeeding layers will get enough features from
coupled states to recognize speech command with
high accuracy. Also, the arrangement makes the
proposed model more robust to longer speech

Logarithmic Mel power
spectral coefficients
 LMPSC

Convolution layer

M0

ct

c2

c1

Feature maps
+ Relu

 Pooled feature
maps

Poo-ling layer

Transmute layer

Curtailment
layer Recurrent layer

BGRU

Curtailment
layer

h rt2

h rt

h rt1

Transmute layer

FC
layer

Output
layer

h
r
s
t

(5)

Figure3
Proposed hybrid CRNN speech command recognition method

3.2.3. Processing of Input Data by Fully
Connected Layer
The output of the last recurrent layer i.e. Equation (5) is
feed as an input to the third layer of CRNN i.e. fully con-
nected layer [10, 38]. Each fully connected layer consists
of nFC numbers of units in it. In CRNN there is L

FCFC number of fully connected layers stack together. The
output of the last fully connected layer is computed as:

5

layer of CRNN i.e. recurrent layer as a sequence of
frame ccL

cth .

The recurrent layer

1r
L consists of NR numbers of

hidden units in its GRU cell and scans the frame
ccL

cth , after scanning the recurrent layer
1r

L

computes a hidden vector
rth for each frame as:

(1) (1)
1(), (4)c c cc c cL L L

rt ct rth h hϖ+ +
−= +

where the symbolϖ represent GRU [16, 23] with
two inputs i.e. the output of the current frame of
the previous layer ccL

cth , and the output of the

previous frame of the current layer (1)
1

ccL
rth +
−

 .

The output of the recurrent layer

1r
L is feed as

input next recurrent layer
2r

L and the process will

continue till the last recurrent layer. In CRNN
there are

rr
L number of recurrent layer stack

together, and the last recurrent layer
rr

L computes

Figure3
Proposed hybrid CRNN speech command recognition method

input for succeeding fully connected layer as:

() (1) ()
1(). (5)c r c r c rc r c r c rL L L L L L

rt ct rth h hϖ+ + − +
−= +

3.2.3 Processing of Input Data by Fully
Connected Layer

The output of the last recurrent layer i.e. equation
(5) is feed as an input to the third layer of CRNN
i.e. fully connected layer [10, 38]. Each fully
connected layer consists of

nFC numbers of units
in it. In CRNN there is L

FCFC
number of fully

connected layers stack together. The output of the
last fully connected layer is computed as:

() ()(). (6)c r FC c rc r FC c rL L L L L
FCt rth R h+ + +=

The last fully connected layer is followed by an
output layer. The output layer computes the
output word sequence from equation (6) by using
a soft-max activation function [15].

3.3 Method for Reducing the Number of
Parameters and Float Operation in CRNN

In CRNN the number of parameters and the
number of float operations is (() /)

nc ntf m FC×

[29]. To reduce the number of parameters and the
number of float operations for fulfilling the main
objective of the presented work (i.e. to achieve
high recognition accuracy with limited model
parameters) the Equations (3) and (5) are
processed in a divergent way with the help of a
low latency
method implemented between the layers of
CRNN. The method is illustrated in figure 3, and
it is implemented with the help of curtailment and
transmute layer.

As illustrated in Figure 3, the transmute and
curtailment layer will compute the linear
combination of the output states of the respective
layers in such a way that the number of
parameters and float operations in succeeding
layers will be reduced on the other hand the
succeeding layers will get enough features from
coupled states to recognize speech command with
high accuracy. Also, the arrangement makes the
proposed model more robust to longer speech

Logarithmic Mel power
spectral coefficients
 LMPSC

Convolution layer

M0

ct

c2

c1

Feature maps
+ Relu

 Pooled feature
maps

Poo-ling layer

Transmute layer

Curtailment
layer Recurrent layer

BGRU

Curtailment
layer

h rt2

h rt

h rt1

Transmute layer

FC
layer

Output
layer

h
r
s
t

(6)

The last fully connected layer is followed by an output
layer. The output layer computes the output word se-
quence from Equation (6) by using a soft-max activa-
tion function [15].

3.3. Method for Reducing the Number of
Parameters and Float Operation in CRNN
In CRNN the number of parameters and the number
of float operations is (() /)

nc ntf m FC× [29]. To reduce
the number of parameters and the number of float
operations for fulfilling the main objective of the pre-
sented work (i.e. to achieve high recognition accura-
cy with limited model parameters) the Equations (3)
and (5) are processed in a divergent way with the help
of a low latency method implemented between the
layers of CRNN. The method is illustrated in Figure
3, and it is implemented with the help of curtailment
and transmute layer.

5

layer of CRNN i.e. recurrent layer as a sequence of
frame ccL

cth .

The recurrent layer

1r
L consists of NR numbers of

hidden units in its GRU cell and scans the frame
ccL

cth , after scanning the recurrent layer
1r

L

computes a hidden vector
rth for each frame as:

(1) (1)
1(), (4)c c cc c cL L L

rt ct rth h hϖ+ +
−= +

where the symbolϖ represent GRU [16, 23] with
two inputs i.e. the output of the current frame of
the previous layer ccL

cth , and the output of the

previous frame of the current layer (1)
1

ccL
rth +
−

 .

The output of the recurrent layer

1r
L is feed as

input next recurrent layer
2r

L and the process will

continue till the last recurrent layer. In CRNN
there are

rr
L number of recurrent layer stack

together, and the last recurrent layer
rr

L computes

Figure3
Proposed hybrid CRNN speech command recognition method

input for succeeding fully connected layer as:

() (1) ()
1(). (5)c r c r c rc r c r c rL L L L L L

rt ct rth h hϖ+ + − +
−= +

3.2.3 Processing of Input Data by Fully
Connected Layer

The output of the last recurrent layer i.e. equation
(5) is feed as an input to the third layer of CRNN
i.e. fully connected layer [10, 38]. Each fully
connected layer consists of

nFC numbers of units
in it. In CRNN there is L

FCFC
number of fully

connected layers stack together. The output of the
last fully connected layer is computed as:

() ()(). (6)c r FC c rc r FC c rL L L L L
FCt rth R h+ + +=

The last fully connected layer is followed by an
output layer. The output layer computes the
output word sequence from equation (6) by using
a soft-max activation function [15].

3.3 Method for Reducing the Number of
Parameters and Float Operation in CRNN

In CRNN the number of parameters and the
number of float operations is (() /)

nc ntf m FC×

[29]. To reduce the number of parameters and the
number of float operations for fulfilling the main
objective of the presented work (i.e. to achieve
high recognition accuracy with limited model
parameters) the Equations (3) and (5) are
processed in a divergent way with the help of a
low latency
method implemented between the layers of
CRNN. The method is illustrated in figure 3, and
it is implemented with the help of curtailment and
transmute layer.

As illustrated in Figure 3, the transmute and
curtailment layer will compute the linear
combination of the output states of the respective
layers in such a way that the number of
parameters and float operations in succeeding
layers will be reduced on the other hand the
succeeding layers will get enough features from
coupled states to recognize speech command with
high accuracy. Also, the arrangement makes the
proposed model more robust to longer speech

Logarithmic Mel power
spectral coefficients
 LMPSC

Convolution layer

M0

ct

c2

c1

Feature maps
+ Relu

 Pooled feature
maps

Poo-ling layer

Transmute layer

Curtailment
layer Recurrent layer

BGRU

Curtailment
layer

h rt2

h rt

h rt1

Transmute layer

FC
layer

Output
layer

h
r
s
t

661Information Technology and Control 2021/4/50

As illustrated in Figure 3, the transmute and curtail-
ment layer will compute the linear combination of the
output states of the respective layers in such a way that
the number of parameters and float operations in suc-
ceeding layers will be reduced on the other hand the
succeeding layers will get enough features from cou-
pled states to recognize speech command with high
accuracy. Also, the arrangement makes the proposed
model more robust to longer speech sequences with re-
duce number of parameters and float operations.
In the presented work, for the reduction in the num-
ber of parameters and float operation, two low latency
methods for computing a linear combination of the
output states in the transmute and curtailment layer
are proposed and discussed in the following text.

3.3.1. Mean-Weight-Reduction-Method
In this method, the reduction in the number of param-
eters and float operations is obtained by computing a
linear combination of each time step with the help of
weight vector in the curtailment layer as follows:
First, the transmute layer

1TL transforms the pooled
feature maps of

ccL convolutional layer into a feature
vector. Next, for a sequence of length T of feature vec-
tor the curtailment layer

1rsL will compute linear com-
bination as:

6

sequences with reduce number of parameters and
float operations.

In the presented work, for the reduction in the
number of parameters and float operation, two
low latency methods for computing a linear
combination of the output states in the transmute
and curtailment layer are proposed and discussed
in the following text.

3.3.1 Mean-Weight-Reduction-Method

In this method, the reduction in the number of
parameters and float operations is obtained by
computing a linear combination of each time step
with the help of weight vector in the curtailment
layer as follows:

First, the transmute layer
1TL transforms the

pooled feature maps of
ccL convolutional layer

into a feature vector. Next, for a sequence of
length T of feature vector the curtailment layer

1rsL will compute linear combination as:
1

1
0

, (7)
t

T

t
t

c R MW
−

=

= ∑

where tc represent input for the succeeding
recurrent layers, 1t

W is the weight vector with the

help of which curtailment layer
1rsL will compute

the input for the succeeding recurrent layers. The
weight vector

1t
W of the curtailment layer

1rsL

is computed from the weight vector of equation
(1) and (2) as:

1 ,
0

/ . (8)
t

I

i j
i

W w ij
=

=∑

Next, Equation (7) is feed as input to the
succeeding recurrent layers and for the same
sequence of length T the relationship between
input and output of Bidirectional Gated Recurrent
Unit (BGRU) cell (consideration of BGRU instead
of Bidirectional Long Short-Term Memory
(BLSTM) is based on section 5.2) in the recurrent
layer is:

1 1 1(.[h , c]+b) (9)
t r rt t rGr R W −=

1 1 1(.[h , c]+b), (10)
t u rt t UGU R W −=

where
1t

Gr represent the output of the reset gate

of BGRU cell [2], 1t
GU represent the output of the

update gate of BGRU cell, 1 1b , bU r is bias, R is
ReLU activation function.

Equation (9) and (10) shows that at any time
instant t , the output of BGRU cell is the function
of input sequence tc at time t and BGRU cell
output

1rth −
 at time 1t − [37]. Now transmute

layer
2TL after recurrent layers will flatten the

output of the BGRU cell from shape
(() /)cnt f m× to shape ((1) /)cntf m× and
curtailment layer

2rsL will concatenate the output

of the last recurrent layer
rr

L by using the formula:

1(.[* ,]) (11)t h rt rt tR w Gr h c−ϒ =
h , (12)

trst r tGU= + ϒ

where ,
t tr rGr GU represents update gate output

and reset gate output of the last recurrent layer
respectively, hw is the weight vector for
concatenating, h rst is concatenated output.

Now
0 (1)

(h)
Grrst rsth

−
 is concatenated output of

different BGRU cell of last recurrent layer
computed using weight vector

0 (1)
(w)

Grh hw
−

.

By using equation (12) the curtailment layer
2rsL

will compute a linear combination of concatenated
output for succeeding fully connected layer as:

1

2
0

(), (13)
r

t

G

rst
t

R h W
−

=

Ζ = ∑
where Ζ represent new input for the succeeding
fully connected layer instead of equation (5). The
weight vector of Equation (13) is computed as:

1

t
0

2 () / . (14)W
rG

h
h

w h
−

=

= ∑

3.3.2 Mean-Max-Weight-Reduction-Method

The mean-max-weight-reduction-method for the
reduction in the number of parameters and float
operation is in the neighborhood of the mean-
weight-reduction method. The variability between
the methods lies in the computation of the weight
vector with the help of which the curtailment
layer computes a linear combination of the time
steps. In this method, the computation of the
weight vector 2t

W of the curtailment layer is

based on the content of each state i.e. if at a time
instant t a frame carries maximum information
then the weight vector is longer for this frame as
compared to another frame with the minimum
information.

(7)

where tc represent input for the succeeding recur-
rent layers, 1t

W is the weight vector with the help of
which curtailment layer

1rsL will compute the input
for the succeeding recurrent layers. The weight vec-
tor 1t

W of the curtailment layer
1rsL is computed from

the weight vector of Equation (1) and (2) as:

6

sequences with reduce number of parameters and
float operations.

In the presented work, for the reduction in the
number of parameters and float operation, two
low latency methods for computing a linear
combination of the output states in the transmute
and curtailment layer are proposed and discussed
in the following text.

3.3.1 Mean-Weight-Reduction-Method

In this method, the reduction in the number of
parameters and float operations is obtained by
computing a linear combination of each time step
with the help of weight vector in the curtailment
layer as follows:

First, the transmute layer
1TL transforms the

pooled feature maps of
ccL convolutional layer

into a feature vector. Next, for a sequence of
length T of feature vector the curtailment layer

1rsL will compute linear combination as:
1

1
0

, (7)
t

T

t
t

c R MW
−

=

= ∑

where tc represent input for the succeeding
recurrent layers, 1t

W is the weight vector with the

help of which curtailment layer
1rsL will compute

the input for the succeeding recurrent layers. The
weight vector

1t
W of the curtailment layer

1rsL

is computed from the weight vector of equation
(1) and (2) as:

1 ,
0

/ . (8)
t

I

i j
i

W w ij
=

=∑

Next, Equation (7) is feed as input to the
succeeding recurrent layers and for the same
sequence of length T the relationship between
input and output of Bidirectional Gated Recurrent
Unit (BGRU) cell (consideration of BGRU instead
of Bidirectional Long Short-Term Memory
(BLSTM) is based on section 5.2) in the recurrent
layer is:

1 1 1(.[h , c]+b) (9)
t r rt t rGr R W −=

1 1 1(.[h , c]+b), (10)
t u rt t UGU R W −=

where
1t

Gr represent the output of the reset gate

of BGRU cell [2], 1t
GU represent the output of the

update gate of BGRU cell, 1 1b , bU r is bias, R is
ReLU activation function.

Equation (9) and (10) shows that at any time
instant t , the output of BGRU cell is the function
of input sequence tc at time t and BGRU cell
output

1rth −
 at time 1t − [37]. Now transmute

layer
2TL after recurrent layers will flatten the

output of the BGRU cell from shape
(() /)cnt f m× to shape ((1) /)cntf m× and
curtailment layer

2rsL will concatenate the output

of the last recurrent layer
rr

L by using the formula:

1(.[* ,]) (11)t h rt rt tR w Gr h c−ϒ =
h , (12)

trst r tGU= + ϒ

where ,
t tr rGr GU represents update gate output

and reset gate output of the last recurrent layer
respectively, hw is the weight vector for
concatenating, h rst is concatenated output.

Now
0 (1)

(h)
Grrst rsth

−
 is concatenated output of

different BGRU cell of last recurrent layer
computed using weight vector

0 (1)
(w)

Grh hw
−

.

By using equation (12) the curtailment layer
2rsL

will compute a linear combination of concatenated
output for succeeding fully connected layer as:

1

2
0

(), (13)
r

t

G

rst
t

R h W
−

=

Ζ = ∑
where Ζ represent new input for the succeeding
fully connected layer instead of equation (5). The
weight vector of Equation (13) is computed as:

1

t
0

2 () / . (14)W
rG

h
h

w h
−

=

= ∑

3.3.2 Mean-Max-Weight-Reduction-Method

The mean-max-weight-reduction-method for the
reduction in the number of parameters and float
operation is in the neighborhood of the mean-
weight-reduction method. The variability between
the methods lies in the computation of the weight
vector with the help of which the curtailment
layer computes a linear combination of the time
steps. In this method, the computation of the
weight vector 2t

W of the curtailment layer is

based on the content of each state i.e. if at a time
instant t a frame carries maximum information
then the weight vector is longer for this frame as
compared to another frame with the minimum
information.

(8)

Next, Equation (7) is feed as input to the succeeding
recurrent layers and for the same sequence of length
T the relationship between input and output of Bidi-
rectional Gated Recurrent Unit (BGRU) cell (consid-
eration of BGRU instead of Bidirectional Long Short-
Term Memory (BLSTM) is based on Section 5.2) in
the recurrent layer is:

6

sequences with reduce number of parameters and
float operations.

In the presented work, for the reduction in the
number of parameters and float operation, two
low latency methods for computing a linear
combination of the output states in the transmute
and curtailment layer are proposed and discussed
in the following text.

3.3.1 Mean-Weight-Reduction-Method

In this method, the reduction in the number of
parameters and float operations is obtained by
computing a linear combination of each time step
with the help of weight vector in the curtailment
layer as follows:

First, the transmute layer
1TL transforms the

pooled feature maps of
ccL convolutional layer

into a feature vector. Next, for a sequence of
length T of feature vector the curtailment layer

1rsL will compute linear combination as:
1

1
0

, (7)
t

T

t
t

c R MW
−

=

= ∑

where tc represent input for the succeeding
recurrent layers, 1t

W is the weight vector with the

help of which curtailment layer
1rsL will compute

the input for the succeeding recurrent layers. The
weight vector

1t
W of the curtailment layer

1rsL

is computed from the weight vector of equation
(1) and (2) as:

1 ,
0

/ . (8)
t

I

i j
i

W w ij
=

=∑

Next, Equation (7) is feed as input to the
succeeding recurrent layers and for the same
sequence of length T the relationship between
input and output of Bidirectional Gated Recurrent
Unit (BGRU) cell (consideration of BGRU instead
of Bidirectional Long Short-Term Memory
(BLSTM) is based on section 5.2) in the recurrent
layer is:

1 1 1(.[h , c]+b) (9)
t r rt t rGr R W −=

1 1 1(.[h , c]+b), (10)
t u rt t UGU R W −=

where
1t

Gr represent the output of the reset gate

of BGRU cell [2], 1t
GU represent the output of the

update gate of BGRU cell, 1 1b , bU r is bias, R is
ReLU activation function.

Equation (9) and (10) shows that at any time
instant t , the output of BGRU cell is the function
of input sequence tc at time t and BGRU cell
output

1rth −
 at time 1t − [37]. Now transmute

layer
2TL after recurrent layers will flatten the

output of the BGRU cell from shape
(() /)cnt f m× to shape ((1) /)cntf m× and
curtailment layer

2rsL will concatenate the output

of the last recurrent layer
rr

L by using the formula:

1(.[* ,]) (11)t h rt rt tR w Gr h c−ϒ =
h , (12)

trst r tGU= + ϒ

where ,
t tr rGr GU represents update gate output

and reset gate output of the last recurrent layer
respectively, hw is the weight vector for
concatenating, h rst is concatenated output.

Now
0 (1)

(h)
Grrst rsth

−
 is concatenated output of

different BGRU cell of last recurrent layer
computed using weight vector

0 (1)
(w)

Grh hw
−

.

By using equation (12) the curtailment layer
2rsL

will compute a linear combination of concatenated
output for succeeding fully connected layer as:

1

2
0

(), (13)
r

t

G

rst
t

R h W
−

=

Ζ = ∑
where Ζ represent new input for the succeeding
fully connected layer instead of equation (5). The
weight vector of Equation (13) is computed as:

1

t
0

2 () / . (14)W
rG

h
h

w h
−

=

= ∑

3.3.2 Mean-Max-Weight-Reduction-Method

The mean-max-weight-reduction-method for the
reduction in the number of parameters and float
operation is in the neighborhood of the mean-
weight-reduction method. The variability between
the methods lies in the computation of the weight
vector with the help of which the curtailment
layer computes a linear combination of the time
steps. In this method, the computation of the
weight vector 2t

W of the curtailment layer is

based on the content of each state i.e. if at a time
instant t a frame carries maximum information
then the weight vector is longer for this frame as
compared to another frame with the minimum
information.

(9)

6

sequences with reduce number of parameters and
float operations.

In the presented work, for the reduction in the
number of parameters and float operation, two
low latency methods for computing a linear
combination of the output states in the transmute
and curtailment layer are proposed and discussed
in the following text.

3.3.1 Mean-Weight-Reduction-Method

In this method, the reduction in the number of
parameters and float operations is obtained by
computing a linear combination of each time step
with the help of weight vector in the curtailment
layer as follows:

First, the transmute layer
1TL transforms the

pooled feature maps of
ccL convolutional layer

into a feature vector. Next, for a sequence of
length T of feature vector the curtailment layer

1rsL will compute linear combination as:
1

1
0

, (7)
t

T

t
t

c R MW
−

=

= ∑

where tc represent input for the succeeding
recurrent layers, 1t

W is the weight vector with the

help of which curtailment layer
1rsL will compute

the input for the succeeding recurrent layers. The
weight vector

1t
W of the curtailment layer

1rsL

is computed from the weight vector of equation
(1) and (2) as:

1 ,
0

/ . (8)
t

I

i j
i

W w ij
=

=∑

Next, Equation (7) is feed as input to the
succeeding recurrent layers and for the same
sequence of length T the relationship between
input and output of Bidirectional Gated Recurrent
Unit (BGRU) cell (consideration of BGRU instead
of Bidirectional Long Short-Term Memory
(BLSTM) is based on section 5.2) in the recurrent
layer is:

1 1 1(.[h , c]+b) (9)
t r rt t rGr R W −=

1 1 1(.[h , c]+b), (10)
t u rt t UGU R W −=

where
1t

Gr represent the output of the reset gate

of BGRU cell [2], 1t
GU represent the output of the

update gate of BGRU cell, 1 1b , bU r is bias, R is
ReLU activation function.

Equation (9) and (10) shows that at any time
instant t , the output of BGRU cell is the function
of input sequence tc at time t and BGRU cell
output

1rth −
 at time 1t − [37]. Now transmute

layer
2TL after recurrent layers will flatten the

output of the BGRU cell from shape
(() /)cnt f m× to shape ((1) /)cntf m× and
curtailment layer

2rsL will concatenate the output

of the last recurrent layer
rr

L by using the formula:

1(.[* ,]) (11)t h rt rt tR w Gr h c−ϒ =
h , (12)

trst r tGU= + ϒ

where ,
t tr rGr GU represents update gate output

and reset gate output of the last recurrent layer
respectively, hw is the weight vector for
concatenating, h rst is concatenated output.

Now
0 (1)

(h)
Grrst rsth

−
 is concatenated output of

different BGRU cell of last recurrent layer
computed using weight vector

0 (1)
(w)

Grh hw
−

.

By using equation (12) the curtailment layer
2rsL

will compute a linear combination of concatenated
output for succeeding fully connected layer as:

1

2
0

(), (13)
r

t

G

rst
t

R h W
−

=

Ζ = ∑
where Ζ represent new input for the succeeding
fully connected layer instead of equation (5). The
weight vector of Equation (13) is computed as:

1

t
0

2 () / . (14)W
rG

h
h

w h
−

=

= ∑

3.3.2 Mean-Max-Weight-Reduction-Method

The mean-max-weight-reduction-method for the
reduction in the number of parameters and float
operation is in the neighborhood of the mean-
weight-reduction method. The variability between
the methods lies in the computation of the weight
vector with the help of which the curtailment
layer computes a linear combination of the time
steps. In this method, the computation of the
weight vector 2t

W of the curtailment layer is

based on the content of each state i.e. if at a time
instant t a frame carries maximum information
then the weight vector is longer for this frame as
compared to another frame with the minimum
information.

(10)

where 1t
Gr represent the output of the reset gate of

BGRU cell [2], 1t
GU represent the output of the up-

date gate of BGRU cell, 1 1b , bU r is bias, R is ReLU ac-
tivation function.

Equation (9) and (10) shows that at any time instant
t, the output of BGRU cell is the function of input se-
quence tc at time t and BGRU cell output 1rth − at time

1t − [37]. Now transmute layer
2TL after recurrent

layers will flatten the output of the BGRU cell from
shape (() /)cnt f m× to shape ((1) /)cntf m× and curtail-
ment layer

2rsL will concatenate the output of the last
recurrent layer

rr
L

by using the formula:

6

sequences with reduce number of parameters and
float operations.

In the presented work, for the reduction in the
number of parameters and float operation, two
low latency methods for computing a linear
combination of the output states in the transmute
and curtailment layer are proposed and discussed
in the following text.

3.3.1 Mean-Weight-Reduction-Method

In this method, the reduction in the number of
parameters and float operations is obtained by
computing a linear combination of each time step
with the help of weight vector in the curtailment
layer as follows:

First, the transmute layer
1TL transforms the

pooled feature maps of
ccL convolutional layer

into a feature vector. Next, for a sequence of
length T of feature vector the curtailment layer

1rsL will compute linear combination as:
1

1
0

, (7)
t

T

t
t

c R MW
−

=

= ∑

where tc represent input for the succeeding
recurrent layers, 1t

W is the weight vector with the

help of which curtailment layer
1rsL will compute

the input for the succeeding recurrent layers. The
weight vector

1t
W of the curtailment layer

1rsL

is computed from the weight vector of equation
(1) and (2) as:

1 ,
0

/ . (8)
t

I

i j
i

W w ij
=

=∑

Next, Equation (7) is feed as input to the
succeeding recurrent layers and for the same
sequence of length T the relationship between
input and output of Bidirectional Gated Recurrent
Unit (BGRU) cell (consideration of BGRU instead
of Bidirectional Long Short-Term Memory
(BLSTM) is based on section 5.2) in the recurrent
layer is:

1 1 1(.[h , c]+b) (9)
t r rt t rGr R W −=

1 1 1(.[h , c]+b), (10)
t u rt t UGU R W −=

where
1t

Gr represent the output of the reset gate

of BGRU cell [2], 1t
GU represent the output of the

update gate of BGRU cell, 1 1b , bU r is bias, R is
ReLU activation function.

Equation (9) and (10) shows that at any time
instant t , the output of BGRU cell is the function
of input sequence tc at time t and BGRU cell
output

1rth −
 at time 1t − [37]. Now transmute

layer
2TL after recurrent layers will flatten the

output of the BGRU cell from shape
(() /)cnt f m× to shape ((1) /)cntf m× and
curtailment layer

2rsL will concatenate the output

of the last recurrent layer
rr

L by using the formula:

1(.[* ,]) (11)t h rt rt tR w Gr h c−ϒ =
h , (12)

trst r tGU= + ϒ

where ,
t tr rGr GU represents update gate output

and reset gate output of the last recurrent layer
respectively, hw is the weight vector for
concatenating, h rst is concatenated output.

Now
0 (1)

(h)
Grrst rsth

−
 is concatenated output of

different BGRU cell of last recurrent layer
computed using weight vector

0 (1)
(w)

Grh hw
−

.

By using equation (12) the curtailment layer
2rsL

will compute a linear combination of concatenated
output for succeeding fully connected layer as:

1

2
0

(), (13)
r

t

G

rst
t

R h W
−

=

Ζ = ∑
where Ζ represent new input for the succeeding
fully connected layer instead of equation (5). The
weight vector of Equation (13) is computed as:

1

t
0

2 () / . (14)W
rG

h
h

w h
−

=

= ∑

3.3.2 Mean-Max-Weight-Reduction-Method

The mean-max-weight-reduction-method for the
reduction in the number of parameters and float
operation is in the neighborhood of the mean-
weight-reduction method. The variability between
the methods lies in the computation of the weight
vector with the help of which the curtailment
layer computes a linear combination of the time
steps. In this method, the computation of the
weight vector 2t

W of the curtailment layer is

based on the content of each state i.e. if at a time
instant t a frame carries maximum information
then the weight vector is longer for this frame as
compared to another frame with the minimum
information.

(11)

6

sequences with reduce number of parameters and
float operations.

In the presented work, for the reduction in the
number of parameters and float operation, two
low latency methods for computing a linear
combination of the output states in the transmute
and curtailment layer are proposed and discussed
in the following text.

3.3.1 Mean-Weight-Reduction-Method

In this method, the reduction in the number of
parameters and float operations is obtained by
computing a linear combination of each time step
with the help of weight vector in the curtailment
layer as follows:

First, the transmute layer
1TL transforms the

pooled feature maps of
ccL convolutional layer

into a feature vector. Next, for a sequence of
length T of feature vector the curtailment layer

1rsL will compute linear combination as:
1

1
0

, (7)
t

T

t
t

c R MW
−

=

= ∑

where tc represent input for the succeeding
recurrent layers, 1t

W is the weight vector with the

help of which curtailment layer
1rsL will compute

the input for the succeeding recurrent layers. The
weight vector

1t
W of the curtailment layer

1rsL

is computed from the weight vector of equation
(1) and (2) as:

1 ,
0

/ . (8)
t

I

i j
i

W w ij
=

=∑

Next, Equation (7) is feed as input to the
succeeding recurrent layers and for the same
sequence of length T the relationship between
input and output of Bidirectional Gated Recurrent
Unit (BGRU) cell (consideration of BGRU instead
of Bidirectional Long Short-Term Memory
(BLSTM) is based on section 5.2) in the recurrent
layer is:

1 1 1(.[h , c]+b) (9)
t r rt t rGr R W −=

1 1 1(.[h , c]+b), (10)
t u rt t UGU R W −=

where
1t

Gr represent the output of the reset gate

of BGRU cell [2], 1t
GU represent the output of the

update gate of BGRU cell, 1 1b , bU r is bias, R is
ReLU activation function.

Equation (9) and (10) shows that at any time
instant t , the output of BGRU cell is the function
of input sequence tc at time t and BGRU cell
output

1rth −
 at time 1t − [37]. Now transmute

layer
2TL after recurrent layers will flatten the

output of the BGRU cell from shape
(() /)cnt f m× to shape ((1) /)cntf m× and
curtailment layer

2rsL will concatenate the output

of the last recurrent layer
rr

L by using the formula:

1(.[* ,]) (11)t h rt rt tR w Gr h c−ϒ =
h , (12)

trst r tGU= + ϒ

where ,
t tr rGr GU represents update gate output

and reset gate output of the last recurrent layer
respectively, hw is the weight vector for
concatenating, h rst is concatenated output.

Now
0 (1)

(h)
Grrst rsth

−
 is concatenated output of

different BGRU cell of last recurrent layer
computed using weight vector

0 (1)
(w)

Grh hw
−

.

By using equation (12) the curtailment layer
2rsL

will compute a linear combination of concatenated
output for succeeding fully connected layer as:

1

2
0

(), (13)
r

t

G

rst
t

R h W
−

=

Ζ = ∑
where Ζ represent new input for the succeeding
fully connected layer instead of equation (5). The
weight vector of Equation (13) is computed as:

1

t
0

2 () / . (14)W
rG

h
h

w h
−

=

= ∑

3.3.2 Mean-Max-Weight-Reduction-Method

The mean-max-weight-reduction-method for the
reduction in the number of parameters and float
operation is in the neighborhood of the mean-
weight-reduction method. The variability between
the methods lies in the computation of the weight
vector with the help of which the curtailment
layer computes a linear combination of the time
steps. In this method, the computation of the
weight vector 2t

W of the curtailment layer is

based on the content of each state i.e. if at a time
instant t a frame carries maximum information
then the weight vector is longer for this frame as
compared to another frame with the minimum
information.

(12)

where ,
t tr rGr GU represents update gate output and

reset gate output of the last recurrent layer respec-
tively, hw is the weight vector for concatenating, h rst
is concatenated output.
Now

0 (1)
(h)

Grrst rsth
−

 is concatenated output of dif-
ferent BGRU cell of last recurrent layer computed us-
ing weight vector

0 (1)
(w)

Grh hw
−

. By using Equation
(12) the curtailment layer

2rsL will compute a linear
combination of concatenated output for succeeding
fully connected layer as:

6

sequences with reduce number of parameters and
float operations.

In the presented work, for the reduction in the
number of parameters and float operation, two
low latency methods for computing a linear
combination of the output states in the transmute
and curtailment layer are proposed and discussed
in the following text.

3.3.1 Mean-Weight-Reduction-Method

In this method, the reduction in the number of
parameters and float operations is obtained by
computing a linear combination of each time step
with the help of weight vector in the curtailment
layer as follows:

First, the transmute layer
1TL transforms the

pooled feature maps of
ccL convolutional layer

into a feature vector. Next, for a sequence of
length T of feature vector the curtailment layer

1rsL will compute linear combination as:
1

1
0

, (7)
t

T

t
t

c R MW
−

=

= ∑

where tc represent input for the succeeding
recurrent layers, 1t

W is the weight vector with the

help of which curtailment layer
1rsL will compute

the input for the succeeding recurrent layers. The
weight vector

1t
W of the curtailment layer

1rsL

is computed from the weight vector of equation
(1) and (2) as:

1 ,
0

/ . (8)
t

I

i j
i

W w ij
=

=∑

Next, Equation (7) is feed as input to the
succeeding recurrent layers and for the same
sequence of length T the relationship between
input and output of Bidirectional Gated Recurrent
Unit (BGRU) cell (consideration of BGRU instead
of Bidirectional Long Short-Term Memory
(BLSTM) is based on section 5.2) in the recurrent
layer is:

1 1 1(.[h , c]+b) (9)
t r rt t rGr R W −=

1 1 1(.[h , c]+b), (10)
t u rt t UGU R W −=

where
1t

Gr represent the output of the reset gate

of BGRU cell [2], 1t
GU represent the output of the

update gate of BGRU cell, 1 1b , bU r is bias, R is
ReLU activation function.

Equation (9) and (10) shows that at any time
instant t , the output of BGRU cell is the function
of input sequence tc at time t and BGRU cell
output

1rth −
 at time 1t − [37]. Now transmute

layer
2TL after recurrent layers will flatten the

output of the BGRU cell from shape
(() /)cnt f m× to shape ((1) /)cntf m× and
curtailment layer

2rsL will concatenate the output

of the last recurrent layer
rr

L by using the formula:

1(.[* ,]) (11)t h rt rt tR w Gr h c−ϒ =
h , (12)

trst r tGU= + ϒ

where ,
t tr rGr GU represents update gate output

and reset gate output of the last recurrent layer
respectively, hw is the weight vector for
concatenating, h rst is concatenated output.

Now
0 (1)

(h)
Grrst rsth

−
 is concatenated output of

different BGRU cell of last recurrent layer
computed using weight vector

0 (1)
(w)

Grh hw
−

.

By using equation (12) the curtailment layer
2rsL

will compute a linear combination of concatenated
output for succeeding fully connected layer as:

1

2
0

(), (13)
r

t

G

rst
t

R h W
−

=

Ζ = ∑
where Ζ represent new input for the succeeding
fully connected layer instead of equation (5). The
weight vector of Equation (13) is computed as:

1

t
0

2 () / . (14)W
rG

h
h

w h
−

=

= ∑

3.3.2 Mean-Max-Weight-Reduction-Method

The mean-max-weight-reduction-method for the
reduction in the number of parameters and float
operation is in the neighborhood of the mean-
weight-reduction method. The variability between
the methods lies in the computation of the weight
vector with the help of which the curtailment
layer computes a linear combination of the time
steps. In this method, the computation of the
weight vector 2t

W of the curtailment layer is

based on the content of each state i.e. if at a time
instant t a frame carries maximum information
then the weight vector is longer for this frame as
compared to another frame with the minimum
information.

(13)

where Z represent new input for the succeeding fully
connected layer instead of Equation (5). The weight
vector of Equation (13) is computed as:

6

sequences with reduce number of parameters and
float operations.

In the presented work, for the reduction in the
number of parameters and float operation, two
low latency methods for computing a linear
combination of the output states in the transmute
and curtailment layer are proposed and discussed
in the following text.

3.3.1 Mean-Weight-Reduction-Method

In this method, the reduction in the number of
parameters and float operations is obtained by
computing a linear combination of each time step
with the help of weight vector in the curtailment
layer as follows:

First, the transmute layer
1TL transforms the

pooled feature maps of
ccL convolutional layer

into a feature vector. Next, for a sequence of
length T of feature vector the curtailment layer

1rsL will compute linear combination as:
1

1
0

, (7)
t

T

t
t

c R MW
−

=

= ∑

where tc represent input for the succeeding
recurrent layers, 1t

W is the weight vector with the

help of which curtailment layer
1rsL will compute

the input for the succeeding recurrent layers. The
weight vector

1t
W of the curtailment layer

1rsL

is computed from the weight vector of equation
(1) and (2) as:

1 ,
0

/ . (8)
t

I

i j
i

W w ij
=

=∑

Next, Equation (7) is feed as input to the
succeeding recurrent layers and for the same
sequence of length T the relationship between
input and output of Bidirectional Gated Recurrent
Unit (BGRU) cell (consideration of BGRU instead
of Bidirectional Long Short-Term Memory
(BLSTM) is based on section 5.2) in the recurrent
layer is:

1 1 1(.[h , c]+b) (9)
t r rt t rGr R W −=

1 1 1(.[h , c]+b), (10)
t u rt t UGU R W −=

where
1t

Gr represent the output of the reset gate

of BGRU cell [2], 1t
GU represent the output of the

update gate of BGRU cell, 1 1b , bU r is bias, R is
ReLU activation function.

Equation (9) and (10) shows that at any time
instant t , the output of BGRU cell is the function
of input sequence tc at time t and BGRU cell
output

1rth −
 at time 1t − [37]. Now transmute

layer
2TL after recurrent layers will flatten the

output of the BGRU cell from shape
(() /)cnt f m× to shape ((1) /)cntf m× and
curtailment layer

2rsL will concatenate the output

of the last recurrent layer
rr

L by using the formula:

1(.[* ,]) (11)t h rt rt tR w Gr h c−ϒ =
h , (12)

trst r tGU= + ϒ

where ,
t tr rGr GU represents update gate output

and reset gate output of the last recurrent layer
respectively, hw is the weight vector for
concatenating, h rst is concatenated output.

Now
0 (1)

(h)
Grrst rsth

−
 is concatenated output of

different BGRU cell of last recurrent layer
computed using weight vector

0 (1)
(w)

Grh hw
−

.

By using equation (12) the curtailment layer
2rsL

will compute a linear combination of concatenated
output for succeeding fully connected layer as:

1

2
0

(), (13)
r

t

G

rst
t

R h W
−

=

Ζ = ∑
where Ζ represent new input for the succeeding
fully connected layer instead of equation (5). The
weight vector of Equation (13) is computed as:

1

t
0

2 () / . (14)W
rG

h
h

w h
−

=

= ∑

3.3.2 Mean-Max-Weight-Reduction-Method

The mean-max-weight-reduction-method for the
reduction in the number of parameters and float
operation is in the neighborhood of the mean-
weight-reduction method. The variability between
the methods lies in the computation of the weight
vector with the help of which the curtailment
layer computes a linear combination of the time
steps. In this method, the computation of the
weight vector 2t

W of the curtailment layer is

based on the content of each state i.e. if at a time
instant t a frame carries maximum information
then the weight vector is longer for this frame as
compared to another frame with the minimum
information.

(14)

3.3.2. Mean-Max-Weight-Reduction-Method
The mean-max-weight-reduction-method for the re-
duction in the number of parameters and float opera-
tion is in the neighborhood of the mean- weight-reduc-
tion method. The variability between the methods lies
in the computation of the weight vector with the help

Information Technology and Control 2021/4/50662

of which the curtailment layer computes a linear com-
bination of the time steps. In this method, the compu-
tation of the weight vector 2t

W of the curtailment layer
is based on the content of each state i.e. if at a time in-
stant t a frame carries maximum information then the
weight vector is longer for this frame as compared to
another frame with the minimum information.
This method will follow the same procedure dis-
cussed above (Section 3.3.1). The equivalent equation
for computing input for the succeeding recurrent lay-
er by curtailment layer

1rsL is the same as Equation (7)
and (8). The equation for computing input for suc-
ceeding fully connected layer by curtailment layer

2rsL is as follows:

7

This method will follow the same procedure
discussed above (section 3.2.1). The equivalent
equation for computing input for the succeeding
recurrent layer by curtailment layer

1rsL is the

same as equation (7) and (8). The equation for
computing input for succeeding fully connected
layer by curtailment layer

2rsL is as follows:
1

2
0

 (15)
r

t

G

rst
t

R h W
−

=

Ζ = ∑
1

t2 h=0 h . (16)W = max wrG −

In the CRNN architecture, the number of float
operations is (() /)

nc ntf m FC× and the number

of parameters is (() /)
nc ntf m FC× [18, 29]. With

the help of equation (13) or equation (15), the
proposed method will reduce the number of float
operation to (() /)

nc nf t m FC+ × and the

number of parameters to (() /)
nc nf m FC× .

 3.4 High-Level Description of the Proposed
Model

The high-level architecture of the proposed hybrid
CRNN speech command recognition model is
illustrated in figure 4. The high-level description
of network structure starting from the data input
method is as follows:

3.4.1 Data Input

Speech commands are in the form of a one-
dimensional vector [8]. To feed it to the 2D
convolution layer of CRNN Himid et.al. [14]
suggest either to convert it into the spectrogram
and feed the

1 cc cL L∈ convolutional layer of

CRNN with the spectrogram or extract Mel
Frequency Spectral Coefficients (MFSCs) from the
extremely long speech command and organized
the extracted features in the form of a maps and
feed

1 cc cL L∈ convolutional layer of CRNN with

organized feature maps i.e. with a context
window of F log Mel band energies over T
frames [21]. In the presented work, the second
method is preferred to feed the proposed model.

Figure 4
Proposed speech command recognition model

However, in the presented work, the proposed
model is fed with Logarithmic Mel Power Spectral
coefficients (LMPSC) i.e. without discrete cosine
transform instead of traditional MFCC. The reason
behind feeding the proposed model with LMPSCs
instead of MFCC is that spectral features (LMPSC)
carry more information as compare to cepstral
(MFCC) features [5]. Moreover, the computation
of features without discrete cosine transform helps
in reducing the overall computational complexity
of the proposed model.

 Extractions of LMPSCs– In the presented work,
LMPSCs are extracted as per the European
Telecommunication Standards Institute (ETSI)
standard [7]. According to the ETSI standard first,
the input speech command is pre-processed to
convert it into a discreet form [8]. After pre-
processing the discrete-time speech signal is
converted into the Mel domain by computing
Short-Time Discrete Fourier Transform (STDFT)
[19] and passing the power spectrum of computed

Pre-processing
& STDFT
computation

Data input

Power spectrum
computation &
Mel domain
conversion

Static, delta delta-
delta feature maps

 LT1

Proposed hybrid CRNN speech command recognition model

(15)

7

This method will follow the same procedure
discussed above (section 3.2.1). The equivalent
equation for computing input for the succeeding
recurrent layer by curtailment layer

1rsL is the

same as equation (7) and (8). The equation for
computing input for succeeding fully connected
layer by curtailment layer

2rsL is as follows:
1

2
0

 (15)
r

t

G

rst
t

R h W
−

=

Ζ = ∑
1

t2 h=0 h . (16)W = max wrG −

In the CRNN architecture, the number of float
operations is (() /)

nc ntf m FC× and the number

of parameters is (() /)
nc ntf m FC× [18, 29]. With

the help of equation (13) or equation (15), the
proposed method will reduce the number of float
operation to (() /)

nc nf t m FC+ × and the

number of parameters to (() /)
nc nf m FC× .

 3.4 High-Level Description of the Proposed
Model

The high-level architecture of the proposed hybrid
CRNN speech command recognition model is
illustrated in figure 4. The high-level description
of network structure starting from the data input
method is as follows:

3.4.1 Data Input

Speech commands are in the form of a one-
dimensional vector [8]. To feed it to the 2D
convolution layer of CRNN Himid et.al. [14]
suggest either to convert it into the spectrogram
and feed the

1 cc cL L∈ convolutional layer of

CRNN with the spectrogram or extract Mel
Frequency Spectral Coefficients (MFSCs) from the
extremely long speech command and organized
the extracted features in the form of a maps and
feed

1 cc cL L∈ convolutional layer of CRNN with

organized feature maps i.e. with a context
window of F log Mel band energies over T
frames [21]. In the presented work, the second
method is preferred to feed the proposed model.

Figure 4
Proposed speech command recognition model

However, in the presented work, the proposed
model is fed with Logarithmic Mel Power Spectral
coefficients (LMPSC) i.e. without discrete cosine
transform instead of traditional MFCC. The reason
behind feeding the proposed model with LMPSCs
instead of MFCC is that spectral features (LMPSC)
carry more information as compare to cepstral
(MFCC) features [5]. Moreover, the computation
of features without discrete cosine transform helps
in reducing the overall computational complexity
of the proposed model.

 Extractions of LMPSCs– In the presented work,
LMPSCs are extracted as per the European
Telecommunication Standards Institute (ETSI)
standard [7]. According to the ETSI standard first,
the input speech command is pre-processed to
convert it into a discreet form [8]. After pre-
processing the discrete-time speech signal is
converted into the Mel domain by computing
Short-Time Discrete Fourier Transform (STDFT)
[19] and passing the power spectrum of computed

Pre-processing
& STDFT
computation

Data input

Power spectrum
computation &
Mel domain
conversion

Static, delta delta-
delta feature maps

 LT1

Proposed hybrid CRNN speech command recognition model

(16)

In the CRNN architecture, the number of float op-
erations is (() /)

nc ntf m FC× and the number of pa-
rameters is (() /)

nc ntf m FC× [18, 29]. With the help
of Equation (13) or Equation (15), the proposed
method will reduce the number of float operation to
(() /)

nc nf t m FC+ × and the number of parameters to
(() /)

nc nf m FC× .

3.4. High-Level Description of the Proposed
Model
The high-level architecture of the proposed hybrid
CRNN speech command recognition model is illus-
trated in Figure 4. The high-level description of net-
work structure starting from the data input method is
as follows:

3.4.1. Data Input
Speech commands are in the form of a one-dimen-
sional vector [8]. To feed it to the 2D convolution lay-
er of CRNN Himid et al. [14] suggest either to convert
it into the spectrogram and feed the

1 cc cL L∈

convolu-

tional layer of CRNN with the spectrogram or extract
Mel Frequency Spectral Coefficients (MFSCs) from
the extremely long speech command and organized
the extracted features in the form of a maps and feed

1 cc cL L∈ convolutional layer of CRNN with organized
feature maps i.e. with a context window of F log Mel

band energies over T frames [21]. In the presented
work, the second method is preferred to feed the pro-
posed model.
However, in the presented work, the proposed mod-
el is fed with Logarithmic Mel Power Spectral co-
efficients (LMPSC) i.e. without discrete cosine
transform instead of traditional MFCC. The reason
behind feeding the proposed model with LMPSCs
instead of MFCC is that spectral features (LMP-
SC) carry more information as compare to cepstral
(MFCC) features [5]. Moreover, the computation of
features without discrete cosine transform helps in
reducing the overall computational complexity of
the proposed model.

Figure 4
Proposed speech command recognition model

7

This method will follow the same procedure
discussed above (section 3.2.1). The equivalent
equation for computing input for the succeeding
recurrent layer by curtailment layer

1rsL is the

same as equation (7) and (8). The equation for
computing input for succeeding fully connected
layer by curtailment layer

2rsL is as follows:
1

2
0

 (15)
r

t

G

rst
t

R h W
−

=

Ζ = ∑
1

t2 h=0 h . (16)W = max wrG −

In the CRNN architecture, the number of float
operations is (() /)

nc ntf m FC× and the number

of parameters is (() /)
nc ntf m FC× [18, 29]. With

the help of equation (13) or equation (15), the
proposed method will reduce the number of float
operation to (() /)

nc nf t m FC+ × and the

number of parameters to (() /)
nc nf m FC× .

 3.4 High-Level Description of the Proposed
Model

The high-level architecture of the proposed hybrid
CRNN speech command recognition model is
illustrated in figure 4. The high-level description
of network structure starting from the data input
method is as follows:

3.4.1 Data Input

Speech commands are in the form of a one-
dimensional vector [8]. To feed it to the 2D
convolution layer of CRNN Himid et.al. [14]
suggest either to convert it into the spectrogram
and feed the

1 cc cL L∈ convolutional layer of

CRNN with the spectrogram or extract Mel
Frequency Spectral Coefficients (MFSCs) from the
extremely long speech command and organized
the extracted features in the form of a maps and
feed

1 cc cL L∈ convolutional layer of CRNN with

organized feature maps i.e. with a context
window of F log Mel band energies over T
frames [21]. In the presented work, the second
method is preferred to feed the proposed model.

Figure 4
Proposed speech command recognition model

However, in the presented work, the proposed
model is fed with Logarithmic Mel Power Spectral
coefficients (LMPSC) i.e. without discrete cosine
transform instead of traditional MFCC. The reason
behind feeding the proposed model with LMPSCs
instead of MFCC is that spectral features (LMPSC)
carry more information as compare to cepstral
(MFCC) features [5]. Moreover, the computation
of features without discrete cosine transform helps
in reducing the overall computational complexity
of the proposed model.

 Extractions of LMPSCs– In the presented work,
LMPSCs are extracted as per the European
Telecommunication Standards Institute (ETSI)
standard [7]. According to the ETSI standard first,
the input speech command is pre-processed to
convert it into a discreet form [8]. After pre-
processing the discrete-time speech signal is
converted into the Mel domain by computing
Short-Time Discrete Fourier Transform (STDFT)
[19] and passing the power spectrum of computed

Pre-processing
& STDFT
computation

Data input

Power spectrum
computation &
Mel domain
conversion

Static, delta delta-
delta feature maps

 LT1

Proposed hybrid CRNN speech command recognition model

663Information Technology and Control 2021/4/50

Figure 5
Organization of data input to proposed speech command
recognition model

Extractions of LMPSCs – In the presented work,
LMPSCs are extracted as per the European Tele-
communication Standards Institute (ETSI) stan-
dard [7]. According to the ETSI standard first, the
input speech command is pre-processed to convert
it into a discreet form [8]. After pre-processing the
discrete-time speech signal is converted into the Mel
domain by computing Short-Time Discrete Fouri-
er Transform (STDFT) [19] and passing the power
spectrum of computed STDFT through a triangularly
weighted Mel scale filter bank [8]. The resulting Mel
power spectrum is compressed by taking its natural
log. From the logarithmically compressed Mel power
spectrum, LMPSCs are extracted and arranged in the
form of feature vectors.
Organization of extracted LMPSC feature vectors as
a feature map - The organization of extracted LMP-
SC feature vectors as feature maps for the convolu-
tional layer

1c
L

of the proposed model is illustrated in

Figure 5.

8

STDFT through a triangularly weighted Mel scale
filter bank [8]. The resulting Mel power spectrum
is compressed by taking its natural log. From the
logarithmically compressed Mel power spectrum,
LMPSCs are extracted and arranged in the form of
feature vectors.

Organization of extracted LMPSC feature vectors as a
feature map- The organization of extracted LMPSC
feature vectors as feature maps for the
convolutional layer

1c
L of the proposed model is

illustrated in Figure 5.

Figure 5
Organization of data input to proposed speech
command recognition model

In this organization, the extracted LMPSC features
are arranged as three 2-D feature maps
representing static, delta, and delta-delta
representation [14] of spectral features distributed
along both i.e. frequency (by using frequency
band index) and time (by using frame number
within each context window) [12]. The presented
organization is inspired by the work of Hamid et
al. [14].

3.4.2 Convolutional Layer ()

ccL

The proposed speech command recognition
model goes ahead with two-dimensional
convolutional layer followed by max-pooling
layer, ReLU activation. In the proposed model
three convolutional layers

1 2 3
, ,c c cL L L with the

number of filters 64cnf = and size

((20,5))F Tsz sz× = , stride ((4,1))T FS S× = are
sequentially placed. The convolutional layer

1 2 3
, ,c c cL L L will process the input speech features

as discussed in Section 3.1.2.

3.4.3 Transmute Layer ()
TTL

In the proposed model transmute layer is placed
after the convolutional layer

3cL and the recurrent

layer
3r

L for the reduction in the number of

parameters and float operation. This layer is
implemented with the feed-forward concept with
32 units in it.

3.4.4 Curtailment Layer ()
rsrsL

In the proposed model, each transmute layer is
followed by a curtailment layer to compute a
linear combination of time steps with the help of
equation (7) to equation (16) for the reduction in
the number of parameters and float operation.
This layer is implemented with 64 numbers of
units in it.

3.4.5 Bidirectional Recurrent Layer ()
rr

L

In the proposed model, the curtailment layer
1rsL

is followed by bidirectional recurrent layers with
64NR = numbers of hidden units in its BGRU

cell. Bidirectional GRU cell is preferred in the
proposed model because the bidirectional GRU
cell considers present time steps as well as future
time steps. This will help optimally incorporating
the time dimensional features. In the proposed
model, three bidirectional recurrent layers

1 2 3
, ,r r rL L L are sequentially placed and will

process the speech features as discussed in Section
3.1.3.

 3.4.6 Fully Connected Layer ()
FCFCL

In the proposed model the curtailment layer
2rsL

is followed by the fully connected layer with the
number of units 64nFC = in it. In the proposed
model two fully connected layers

1 2
,FC FCL L are

sequentially placed and process the received data
as discussed in Section 3.1.4. The fully connected
layer

2FCL is followed by the output layer which

generates the output word sequence using the
soft-max activation function.

4. Experimental Setup

4.1 Dataset

Frequency
bands

 3 Feature maps

Static

1st 15th
frame frame

Delta

1st 15th
frame frame

Delta-Delta

1st 15th
frame frame

Power
spectrum
computation
 & Mel
domain
conversion

Pre-
processing
and STDFT
computation

In this organization, the extracted LMPSC features
are arranged as three 2-D feature maps representing
static, delta, and delta-delta representation [14] of
spectral features distributed along both i.e. frequency
(by using frequency band index) and time (by using
frame number within each context window) [12]. The
presented organization is inspired by the work of Ha-
mid et al. [14].

3.4.2. Convolutional Layer (Lcc
)

The proposed speech command recognition model
goes ahead with two-dimensional convolutional lay-
er followed by max-pooling layer, ReLU activation.
In the proposed model three convolutional layers

1 2 3
, ,c c cL L L with the number of filters 64cnf = and size

((20,5))F Tsz sz× = , stride ((4,1))T FS S× = are sequen-
tially placed. The convolutional layer

1 2 3
, ,c c cL L L will

process the input speech features as discussed in Sec-
tion 3.2.1.

3.4.3. Transmute Layer (LTT
)

In the proposed model transmute layer is placed af-
ter the convolutional layer

3cL and the recurrent lay-
er

3r
L for the reduction in the number of parameters

and float operation. This layer is implemented with
the feed-forward concept with 32 units in it.

3.4.4. Curtailment Layer (Lrsrs
)

In the proposed model, each transmute layer is fol-
lowed by a curtailment layer to compute a linear
combination of time steps with the help of equation
(7) to equation (16) for the reduction in the number
of parameters and float operation. This layer is imple-
mented with 64 numbers of units in it.

3.4.5. Bidirectional Recurrent Layer (Lrr
)

In the proposed model, the curtailment layer
1rsL is fol-

lowed by bidirectional recurrent layers with 64NR =
numbers of hidden units in its BGRU cell. Bidirection-
al GRU cell is preferred in the proposed model because
the bidirectional GRU cell considers present time
steps as well as future time steps. This will help opti-
mally incorporating the time dimensional features. In
the proposed model, three bidirectional recurrent lay-
ers

1 2 3
, ,r r rL L L are sequentially placed and will process

the speech features as discussed in Section 3.2.2.

3.4.6. Fully Connected Layer (LFCFC
)

In the proposed model the curtailment layer
2rsL

is fol-

lowed by the fully connected layer with the number of
units 64nFC = in it. In the proposed model two fully
connected layers

1 2
,FC FCL L are sequentially placed

and process the received data as discussed in Sec-
tion 3.2.3. The fully connected layer

2FCL is followed
by the output layer which generates the output word
sequence using the soft-max activation function.

Information Technology and Control 2021/4/50664

4. Experimental Setup
4.1. Dataset
The proposed model is tested on two datasets devel-
oped by the Google group for academic research. The
first dataset is Google’s single word speech command
dataset developed by TensorFlow and AIY team [33].
This dataset consists of 65000 audio utterances spo-
ken by male and female speakers. The duration of
each audio utterance in this dataset is of one second.
This dataset consists of 30 single word commands in-
cluding digits from zero to nine. The second dataset
is a fluent speech command (Flu. comm.) dataset de-
veloped by the Google group [9]. This dataset consists
of 30,043 utterances, spoken by 97 male and female
speakers. Each utterance of this dataset is a continu-
ous sentence that is used to control smart home ap-
pliances or virtual assistants, for example, “put on the
music” or “turn on the lights”. The utterances of both
the datasets are recorded with phone and laptop as a
.wav file. The recorded utterances are sampled at 16
kHz as a single-channel signal.

4.2. Implementation
The proposed model is implemented on the python-
Tensorflow platform using the Keras interface [15,
17-18]. Among available platforms, preference is giv-
en to this platform because of its data handling ca-
pacity and flexibility to model predictive modeling
problems with few lines of codes [15, 17]. In Keras, the
proposed model is implemented via sub-classing [10].
Transmute and curtailment layers are implemented
via layer class definition of the customize layer using
the build, call, add function, and setting the trainable
weight argument [18]. The data input for the proposed
model from the speech command dataset is computed
according to the ETSI standard [7]. As per the ETSI
standard, the speech command pre-processing spec-
ifications are tabulated in Table 1, and LMPSCs com-
putation parameters are tabulated in Table 2.

 5. Result and Discussion
To test the proposed model, series of experiments are
performed on both the datasets (single word, and flu-
ent command). The obtained results of different ex-
periments are discussed in this section.

5.1. Impact of Convolutional Layer and
Recurrent Layer on the Performance of the
Proposed Model
The proposed model is built using CRNN. The CRNN
is the combination of CNN and RNN [29]. Therefore
the number of convolutional layers and the number of
recurrent layers in CRNN will decide the recognition
accuracy of the proposed model. In the first experi-
ment, the impact of the number of convolutional lay-
ers, number of convolution filters, number of hidden
units in the recurrent layer, the number of recurrent
layers on the performance of the proposed model is
analyzed. To analyze the impact, both the dataset
(single word dataset and fluent command dataset) are
split into training, validation, and testing sets with a
ratio 6-1-1 [38]. The batch size is 45. The training is
done until convergence though the different compo-
sition of CRNN requires a different number of ep-
ochs. The initial learning rate of each composition
of CRNN is 0.001, with a decay of 0.5 after every ten
epochs. The obtained recognition accuracies along
with detailed specifications of the number of convo-
lutional layers, size of convolution filter, the number
of recurrent layers, number of hidden units in the re-
current layer, number of units in the fully connected
layer are tabulated in Table 3.
The exploration of experimentally obtained results
shows that CRNN composition with two convolu-
tion layers and a single recurrent layer requires the
number of parameters around 178K to 266K with an
average recognition accuracy of 86% in different rec-
ognition tasks. This recognition accuracy is below the
threshold recognition accuracy of the cloud-based

Table 1
ETSI standard signal pre-processing parameters

ἀ Frame size Frame stride Window type

0.97 25ms 10ms Hamming

Table 2
ETSI standard feature vector computation parameters

N-point STDFT No. of triangular filters

512 40

665Information Technology and Control 2021/4/50

Table 3
Impact of the number of convolutional and recurrent layers on the performance of the proposed model (hidden unit is
abbreviated as hi. un. number of parameters is abbreviated as NOP, recognition accuracy is abbreviated as RA)

Convolutional layer Recurrent layer FC
layer Word Digit Flu. comm.

No. of
layer

No. of
filters

Size of
filter Strides No. of

layer
No. of
hi.un.

No. of
units NOP RA NOP RA NOP RA

2 32 (20,5) (4,1) 1 32 32 189K 0.8836 178K 0.8644 266K 0.8677

2 32 (20,5) (4,1) 2 64 64 196K 0.9069 189K 0.8869 289K 0.8825

3 64 (20,5) (4,1) 1 32 32 225K 0.9128 214K 0.9005 303K 0.8966

3 32 (20,5) (4,1) 2 32 32 246K 0.9328 237K 0.9255 328K 0.9166

3 64 (20,5) (4,1) 3 64 64 268K 0.9634 259K 0.9606 354K 0.9533

3 32 (20,5) (4,1) 3 32 32 250K 0.9542 243K 0.9513 345K 0.9421

3 64 (20,5) (4,1) 4 32 32 292K 0.9601 287K 0.9589 408K 0.9541

system (Microsoft Cortana-95%, Apple siri-95%).
Whereas CRNN composition with three convolution
layers and three recurrent layers require trainable
parameters around 259K to 354K, but this composi-
tion achieves recognition accuracy of the cloud-based
system i.e. around 95% in different recognition tasks.
The CRNN composition with three convolution lay-
ers and four recurrent layers has a limited impact on
improvement in recognition accuracy. By increasing
one more recurrent layer, only 1% improvement in
recognition accuracy is observed whereas the model
parameters are increased as an average of around 35K
in different recognition tasks.
The size of the CRNN model in terms of the number
of parameters and recognition accuracy is directly
proportional to the number of convolutional filters,
the number of hidden units in the recurrent layers,
and the number of units in the fully connected lay-
er. By increasing them, recognition accuracy and the
number of parameters increase.
From the obtained result of the first experiment,
(highlighted in Table 3) the high-level architecture of
the proposed model in Figure 4 is drawn. The chosen
size is approximately half of the depth wise separable
CNN model [2].

5.2. Impact of RNN Variants on the
Performance of the Proposed Model
In the first experiment, the recurrent layer is imple-
mented with BGRU; However, BGRU and BLSTM

both are popular variants of RNN. Scientists and re-
searchers use both to build RNN based speech rec-
ognition model [16, 23]. So the second experiment is
performed to inspect which one BGRU or BLSTM is
better for fulfilling the main objective of the present-
ed work.
In the second experiment, the convolutional layer is
implemented with highlighted specifications of Table
3, and the recurrent layer is implemented with the
help of BLSTM and BGRU one by one. Both the times
the number of units of fully connected layer after re-
current layer is kept constant. The computational
complexity (number of model parameters) and rec-
ognition accuracy of both the variants is computed to
compare their impact on the proposed model.
The comparison is made on three tasks i.e. word, dig-
it, and fluent command recognition task. For each
task, the proposed model is trained for maximum 40
epochs [38]. The training of the proposed model will
stop if no improvement is observed after ten consec-
utive epochs. The initial learning rate of the proposed
model is 0.001 and decay of 0.5 after every ten epochs.
The batch size is 45. The training, validation, and test-
ing dataset in the second experiment is the same set
as the first experiment.
The obtained result of the word, digit, and fluent com-
mand recognition task is tabulated in Table 4.
Analysis of obtained results of the second experiment
shows that when the recurrent layer in the proposed

Information Technology and Control 2021/4/50666

Table 4
Comparison of RNN variants in the proposed model when number of units of fully connected layer is 64 (NOP is abbreviation
of number of parameters, TR is abbreviation of training, TE is abbreviation of testing, VA is abbreviation of validation, Mean
WR is abbreviation of mean-weight-reduction-method, Max WR is abbreviation of mean-max-weight-reduction method)

Model
Word recognition accuracy Digit recognition accuracy Flu. comm. recognition accuracy

NOP TR TE VA NOP TR TE VA NOP TR TE VA

CNN+ BGRU+FC 268K 0.9808 0.9583 0.9634 259K 0.9815 0.9527 0.9606 372K 0.9678 0.9361 0.9533

CNN+BGRU+ Mean WR + FC 148K 0.9823 0.9752 0.9648 136K 0.9863 0.9579 0.9631 198K 0.9699 0.9523 0.9585

CNN+BGRU+ Max WR +FC 148K 0.9818 0.9631 0.9641 136K 0.9843 0.9608 0.9602 198K 0.9718 0.9423 0.9543

CNN+ BLSTM+FC 539K 0.9801 0.9512 0.9512 492K 0.98 0.9411 0.9567 713K 0.9651 0.9334 0.9431

CNN+BLSTM+ + Mean WR + FC 273K 0.9811 0.9651 0.9501 252K 0.9833 0.9514 0.9579 372K 0.9702 0.9461 0.9418

CNN+BLSTM+ Max WR +FC 273K 0.9803 0.9563 0.9504 252K 0.9825 0.9516 0.9562 372K 0.9701 0.9411 0.9413

Figure 6 (a)
Learning curve of the proposed model during word recognition task by implementing RNN layer with BGRU and BLSTM

Figure 6 (b)
Learning curve of the proposed model during digit recognition task by implementing RNN layer with BGRU & BLSTM

(ii) CNN+BLSTM+ Mean WR + FC

11

CNN+ BLSTM+FC 539K 0.9801 0.9512 0.9512 492K 0.98 0.9411 0.9567 713K 0.9651 0.9334 0.9431
CNN+BLSTM+ + Mean WR + FC 273K 0.9811 0.9651 0.9501 252K 0.9833 0.9514 0.9579 372K 0.9702 0.9461 0.9418
CNN+BLSTM+ Max WR +FC 273K 0.9803 0.9563 0.9504 252K 0.9825 0.9516 0.9562 372K 0.9701 0.9411 0.9413

Figure 6 (a)
Learning curve of the proposed model during word recognition task by implementing RNN layer with BGRU and
BLSTM

 (i) CNN+BGRU+ Mean WR + FC (ii) CNN+BLSTM+ Mean WR + FC

Figure 6 (b)
Learning curve of the proposed model during digit recognition task by implementing RNN layer with BGRU & BLSTM

 (i) CNN+BGRU+ Mean WR + FC (ii) CNN+BLSTM+ Mean WR + FC

Figure 6 (c)
Learning curve of the proposed model in fluent command recognition task by implementing RNN layer with BGRU
and BLSTM

 (i) CNN+BGRU+ Mean WR+ FC (ii) CNN+BLSTM+ Mean WR + FC

Analysis of obtained results of the second
experiment shows that when the recurrent layer in
the proposed model is implemented with BLSTM,
the model can recognize 95% word, 95% digit, and
94% fluent command correctly (figure 6(a)-(ii) to
Figure 6(c)-(ii). Whereas when the recurrent layer
is implemented with BGRU, the proposed model
can recognize 96% word, 96% digit, and 95%
fluent command correctly ((Figure 6(a)-(i) to
Figure 6(c)-(i)). The recognition accuracy around
95% with the help of both variants i.e. BGRU and
BLSTM will is as good as a cloud-based system.

The comparison of the required number of
parameters by BLSTM and BGRU shows that
BGRU requires around forty-seven percent fewer
parameters as compared to BLSTM (specifically
fifty percent less for word recognition and forty-
six percent less for digit recognition and forty-
seven percent for fluent command recognition).
The use of the mean/mean-max weight-reduction
method in BLSTM makes it compatible with
BGRU in terms of the number of parameters.
Whereas the use mean/mean-max-weigh-
reduction method in BGRU further reduces the
model parameters.

11

CNN+ BLSTM+FC 539K 0.9801 0.9512 0.9512 492K 0.98 0.9411 0.9567 713K 0.9651 0.9334 0.9431
CNN+BLSTM+ + Mean WR + FC 273K 0.9811 0.9651 0.9501 252K 0.9833 0.9514 0.9579 372K 0.9702 0.9461 0.9418
CNN+BLSTM+ Max WR +FC 273K 0.9803 0.9563 0.9504 252K 0.9825 0.9516 0.9562 372K 0.9701 0.9411 0.9413

Figure 6 (a)
Learning curve of the proposed model during word recognition task by implementing RNN layer with BGRU and
BLSTM

 (i) CNN+BGRU+ Mean WR + FC (ii) CNN+BLSTM+ Mean WR + FC

Figure 6 (b)
Learning curve of the proposed model during digit recognition task by implementing RNN layer with BGRU & BLSTM

 (i) CNN+BGRU+ Mean WR + FC (ii) CNN+BLSTM+ Mean WR + FC

Figure 6 (c)
Learning curve of the proposed model in fluent command recognition task by implementing RNN layer with BGRU
and BLSTM

 (i) CNN+BGRU+ Mean WR+ FC (ii) CNN+BLSTM+ Mean WR + FC

Analysis of obtained results of the second
experiment shows that when the recurrent layer in
the proposed model is implemented with BLSTM,
the model can recognize 95% word, 95% digit, and
94% fluent command correctly (figure 6(a)-(ii) to
Figure 6(c)-(ii). Whereas when the recurrent layer
is implemented with BGRU, the proposed model
can recognize 96% word, 96% digit, and 95%
fluent command correctly ((Figure 6(a)-(i) to
Figure 6(c)-(i)). The recognition accuracy around
95% with the help of both variants i.e. BGRU and
BLSTM will is as good as a cloud-based system.

The comparison of the required number of
parameters by BLSTM and BGRU shows that
BGRU requires around forty-seven percent fewer
parameters as compared to BLSTM (specifically
fifty percent less for word recognition and forty-
six percent less for digit recognition and forty-
seven percent for fluent command recognition).
The use of the mean/mean-max weight-reduction
method in BLSTM makes it compatible with
BGRU in terms of the number of parameters.
Whereas the use mean/mean-max-weigh-
reduction method in BGRU further reduces the
model parameters.

(i) CNN+BGRU+ Mean WR + FC (ii) CNN+BLSTM+ Mean WR + FC

(i) CNN+BGRU+ Mean WR + FC

667Information Technology and Control 2021/4/50

model is implemented with BLSTM, the model can rec-
ognize 95% word, 95% digit, and 94% fluent command
correctly (Figure 6(a)-(ii) to Figure 6(c)-(ii). Whereas
when the recurrent layer is implemented with BGRU,
the proposed model can recognize 96% word, 96% digit,
and 95% fluent command correctly ((Figure 6(a)-(i) to
Figure 6(c)-(i)). The recognition accuracy around 95%
with the help of both variants i.e. BGRU and BLSTM
will is as good as a cloud-based system.
The comparison of the required number of parame-
ters by BLSTM and BGRU shows that BGRU requires
around forty-seven percent fewer parameters as com-
pared to BLSTM (specifically fifty percent less for word
recognition and forty-six percent less for digit recogni-
tion and forty-seven percent for fluent command rec-
ognition). The use of the mean/mean-max weight-re-
duction method in BLSTM makes it compatible with
BGRU in terms of the number of parameters. Whereas
the use mean/mean-max-weigh- reduction method in
BGRU further reduces the model parameters.
From the analysis of the obtained result of the second
experiment, it is confirmed that BGRU is more suit-
able in the recurrent layer of the proposed model to
reduce complexity and memory requirement as per
the requirement of novel engineering applications.

5.3. Impact of Proposed Reduction Method
on the Performance of the Proposed Model

To make the proposed model more robust to longer
speech sequences with the reduced number of pa-

Figure 6 (c)
Learning curve of the proposed model in fluent command recognition task by implementing RNN layer with BGRU and BLSTM

11

CNN+ BLSTM+FC 539K 0.9801 0.9512 0.9512 492K 0.98 0.9411 0.9567 713K 0.9651 0.9334 0.9431
CNN+BLSTM+ + Mean WR + FC 273K 0.9811 0.9651 0.9501 252K 0.9833 0.9514 0.9579 372K 0.9702 0.9461 0.9418
CNN+BLSTM+ Max WR +FC 273K 0.9803 0.9563 0.9504 252K 0.9825 0.9516 0.9562 372K 0.9701 0.9411 0.9413

Figure 6 (a)
Learning curve of the proposed model during word recognition task by implementing RNN layer with BGRU and
BLSTM

 (i) CNN+BGRU+ Mean WR + FC (ii) CNN+BLSTM+ Mean WR + FC

Figure 6 (b)
Learning curve of the proposed model during digit recognition task by implementing RNN layer with BGRU & BLSTM

 (i) CNN+BGRU+ Mean WR + FC (ii) CNN+BLSTM+ Mean WR + FC

Figure 6 (c)
Learning curve of the proposed model in fluent command recognition task by implementing RNN layer with BGRU
and BLSTM

 (i) CNN+BGRU+ Mean WR+ FC (ii) CNN+BLSTM+ Mean WR + FC

Analysis of obtained results of the second
experiment shows that when the recurrent layer in
the proposed model is implemented with BLSTM,
the model can recognize 95% word, 95% digit, and
94% fluent command correctly (figure 6(a)-(ii) to
Figure 6(c)-(ii). Whereas when the recurrent layer
is implemented with BGRU, the proposed model
can recognize 96% word, 96% digit, and 95%
fluent command correctly ((Figure 6(a)-(i) to
Figure 6(c)-(i)). The recognition accuracy around
95% with the help of both variants i.e. BGRU and
BLSTM will is as good as a cloud-based system.

The comparison of the required number of
parameters by BLSTM and BGRU shows that
BGRU requires around forty-seven percent fewer
parameters as compared to BLSTM (specifically
fifty percent less for word recognition and forty-
six percent less for digit recognition and forty-
seven percent for fluent command recognition).
The use of the mean/mean-max weight-reduction
method in BLSTM makes it compatible with
BGRU in terms of the number of parameters.
Whereas the use mean/mean-max-weigh-
reduction method in BGRU further reduces the
model parameters.

(i) CNN+BGRU+ Mean WR+ FC (ii) CNN+BLSTM+ Mean WR + FC

rameters and float operations, transmute and cur-
tailment layers are inserted. The transmute and cur-
tailment layers will compute linear combination of
states of CNN layer and RNN layer with the help of
mean-weight-reduction method or mean-max-weight-
reduction method. In the third experiment, both meth-
ods are tested for different numbers of units in the last
fully connected layer.
The batch size, learning rate in the third experiment
is the same as the second experiment, but this time
to get more accurate results, we train the proposed
model for maximum 50 epochs [38]. The obtained
recognition accuracies of the word, digit, and fluent
commands recognition task along with the number of
units of fully connected layer, the number of parame-
ters, and float number of operations are tabulated in
Table 5(a), 5(b), 5(c), 5(d).
Analysis of the obtained result shows that for word
recognition accuracy around 96%, digit recognition,
and fluent command recognition accuracy around
95% (which is as good as a cloud-based system) the
proposed reduction approach with the help of trans-
mute and curtailment layers reduces float number of
operations which in turn reduces the number of pa-
rameters. Specifically, if 32 units of fully connected
layers are used to implement the proposed model, then
the parameters are reduced by 43% (compared with
the basic CNN+ BGRU+FC model) as illustrated in fig-
ure 7(a). If 64/128/256 units of fully connected layers
are used to implement the proposed model, then the
reduction is 45%, 53%, 64% respectively (figure 7(b)

Information Technology and Control 2021/4/50668

Table 5 (a)
Comparison between number of units of fully connected layer and number of parameters and float number of operations
in the proposed model (NOP is abbreviation of number of parameters, NFO is abbreviation of number of float operations,
RA is abbreviation of recognition accuracy)

No. of
unit of

FC layer
Model

Word recognition accuracy Digit recognition accuracy Flu. comm. recognition
accuracy

NOP NFO RA NOP NFO RA NOP NFO RA

32

CNN+ BGRU+FC 250K 4.471M 0.9542 243K 4.471M 0.9513 345K 6.379M 0.9421

CNN+BGRU+ Mean WR+ FC 144K 4.349M 0.9634 130K 4.349M 0.9589 195K 6.282M 0.9523

CNN+BGRU+ Max WR+FC 144K 4.349M 0.9631 130K 4.349M 0.9571 195K 6.282M 0.9499

Figure 7 (a)
For 32 unit of fully connected layer obtained reduction in number of parameters and float number of operations

12

From the analysis of the obtained result of the
second experiment, it is confirmed that BGRU is
more suitable in the recurrent layer of the
proposed model to reduce complexity and
memory requirement as per the requirement of
novel engineering applications.

5.3 Impact of Proposed Reduction Method on the
Performance of the Proposed Model

In almost all the neural-network-based speech
command recognition models, the last layer is the
fully connected layer [2, 10, 20, 28, 35]. This layer
will introduce lots of float operations in the model
if it receives huge parameters from the previous
layer [28]. To deal with the problem low latency
reduction method i.e. the mean-weight-reduction
method and the mean-max-weight-reduction

method are discussed in Section 3.3.1 and Section
3.3.2, respectively. In the third experiment, both of
the methods are tested for different numbers of
units in the last fully connected layer.

The batch size, learning rate in the third
experiment is the same as the second experiment,
but this time to get more accurate results, we train
the proposed model for maximum 50 epochs [38].
The obtained recognition accuracies of the word,
digit, and fluent commands recognition task along
with the number of units of fully connected layer,
the number of parameters, and float number of
operations are tabulated in Table 5(a), 5(b), 5(c),
5(d).

Table 5 (a)
Comparison between number of units of fully connected layer and number of parameters and float number
of operations in the proposed model (NOP is abbreviation of number of parameters, NFO is abbreviation of
number of float operations, RA is abbreviation of recognition accuracy)

No. of
unit of FC

layer
Model

Word recognition
accuracy

Digit recognition
accuracy

Flu. comm. recognition
accuracy

NOP NFO RA NOP NFO RA NOP NFO RA

32
CNN+ BGRU+FC 250K 4.471M 0.9542 243K 4.471M 0.9513 345K 6.379M 0.9421
CNN+BGRU+ Mean WR+ FC 144K 4.349M 0.9634 130K 4.349M 0.9589 195K 6.282M 0.9523
CNN+BGRU+ Max WR+FC 144K 4.349M 0.9631 130K 4.349M 0.9571 195K 6.282M 0.9499

Figure 7 (a)

Table 5 (b)
Comparison between number of units of fully connected layer and number of parameters and float number
of operations in proposed model (NOP is abbreviation of number of parameters, NFO is abbreviation of
number of float operations, RA is abbreviation of recognition accuracy)

No. of
unit of FC

layer
Model

Word recognition
accuracy

Digit recognition
accuracy

Flu. comm. recognition
accuracy

NOP NFO RA NOP NFO RA NOP NFO RA

64
CNN+ BGRU+FC 268K 4.552M 0.9634 259K 4.552M 0.9606 354K 6.428M 0.9533
CNN+BGRU+ Mean WR+ FC 148K 4.392M 0.9648 136K 4.392M 0.9631 198K 6.259M 0.9585
CNN+BGRU+ Max WR+FC 148K 4.392M 0.9641 136K 4.392M 0.9602 198K 6.259M 0.9543

Figure 7 (b)
For 64 unit of fully connected layer obtained reduction in number of parameters and float number of operations

0

10

20

30

40

50

Reduction in trainabale
parameter

Reduction in float number of
operations

Word recognition accuracy Digit recognition accuracy Flu.com recognition accuracy

Table 5 (b)
Comparison between number of units of fully connected layer and number of parameters and float number of operations
in proposed model (NOP is abbreviation of number of parameters, NFO is abbreviation of number of float operations, RA
is abbreviation of recognition accuracy)

No. of
unit of

FC layer
Model

Word recognition accuracy Digit recognition accuracy Flu. comm. recognition
accuracy

NOP NFO RA NOP NFO RA NOP NFO RA

64

CNN+ BGRU+FC 268K 4.552M 0.9634 259K 4.552M 0.9606 354K 6.428M 0.9533

CNN+BGRU+ Mean WR+ FC 148K 4.392M 0.9648 136K 4.392M 0.9631 198K 6.259M 0.9585

CNN+BGRU+ Max WR+FC 148K 4.392M 0.9641 136K 4.392M 0.9602 198K 6.259M 0.9543

13

Table 5 (c)
Comparison between number of units of fully connected layer and number of parameters and float number
of operations in proposed model (NOP is abbreviation of number of parameters, NFO is abbreviation of
number of float operations, RA is abbreviation of recognition accuracy)

No. of
unit of FC

layer
Model

Word recognition
accuracy

Digit recognition
accuracy

Flu. comm. recognition
accuracy

NOP NFO RA NOP NFO RA NOP NFO RA

128
CNN+ BGRU+FC 392K 4.764M 0.9652 375K 4.764M 0.9492 507K 6.8172M 0.9562
CNN+BGRU+ Mean WR+ FC 171K 4.432M 0.9679 164K 4.432M 0.9464 238K 6.2982M 0.9589
CNN+BGRU+ Max WR+FC 171K 4.432M 0.9662 164K 4.432M 0.9491 238K 6.2982M 0.9563

Figure 7 (c)
For 128 unit of fully connected layer obtained reduction in number of parameters and float number of operations

Table 5 (d)
Comparison between number of units of fully connected layer and number of parameters and float number
of operations in proposed model (NOP is abbreviation of model parameters, NFO is abbreviation of
number of float operations, RA is abbreviation of recognition accuracy)

No. of
unit of FC

layer
Model

Word recognition
accuracy

Digit recognition
accuracy

Flu. Comm. recognition
accuracy

NOP NFO RA NOP NFO RA NOP NFO RA

256
CNN+ BGRU+FC 580K 5.198M 0.9682 564K 5.198M 0.9473 804K 7.208M 0.9575
CNN+BGRU+ Mean WR+ FC 198K 4.721M 0.9695 181K 4.721M 0.9514 311K 6.382M 0.9596
CNN+BGRU+ Max WR+FC 198K 4.721M 0.9686 181K 4.721M 0.9518 311K 6.382M 0.9594

Figure 7(d)
For 256 unit of fully connected layer obtained reduction in model parameters and float number of operations

Analysis of the obtained result shows that for
word recognition accuracy around 96%, digit
recognition, and fluent command recognition
accuracy around 95% (which is as good as a
cloud-based system) the proposed reduction
approach with the help of transmute and
curtailment layers reduces float number of

operations which in turn reduces the number of
parameters. Specifically, if 32 units of fully
connected layers are used to implement the
proposed model, then the parameters are reduced
by 43% (compared with the basic CNN+
BGRU+FC model) as illustrated in figure 7(a). If
64/128/256 units of fully connected layers are used

0

10

20

30

40

50

Reduction in trainabale parameter Reduction in float number of
operations

Word recognition accuracy Digit recognition accuracy Flu.com recognition accuracy

0

20

40

60

Reduction in trainabale parameter Reduction in float number of operations

Word recognition accuracy Digit recognition accuracy Flu.com recognition accuracy

0

20

40

60

80

Reduction in trainabale parameter Reduction in float number of
operations

Word recognition accuracy Digit recognition accuracy Flu.com recognition accuracy

Figure 7 (b)
For 64 unit of fully connected layer obtained reduction in number of parameters and float number of operations

669Information Technology and Control 2021/4/50

Table 5 (c)
Comparison between number of units of fully connected layer and number of parameters and float number of operations
in proposed model (NOP is abbreviation of number of parameters, NFO is abbreviation of number of float operations, RA
is abbreviation of recognition accuracy)

No. of
unit of

FC layer
Model

Word recognition
accuracy Digit recognition accuracy Flu. comm. recognition

accuracy

NOP NFO RA NOP NFO RA NOP NFO RA

128

CNN+ BGRU+FC 392K 4.764M 0.9652 375K 4.764M 0.9492 507K 6.8172M 0.9562

CNN+BGRU+ Mean WR+ FC 171K 4.432M 0.9679 164K 4.432M 0.9464 238K 6.2982M 0.9589

CNN+BGRU+ Max WR+FC 171K 4.432M 0.9662 164K 4.432M 0.9491 238K 6.2982M 0.9563

Figure 7 (c)
For 128 unit of fully connected layer obtained reduction in number of parameters and float number of operations

13

Table 5 (c)
Comparison between number of units of fully connected layer and number of parameters and float number
of operations in proposed model (NOP is abbreviation of number of parameters, NFO is abbreviation of
number of float operations, RA is abbreviation of recognition accuracy)

No. of
unit of FC

layer
Model

Word recognition
accuracy

Digit recognition
accuracy

Flu. comm. recognition
accuracy

NOP NFO RA NOP NFO RA NOP NFO RA

128
CNN+ BGRU+FC 392K 4.764M 0.9652 375K 4.764M 0.9492 507K 6.8172M 0.9562
CNN+BGRU+ Mean WR+ FC 171K 4.432M 0.9679 164K 4.432M 0.9464 238K 6.2982M 0.9589
CNN+BGRU+ Max WR+FC 171K 4.432M 0.9662 164K 4.432M 0.9491 238K 6.2982M 0.9563

Figure 7 (c)
For 128

Table 5 (d)
Comparison between number of units of fully connected layer and number of parameters and float number
of operations in proposed model (NOP is abbreviation of model parameters, NFO is abbreviation of
number of float operations, RA is abbreviation of recognition accuracy)

No. of
unit of FC

layer
Model

Word recognition
accuracy

Digit recognition
accuracy

Flu. Comm. recognition
accuracy

NOP NFO RA NOP NFO RA NOP NFO RA

256
CNN+ BGRU+FC 580K 5.198M 0.9682 564K 5.198M 0.9473 804K 7.208M 0.9575
CNN+BGRU+ Mean WR+ FC 198K 4.721M 0.9695 181K 4.721M 0.9514 311K 6.382M 0.9596
CNN+BGRU+ Max WR+FC 198K 4.721M 0.9686 181K 4.721M 0.9518 311K 6.382M 0.9594

Figure 7(d)
For 256 unit of fully connected layer obtained reduction in model parameters and float number of operations

Analysis of the obtained result shows that for
word recognition accuracy around 96%, digit
recognition, and fluent command recognition
accuracy around 95% (which is as good as a
cloud-based system) the proposed reduction
approach with the help of transmute and
curtailment layers reduces float number of

operations which in turn reduces the number of
parameters. Specifically, if 32 units of fully
connected layers are used to implement the
proposed model, then the parameters are reduced
by 43% (compared with the basic CNN+
BGRU+FC model) as illustrated in figure 7(a). If
64/128/256 units of fully connected layers are used

0

10

20

30

40

50

Reduction in trainabale parameter Reduction in float number of
operations

Word recognition accuracy Digit recognition accuracy Flu.com recognition accuracy

0

20

40

60

Reduction in trainabale parameter Reduction in float number of operations

Word recognition accuracy Digit recognition accuracy Flu.com recognition accuracy

0

20

40

60

80

Reduction in trainabale parameter Reduction in float number of
operations

Word recognition accuracy Digit recognition accuracy Flu.com recognition accuracy

Table 5 (d)
Comparison between number of units of fully connected layer and number of parameters and float number of operations
in proposed model (NOP is abbreviation of model parameters, NFO is abbreviation of number of float operations, RA is
abbreviation of recognition accuracy)

No. of
unit of

FC layer
Model

Word recognition
accuracy Digit recognition accuracy Flu. Comm. recognition

accuracy

NOP NFO RA NOP NFO RA NOP NFO RA

256

CNN+ BGRU+FC 580K 5.198M 0.9682 564K 5.198M 0.9473 804K 7.208M 0.9575

CNN+BGRU+ Mean WR+ FC 198K 4.721M 0.9695 181K 4.721M 0.9514 311K 6.382M 0.9596

CNN+BGRU+ Max WR+FC 198K 4.721M 0.9686 181K 4.721M 0.9518 311K 6.382M 0.9594

Figure 7(d)
For 256 unit of fully connected layer obtained reduction in model parameters and float number of operations

13

Table 5 (c)
Comparison between number of units of fully connected layer and number of parameters and float number
of operations in proposed model (NOP is abbreviation of number of parameters, NFO is abbreviation of
number of float operations, RA is abbreviation of recognition accuracy)

No. of
unit of FC

layer
Model

Word recognition
accuracy

Digit recognition
accuracy

Flu. comm. recognition
accuracy

NOP NFO RA NOP NFO RA NOP NFO RA

128
CNN+ BGRU+FC 392K 4.764M 0.9652 375K 4.764M 0.9492 507K 6.8172M 0.9562
CNN+BGRU+ Mean WR+ FC 171K 4.432M 0.9679 164K 4.432M 0.9464 238K 6.2982M 0.9589
CNN+BGRU+ Max WR+FC 171K 4.432M 0.9662 164K 4.432M 0.9491 238K 6.2982M 0.9563

Figure 7 (c)
For 128 unit of fully connected layer obtained reduction in number of parameters and float number of operations

Table 5 (d)
Comparison between number of units of fully connected layer and number of parameters and float number
of operations in proposed model (NOP is abbreviation of model parameters, NFO is abbreviation of
number of float operations, RA is abbreviation of recognition accuracy)

No. of
unit of FC

layer
Model

Word recognition
accuracy

Digit recognition
accuracy

Flu. Comm. recognition
accuracy

NOP NFO RA NOP NFO RA NOP NFO RA

256
CNN+ BGRU+FC 580K 5.198M 0.9682 564K 5.198M 0.9473 804K 7.208M 0.9575
CNN+BGRU+ Mean WR+ FC 198K 4.721M 0.9695 181K 4.721M 0.9514 311K 6.382M 0.9596
CNN+BGRU+ Max WR+FC 198K 4.721M 0.9686 181K 4.721M 0.9518 311K 6.382M 0.9594

(d)

Analysis of the obtained result shows that for
word recognition accuracy around 96%, digit
recognition, and fluent command recognition
accuracy around 95% (which is as good as a
cloud-based system) the proposed reduction
approach with the help of transmute and
curtailment layers reduces float number of

operations which in turn reduces the number of
parameters. Specifically, if 32 units of fully
connected layers are used to implement the
proposed model, then the parameters are reduced
by 43% (compared with the basic CNN+
BGRU+FC model) as illustrated in figure 7(a). If
64/128/256 units of fully connected layers are used

0

10

20

30

40

50

Reduction in trainabale parameter Reduction in float number of
operations

Word recognition accuracy Digit recognition accuracy Flu.com recognition accuracy

0

20

40

60

Reduction in trainabale parameter Reduction in float number of operations

Word recognition accuracy Digit recognition accuracy Flu.com recognition accuracy

0

20

40

60

80

Reduction in trainabale parameter Reduction in float number of
operations

Word recognition accuracy Digit recognition accuracy Flu.com recognition accuracy

Information Technology and Control 2021/4/50670

to 7(d)). However, for a higher number of units of the
fully connected layer (256 unit), only model parame-
ters increases (from 144K -198K); the recognition ac-
curacy remains almost constant.
The comparison between the mean-weight-reduction
method and the mean-max-weight-reduction meth-
od shows that both methods are nearly equal to each
other and reduce the number of float operations and
the number of model parameters approximately by an
equal amount. However, the recognition accuracy by
mean-weight–reduction method is slightly better than
the mean-max-weight-reduction method. Specifical-
ly, the mean-weight–reduction method achieves the
highest recognition accuracy for 64 units of the fully
connected layer with a moderated number of param-
eters during testing of the proposed model. From the
comparison, we can say that the mean-weight–reduc-
tion method represents better performance to get an
acceptable threshold (by reducing the number of pa-
rameters to 1/3 of the depth wise separable CNN model
[2]) for the natural language speech interaction system
used in novel engineering applications.
Analysis of obtained result in concern with float num-
ber of operation shows that both the method reduces
the float number of operation between 2% to 12% in
different recognition tasks (figure 7(a) to 7(d)).
Investigations about the number of units of the fully
connected layers and its impact on the recognition
accuracy of the proposed model show that the differ-
ent number of units of fully connected layers has little
impact on recognition accuracy. The convolutional
and recurrent part has more influence on the recogni-
tion accuracy of the proposed model.

5.4. Comparison with Other Models
The proposed model is compared with the attention
RNN model and depth wise separable CNN model [2].
To make the comparison with both the models the
testing dataset of the proposed model contains the
word of Google’s single word speech commands data-
set. Digit and fluent command recognition tasks are
not compared because the published article contains
the result of the word recognition task. The compari-
son is shown in Table 6.
The comparison table shows that the proposed model
is compatible with other models. With the proposed
model we get high recognition accuracy with the low-

est number of trainable parameters. The recognition
accuracy of the attention RNN model is higher than
the proposed model but for 0.4% higher recognition
accuracy this model compromises with 26% more
model parameters.

5.5. Performance of the Proposed Model on
Realistic Recording
In the fourth experiment, the proposed model was
tested on realistic recordings [22]. The main aim be-
hind this testing is to check the performance of the
proposed model, which is trained on lots of data re-
corded in a clean and control environment on field
data [5]. For this, the same commands of both the
dataset are recorded in a laboratory. The details of
laboratory recordings are tabulated in the appendix
section. The testing dataset consists of 563 utteranc-
es of the word, 254 utterances of digits, and 384 utter-
ances of fluent commands. All other setting is as per
experiment three. The obtained recognition accura-
cies are tabulated in Table 7.

Table 6
Comparison with other models

Model Accuracy
(%)

Model pa-
rameters

Attention RNN 96.9 202K

Depth wise separable CNN 95.4 498K

CNN+RNN+MeanWR+FC 96.5 148K

Table 7
Recognition accuracy of the proposed model on field data

Flu.comm. Word Digit

89% 90% 87%

The recognition accuracy of the proposed model on
field data is low as compared to data recorded in a
clean and control environment. This may be due to
the mismatch between accent styles, or mixing of
echoes with the recorded signal, or due to the differ-
ent recording protocol, etc. but recognition accuracy
of the proposed model is within the acceptable range
to use it, in the natural language speech interaction
system of novel engineering applications.

671Information Technology and Control 2021/4/50

To improve the recognition accuracy on field data
some modification are needed in the feature ex-
traction process so that clean speech features are
extracted from recorded speech (in the realistic envi-
ronment echoes from the surrounding environment
mix with recordings).

6. Conclusion
By implementing the proposed speech command rec-
ognition model in a hybrid way i.e. by using CRNN,
transmute, and curtailment layers instead of a con-
ventional way, we try to find a new solution for natural
language speech interaction system used in novel en-
gineering applications. The main constrains of these
applications (limited resources) is fulfilled by re-

Table 8
Details of laboratory recordings

ducing the computational complexity in terms of the
number of parameters and the number of float opera-
tion which in turn reduces the memory requirement.
The experimental investigation on Google’s speech
command dataset shows that the proposed model can
recognize 96% word, 95% digit, and 95% fluent com-
mands correctly with 2%-12% less number of float op-
erations and around 45% fewer trainable parameters
in different recognition tasks. Testing of the proposed
model on field data shows that the proposed model
can achieve recognition accuracy around 89% on field
data.
The future work will include testing of different train-
ing strategies (for example data augmented method)
on the proposed model to overcome its performance
limitation on realistic recordings.

Appendix
The details of laboratory recording are tabulated in Table 8. The audio recordings are captured by using Py-Au-
dio package 0.20.11 [36] and sampled at 16 kHz

Laboratory Age group
No. of person participated in recording

Total Recordings
F M

Lab1
(H*W*L= 10*8*8)

10 to 15 11 8

42920 to 25 6 8

40 to 50 3 4

Lab2
(H*W*L= 10*20*10)

10 to 15 9 7

65220 to 25 8 10

40 to 50 3 2

Lab3
(H*W*L= 10*15*20)

10 to 15 9 7

47920 to 25 9 10

40 to 50 2 3

References
1. Albawi, S., Mohammed, T. A., Al-Zawi, S. Understand-

ing of a Convolutional Neural Network International
Conference on Engineering and Technology (ICET),
Antalya, 2017, 1-6. https://doi.org/10.1109/ICEngTech-
nol.2017.8308186

2. Andrade, D. C., Leo, S., Viana, M., L., D., Bernkopf, C. A
Neural Attention Model for Speech Command Recog-
nition. Audio & speech processing (arXiv:[eess.AS]),
2018. https://arxiv.org/pdf/1808.08929.pdf.

Information Technology and Control 2021/4/50672

3. Bahar, P., Zeyer, A., Schlüter, R., Ney, H. On using 2D Se-
quence-to-Sequence Models for Speech Recognition.
IEEE International Conference on Acoustic Speech
and signal Processing (ICASSP), Brighton, United
Kingdom, 2019, 5671-5675. https://doi.org/10.1109/
ICASSP.2019.8682155

4. Bahdanau, D., Chorowski, J., Serdyuk, D., Brakel, P., Ben-
gio, Y. End-to-End Attention-Based Large Vocabulary
Speech Recognition. IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
Shanghai, 2016, 4945-4949. https://doi.org/10.1109/
ICASSP.2016.7472618

5. Deng, L. Front-End, Back-End, and Hybrid Techniques
for Noise-Robust Speech Recognition. In: Kolossa D.,
Hab-Umbach R. (Eds.) Robust Speech Recognition of
Uncertain or Missing Data, Springer, Berlin, Heidelberg,
2011, ch. 4. https://doi.org/10.1007/978-3-642-21317-5_4

6. Deng, L., Li, X. Machine Learning Paradigms for Speech
Recognition: An Overview. IEEE Transactions on Au-
dio Speech and Language Processing, 2013, 21(5), 1060-
1089. https://doi.org/10.1109/TASL.2013.2244083

7. ETSI Standard Document, Speech Processing, Trans-
mission and Quality Aspects (STQ); Distributed
Speech Recognition, https://www.etsi.org/deliver/
etsi_es/202000_202099/202050/01.01.05_60/es
_202050v010105p.pdf.

8. Fan, R., Liu, G. CNN-Based Audio Front End Process-
ing on Speech Recognition. International Conference
on Audio, Language and Image Processing (ICALIP),
Shanghai, 2018, 349-354, https://doi.org/10.1109/
ICALIP.2018.8455731

9. Fluent Speech Commands Dataset: https://fluent.ai/
fluent-speech-cmmands-a-dataset-for-spoken-lan-
guage- understanding-research-/

10. Foster, D. Generative Deep Learning. O'Reilly media
Inc., 2019.

11. Gangi, M. A. D., Negri, M., Cattoni, R., Dessi, R., Turchi, M.
Enhancing Transformer for End-to-end Speech-to-Text
Translation. Proceedings of Machine Translation Sum-
mit XVII, Research Track, Dublin, Ireland, 2019, 1, 23-31.
https://www.aclweb.org/anthology/W19-6603.pdf.

12. Guiming, D., Xia, W., Guangyan, W., Yan, Z., Dan. L.
Speech Recognition Based on Convolutional Neural
Networks. IEEE International Conference on Signal and
Image Processing (ICSIP), Beijing, China, 2016, 708-711.
https://doi.org/10.1109/SIPROCESS.2016.7888355

13. Hamid, O. A., Deng, L., Yu, D. Exploring Convolutional Neu-
ral Network Structures and Optimization Techniques

for Speech Recognition. Conference Interspeech-2013,
France, 2013, 10-22. https://citeseerx.ist.psu.edu/view-
doc/download?doi=10.1.1.703.648&rep=rep1&type=pdf.

14. Hamid, O. A., Mohamed, A., Jiang, H., Deng, L., Penn, G.
Yu, D. Convolutional Neural Network for Speech Rec-
ognition. IEEE/ACM Transactions on audio speech and
language Processing, 2014, 22(10), 1533-1545. https://
doi.org/10.1109/TASLP.2014.2339736

15. Hatcher, W. G., Yu, W. A Survey of Deep learning Plat-
forms, Applications and Emerging Research Trends.
IEEE Access, 2018, 6, 24411-24432. https://doi.
org/10.1109/ACCESS.2018.2830661

16. Hori, T., Kubo, Y., Nakamura, A. Real-Time One-Pass
Decoding with Recurrent Neural Network Language
Model for Speech Recognition. IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), Florence, 2014, 6364-6368, https://doi.
org/10.1109/ICASSP.2014.6854829

17. Huei, Y. C. Benefits and Introduction to Python Pro-
gramming for Fresh More Students Using Inexpensive
Robots. IEEE International Conference on Teaching,
Assessment and Learning for Engineering (TALE),
Wellington, 2014, 12-17. https://doi.org/10.1109/
TALE.2014.7062611

18. Jakhar, K., Hooda, N. Big Data Deep Learning Frame-
work using Keras: A Case Study of Pneumonia Pre-
diction. 4th International Conference on Com-
puting Communication and Automation (ICCCA),
Greater Noida, India, 2018, 1-5. https://doi.org/10.1109/
CCAA.2018.8777571

19. Khan, M. A., Ashraf, I., Alhaisoni, M., Damaševičius, R.,
Scherer, R., Rehman, A., Bukhari, S. A. C. Multimodal
Brain Tumor Classification Using Deep Learning and
Robust Feature Selection: A Machine Learning Ap-
plication for Radiologists. Diagnostics, 2020, 10, 565.
https://doi.org/10.3390/diagnostics10080565

20. Kim, S., Hori T., Watanabe, S. Joint CTC- Attention
Based End-to-End Speech Recognition Using Multi-
Task Learning. IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
New Orleans, LA, 2017, 4835-4839. https://doi.
org/10.1109/ICASSP.2017.7953075

21. Lauraitis, A., Maskeliūnas, R., Damaševičius, R.,
Krilavičius, T. Detection of Speech Impairments
Using Cepstrum Auditory Spectrogram and Wave-
let Time Scattering Domain Features. IEEE Access,
2020, 8, 96162-96172. https://doi.org/10.1109/AC-
CESS.2020.2995737

673Information Technology and Control 2021/4/50

22. Lawrence, R. R., Juang, B. H. Fundamentals of Speech
Recognition. Englewood Cliffs: PTR Prentice Hall,
1993.

23. Li, J., Zhao, R., Hu, H., Gong, Y. Improving RNN Transduc-
er Modeling For End-to-End Speech Recognition. Speech
and Language Group, Microsoft. https://www.microsoft.
com/en-us/research/uploads/prod/2019/10/RNNT.pdf.
https://doi.org/10.1109/ASRU46091.2019.9003906

24. Li, K., Li, J., Ye, G., Zhao, R., Gong, Y. Towards
Code-Switching ASR for End-to-End CTC Models.
IEEE International Conference on Acoustic Speech
and Signal Processing (ICASSP), Brighton, United
Kingdom, 2019, 6076-6080. https://doi.org/10.1109/
ICASSP.2019.8683223

25. Ling, Z. An Acoustic Model for English Speech Recog-
nition Based on Deep Learning. 11th International Con-
ference on Measuring Technology and Mechatronics
Automation (ICMTMA), Qiqihar, China, 2019, 610-614.
https://doi.org/10.1109/ICMTMA.2019.00140

26. Lugosch, L., Ravanelli, M., Ignoto, P., Tomar, V. S., Ben-
gio, Y. Speech Model Pre-training for End-to-End
Spoken Language Understanding. Conference Inter-
speech-2019, 2019, Graz, Australia, 45-56. https://arxiv.
org/pdf/1904.03670.pdf. https://doi.org/10.21437/In-
terspeech.2019-2396

27. Manasa, C. S., Priya, K. J., Gupta, D. Comparison of
Acoustical Models of GMM-HMM Based for Speech
Recognition in Hindi using PocketSphinx. 3rd Inter-
national Conference on Computing Methodologies and
Communication (ICCMC), Erode, India, 2019, 534-539.
https://doi.org/10.1109/ICCMC.2019.8819747

28. Miao, Y., Gowayyed, M., Na, X., Ko, T., Metze, F., Waibel,
A. An Empirical Exploration of CTC Acoustic Models.
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), Shanghai, 2016, 2623-
2627. https://doi.org/10.1109/ICASSP.2016.7472152

29. Mukherjee, R., Goyal, P., Banerjee, D., Dey, K., Goyal, P.
Convolutional Recurrent Neural Network Based Ap-
proach for Making Sense of Sounds Data Challenge.
Technical Report Published in Making Sense of Sounds
Data Challenge 2018, 54-61. https:/cvssp.org/projects/
making_sense_of_sounds/site/assets/challenge_ab-
stracts_and_figures/Rajdeep_Mukherjee.pdf

30. Sahlol, A. T., AbdElaziz, M., Tariq Jamal, A.,
Damaševiˇcius, R., Farouk Hassan, O. A Novel Method
for Detection of Tuberculosis in Chest Radiographs Us-

ing Artificial Ecosystem-Based Optimization of Deep
Neural Network Features. Symmetry, 2020, 12(7), 1146.
https://doi.org/10.3390/sym12071146

31. Sainath, T. N., Pang, R., Rvbach, D., He, Y., Prabhalkar,
R., Li, W., Visontai, M., Liang, Q., Strohman, T., Wu, Y.,
Mcgraw, I., Chiu, C. C. Two Pass End to End Speech
Recognition. Interspeech, Graz, Australia, 2019, 23-45.
https://doi.org/10.21437/Interspeech.2019-1341

32. Sainath, T.N., Kingsbury, B., Soltau, H., Ramabhadran,
B. Optimization Techniques to Improve Training Speed
of Deep Neural Networks for Large Speech Tasks. IEEE
Transactions on Audio, Speech, and Language Process-
ing, 2013, 21(11), 2267-2276. https://doi.org/10.1109/
TASL.2013.2284378

33. Speech Command Data Set: https://ai.googleblog.
com/2017/08/launching-speech-commands-dataset.
html

34. Takashima, R., Sheng, L., Kawai, H. Investigation of
Sequence-Level Knowledge Distillation Methods for
CTC Acoustic Models. IEEE International Conference
on Acoustic Speech and Signal Processing (ICASSP),
Brighton, United Kingdom, 2019, 6156-6160. https://
doi.org/10.1109/ICASSP.2019.8682671

35. Ueno, S., Inaguma, H., Mimura, M., Kawahara, T. Acous-
tic-to-Word Attention-Based model Complemented
with Character-Level CTC-Based Model. IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), Calgary, AB, 2018, 5804-5808.
https://doi.org/10.1109/ICASSP.2018.8462576

36. Wang, D., Gong, C., Liu, Q. Improving Neural Lan-
guage Modeling via Adversarial Training. Proceed-
ings of the 36th International Conference on Machine
Learning, CA, USA, 2019, 367-375. https://arxiv.org/
pdf/1906.03805.pdf.

37. Wang, G., Zhang, W. An RNN and CRNN Based Ap-
proach to Robust Voice Activity Detection. Asia- Pacific
Signal and Information Processing Association Annu-
al Summit and Conference (APSIPAASC), Lanzhou,
China, 2019, 1347-1350. https://doi.org/10.1109/APSI-
PAASC47483.2019.9023320

38. Woo, H., Kim, N., Lee, J. Deep Neural Network Based
Self-training Based on Unsupervised Learning and
Dropout. International Journal of Fuzzy Logic and
Intelligent Systems, 2017, 17(1), 1-9. https://doi.
org/10.5391/IJFIS.2017.17.1.1

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

