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This paper presents a search and rescue route design algorithm to improve the efficiency of maritime search 
and rescue. This algorithm is based on the basic Ant Colony Algorithm. To solve the problem that the Ant Col-
ony Algorithm is easy to fall into local optimal solutions in the process of searching, the pheromone concentra-
tion updating strategy of the original Ant Colony Algorithm is improved. Compared with the original algorithm, 
the probability of finding the optimal solution in this paper can be improved by about 30% at most. The path 
weight based on the time of falling into the water is introduced to make the algorithm more realistic. The simu-
lation results show that the improved algorithm can improve the search efficiency and speed, and can combine 
with the actual situation to get a better route due to the introduction of weight in the algorithm.
KEYWORDS: Ant Colony Optimization, Path planning, Maritime search and rescue.

1. Introduction
In recent years, the number and scale of marine ac-
tivities are increasing, so is the probability of marine 
accidents. Maritime search and rescue as the securi-
ty of each personnel, has an important position. The 
route design of vessels is an essential activity in the 
process of search and rescue [2]. Designing a suitable 

route can shorten the search and rescue time effec-
tively and improve the search and rescue efficiency. In 
addition, due to the complex maritime environment, 
the success of the search and rescue depends on many 
factors. For instance, the position of each search and 
rescue target will be moved due to the influence of 
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wind and waves, which brings great disadvantage. In 
addition, since the survival rate is greatly improved 
if the drowning person is rescued within 24 hours of 
falling into the water, it is necessary to try to ensure 
that the rescue time for each person is not too long. 
Most route planning algorithms are usually based 
on ideal conditions. Therefore, a more suitable algo-
rithm is needed for the design of search and rescue 
routes. At present, some research on route design has 
been put forward. For instance, a new multi-criteria 
ACO-based algorithm was proposed to solve a path 
planning problem for ships in the environment with 
static and dynamic obstacles [9]. Meanwhile, to save 
the searching time, a dynamic optimizing ship rout-
ing algorithm was applied to the dynamic ship rout-
ing in complex navigation conditions successfully 
[6]. Moreover, a path-planning algorithm, according 
to evolutionary algorithm, was come up in navigation 
situation [17, 18]. Furthermore, an automatic method 
is developed to improve its searching efficiency using 
simulated annealing algorithm [8].
There are many algorithms, as Dijkstra, A*and so on, 
to calculate the optimal path. Due to the complexity of 
problem, many excellent algorithms, such as Ant Colo-
ny Optimization (ACO), Dragonfly Algorithm and Po-
lar Bear Algorithm have appeared in recent years [11, 
14, 16]. Among them, Ant Colony Algorithm has been 
widely applied in various fields of life due to its posi-
tive feedback, strong robustness and easy integration 
with other algorithms [3, 4]. Inspired by the behavior 
of ants in finding food, Italian scholars M. Dorigo, V. 
Maniezzo and A. Colorni introduced Ant Colony Op-
timization in the early 1990s. Compared with other 
heuristic algorithms, the inspiration of this algorithm 
is unique. The original version of the algorithm is suit-
able for finding the optimal solution problems. How-
ever, with a lot of modification in this algorithms these 
days that make it capable of solving a wide range of 
problems [15]. The algorithm has been applied in the 
field of analyze 2D input images [12], path planning for 
mobile robot [1, 10, 23], plan the 3D measuring path for 
coordinate measuring machines [5] and multi-path 
routing in LEO satellite networks [7]. 
The increasing demand of calculation methods for 
solving optimization problems causes that paral-
lelization and modification of the existing algorithms 
are necessary. Because the Ant Colony Algorithm is 
universal and easy to be integrated with other calcu-

lation methods, there are several ways to optimize it. 
The optimization of the algorithm mainly includes 
time minimization, search efficiency improvement 
and parameter improvement [13]. This paper uses an 
improved ACO to design search and rescue routes. By 
improving the strategy of pheromone concentration 
updating in original ACO, the algorithm is more like-
ly to found the optimal  solution. This alleviates the 
defect that the Ant Colony Algorithm is easy to fall 
into the local optimum effectively. According to the 
actual situation of maritime search and rescue, the 
path weight based on the time of falling into the wa-
ter is introduced into the algorithm. This makes the 
algorithm take the falling time of each target into con-
sideration in the calculation process, so as to make 
the calculation of the optimal route more reasonable. 
The algorithm can timely adjust the search and res-
cue route with the increase of the falling time, this 
can ensure the timeliness of the rescue. Experimental 
results show that the improved algorithm can choose 
a path more effectively. Combining with the actual 
situation, the algorithm is introduced with the rele-
vant weight to make the algorithm more meaningful 
in practical application rescue ships well.

2. Ant Colony Optimization
Ant Colony Optimization is a bionic optimization 
search algorithm, and has obvious advantages to solve 
some complex problems. It develops based on the be-
havior of ants in finding their short path to the food. 
During the process of searching food, each ant releases 
an amount of pheromone on the path where it passed. 
Meanwhile the ants always tend to travel towards 
the trail where the pheromone concentration is high. 
Therefore, the algorithm shows positive feedback. The 
higher the pheromone concentration on the path, the 
more ants will chose it. Eventually, the ants find the 
shortest path to the food in this way [20, 22, 24].
In the original Ant Colony Algorithm, the ant k will 
choose its next grid according to
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where Pijk(t)  is the probability of ant k moving 
from grid node i to node j at time t; τij(t) is the 
intensity of the pheromone between grid cubes 
node i and j;  ηij(t)   represents the heuristic 
function between grid cubes i and j (In this paper, 
ηij(t) = 1/dij, dij is the distance between satellite i 
and satellite j);  α and β are weighting parameters 
that show the relative influence of the pheromone 
and distance. 

When all the ants complete the travelling, the 
pheromone levels on each arc will be updated by 
volatilizing the old pheromone and adding the 
pheromones deposited by each ant. The 
pheromone updating formula is as follows: 

𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡 + 1) = (1 − 𝜌𝜌𝜌𝜌)𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡) + ∆𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡)                         (2) 
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where ρ is pheromone evaporation rate and (1-ρ) 
represents the pheromone residual rate, 
0<ρ<1; ∆τijk(t) represents the amount of pheromone 
left by the ant k at the current iteration. There are 
three different algorithmic models for ∆τijk(t): Ant-
Quantity, Ant-Cycle, Ant-Density. They were all 
proposed by M. Dorigo. Ant-Cycle is often used 
because of its good performance which can be 
expressed as follows 
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where Q is a constant and Lk represents the length 
of the path covered by the ant k. 

 

3.Improved Ant Colony 
Optimization 

Ant Colony Algorithm shows good performance 
in solving shortest path, but it also has some 
shortcomings. In this paper, the Ant Colony 
Algorithm is optimized by improving the 
pheromone concentration update strategy, and 
path weights are introduced to calculate a 
reasonable route for search and rescue vessels. 

 

3.1 Improvement of 
Pheromone Update Rules 

The primary Ant Colony Algorithm still has 
some disadvantages during searching, such 
as the searching time is excessively long and 
the probabilistic selection may fall into local 
optimum. The improved Ant Colony 
Optimization can improve the local 
pheromone update rule, which makes the 
result more likely to achieve an optimal 
solution.  

The improved Ant Colony Optimization has 
introduced adaptive dynamic factors σ  into 
pheromone update strategy, which makes 
the pheromone concentration reflect the path 
information better. The adaptive dynamic 
factor σ  can make the pheromone 
concentration get a larger addition in better 
path by control the updating proportion 
adaptively of the optimal pheromone 
concentration in an iteration. 

The improved pheromone updating formula 
can be shown as: 
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where σ represents the adaptive dynamic 
factors and b represents the coefficient of the 
d adaptive dynamic factors; Lmin  is the 
shortest length at the current iteration; L�  is 
the average of length for all ants at the 
current iteration, μ  is the coefficient of σ . 
The value of μ depends on LK. The closer the 
value of LK is to the value of Lmin, the larger 
the value of μ. 

The adaptive dynamic factor σ above is the 
inverse tangent function 
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where x = L�−LK
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. The output curve of the 

function is smooth, and the value of the 
function is in the range (0,1). Based on the 
Equation (8), a conclusion can be drawn that 

(1)
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where Pij
k(t) is the probability of ant k moving from 

grid node i to node j at time t; τij(t) is the intensity of 
the pheromone between grid cubes node i and j; ηij(t) 
represents the heuristic function between grid cubes 
i and j (In this paper, ηij(t)=1/dij, dij is the distance be-
tween satellite i and satellite j); α and β are weighting 
parameters that show the relative influence of the 
pheromone and distance.
When all the ants complete the travelling, the pher-
omone levels on each arc will be updated by volatil-
izing the old pheromone and adding the pheromones 
deposited by each ant. The pheromone updating for-
mula is as follows:
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where Q is a constant and Lk represents the length 
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in solving shortest path, but it also has some 
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pheromone concentration update strategy, and 
path weights are introduced to calculate a 
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The value of μ depends on LK. The closer the 
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where Q is a constant and Lk represents the length 
of the path covered by the ant k. 

 

3.Improved Ant Colony 
Optimization 

Ant Colony Algorithm shows good performance 
in solving shortest path, but it also has some 
shortcomings. In this paper, the Ant Colony 
Algorithm is optimized by improving the 
pheromone concentration update strategy, and 
path weights are introduced to calculate a 
reasonable route for search and rescue vessels. 

 

3.1 Improvement of 
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some disadvantages during searching, such 
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Optimization can improve the local 
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result more likely to achieve an optimal 
solution.  
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introduced adaptive dynamic factors σ  into 
pheromone update strategy, which makes 
the pheromone concentration reflect the path 
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concentration get a larger addition in better 
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where σ represents the adaptive dynamic 
factors and b represents the coefficient of the 
d adaptive dynamic factors; Lmin  is the 
shortest length at the current iteration; L�  is 
the average of length for all ants at the 
current iteration, μ  is the coefficient of σ . 
The value of μ depends on LK. The closer the 
value of LK is to the value of Lmin, the larger 
the value of μ. 

The adaptive dynamic factor σ above is the 
inverse tangent function 
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where Q is a constant and  Lk represents the length of 
the path covered by the ant k.

3.Improved Ant Colony Optimization
Ant Colony Algorithm shows good performance in 
solving shortest path, but it also has some shortcom-
ings. In this paper, the Ant Colony Algorithm is op-
timized by improving the pheromone concentration 
update strategy, and path weights are introduced to cal-
culate a reasonable route for search and rescue vessels.

3.1. Improvement of Pheromone Update Rules
The primary Ant Colony Algorithm still has some dis-
advantages during searching, such as the searching 
time is excessively long and the probabilistic selec-

tion may fall into local optimum. The improved Ant 
Colony Optimization can improve the local phero-
mone update rule, which makes the result more likely 
to achieve an optimal solution. 
The improved Ant Colony Optimization has intro-
duced adaptive dynamic factors σ into pheromone 
update strategy, which makes the pheromone con-
centration reflect the path information better. The 
adaptive dynamic factor σ can make the pheromone 
concentration get a larger addition in better path by 
control the updating proportion adaptively of the op-
timal pheromone concentration in an iteration.
The improved pheromone updating formula can be 
shown as:
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node i and j;  ηij(t)   represents the heuristic 
function between grid cubes i and j (In this paper, 
ηij(t) = 1/dij, dij is the distance between satellite i 
and satellite j);  α and β are weighting parameters 
that show the relative influence of the pheromone 
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factors and b represents the coefficient of the 
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the average of length for all ants at the 
current iteration, μ  is the coefficient of σ . 
The value of μ depends on LK. The closer the 
value of LK is to the value of Lmin, the larger 
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Quantity, Ant-Cycle, Ant-Density. They were all 
proposed by M. Dorigo. Ant-Cycle is often used 
because of its good performance which can be 
expressed as follows 
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where Q is a constant and Lk represents the length 
of the path covered by the ant k. 

 

3.Improved Ant Colony 
Optimization 

Ant Colony Algorithm shows good performance 
in solving shortest path, but it also has some 
shortcomings. In this paper, the Ant Colony 
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path weights are introduced to calculate a 
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where σ represents the adaptive dynamic 
factors and b represents the coefficient of the 
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the average of length for all ants at the 
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The value of μ depends on LK. The closer the 
value of LK is to the value of Lmin, the larger 
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intensity of the pheromone between grid cubes 
node i and j;  ηij(t)   represents the heuristic 
function between grid cubes i and j (In this paper, 
ηij(t) = 1/dij, dij is the distance between satellite i 
and satellite j);  α and β are weighting parameters 
that show the relative influence of the pheromone 
and distance. 

When all the ants complete the travelling, the 
pheromone levels on each arc will be updated by 
volatilizing the old pheromone and adding the 
pheromones deposited by each ant. The 
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where ρ is pheromone evaporation rate and (1-ρ) 
represents the pheromone residual rate, 
0<ρ<1; ∆τijk(t) represents the amount of pheromone 
left by the ant k at the current iteration. There are 
three different algorithmic models for ∆τijk(t): Ant-
Quantity, Ant-Cycle, Ant-Density. They were all 
proposed by M. Dorigo. Ant-Cycle is often used 
because of its good performance which can be 
expressed as follows 
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where Q is a constant and Lk represents the length 
of the path covered by the ant k. 

 

3.Improved Ant Colony 
Optimization 

Ant Colony Algorithm shows good performance 
in solving shortest path, but it also has some 
shortcomings. In this paper, the Ant Colony 
Algorithm is optimized by improving the 
pheromone concentration update strategy, and 
path weights are introduced to calculate a 
reasonable route for search and rescue vessels. 

 

3.1 Improvement of 
Pheromone Update Rules 

The primary Ant Colony Algorithm still has 
some disadvantages during searching, such 
as the searching time is excessively long and 
the probabilistic selection may fall into local 
optimum. The improved Ant Colony 
Optimization can improve the local 
pheromone update rule, which makes the 
result more likely to achieve an optimal 
solution.  
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introduced adaptive dynamic factors σ  into 
pheromone update strategy, which makes 
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concentration get a larger addition in better 
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can be shown as: 
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where σ represents the adaptive dynamic 
factors and b represents the coefficient of the 
d adaptive dynamic factors; Lmin  is the 
shortest length at the current iteration; L�  is 
the average of length for all ants at the 
current iteration, μ  is the coefficient of σ . 
The value of μ depends on LK. The closer the 
value of LK is to the value of Lmin, the larger 
the value of μ. 

The adaptive dynamic factor σ above is the 
inverse tangent function 
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where σ represents the adaptive dynamic factors and 
b represents the coefficient of the d adaptive dynam-
ic factors; Lmin is the shortest length at the current 
iteration; L is the average of length for all ants at the 
current iteration, μ is the coefficient of σ. The value of 
μ depends on LK. The closer the value of LK  is to the 
value of Lmin, the larger the value of μ.
The adaptive dynamic factor σ above is the inverse 
tangent function
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node i and j;  ηij(t)   represents the heuristic 
function between grid cubes i and j (In this paper, 
ηij(t) = 1/dij, dij is the distance between satellite i 
and satellite j);  α and β are weighting parameters 
that show the relative influence of the pheromone 
and distance. 
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where Q is a constant and Lk represents the length 
of the path covered by the ant k. 

 

3.Improved Ant Colony 
Optimization 

Ant Colony Algorithm shows good performance 
in solving shortest path, but it also has some 
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where σ represents the adaptive dynamic 
factors and b represents the coefficient of the 
d adaptive dynamic factors; Lmin  is the 
shortest length at the current iteration; L�  is 
the average of length for all ants at the 
current iteration, μ  is the coefficient of σ . 
The value of μ depends on LK. The closer the 
value of LK is to the value of Lmin, the larger 
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 The output curve of the function is 
smooth, and the value of the function is in the range 
(0,1). Based on the Equation (8), a conclusion can be 
drawn that when  is larger and the search path is lon-
ger, the dynamic factor  is closer to 0. On the contrary, 
when  is smaller and the search path is shorter, the dy-
namic factor  is closer to 1. 
The increment of pheromone in each cycle, in the ba-
sic Ant Colony Algorithm, just depends on the total 
distance travelled by each ant. However, the adaptive 
dynamic factors selected in this paper can adjust the 
update of pheromone adaptively. With help of that, 
pheromones can also obtain the increment according 
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to the optimal solution and average length of the cur-
rent iteration. The hyperbolic tangent function with 
different values of γ are shown in Figure 1 below. It is 
obvious that the function looks different when the pa-
rameter  γ is varied. The higher the value of γ is, the 
higher the sensitivity of the function is.

Figure 1 
Graph of dynamic factor function 
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3.2 Ant Colony Algorithm Based 
on Path Weight 

The mathematical model of Ant Colony Algorithm 
is an ideal assumption. However, there are many 
external factors in the actual maritime search and 
rescue operation. In order to increase the 
practicability of Ant Colony Algorithm in 
maritime search and rescue route selection, the 
path weight matrix is introduced into the 
algorithm.  

When choosing search and rescue routes, optimal 
path is not necessarily the shortest path, time of 
falling into the water of each search and rescue 
target should also be taken into account. Search 
and rescue vessels should have priority to reach 

the target with a longer time to fall into the 
water if the distance between the two roads is 
not much different. In this paper, the weight 
of each path is valued depends on how long 
the next target point is in the water, such as 
T1、T2、T3、T4. According to the duration 
of each target point, the weight value of all 
routes are calculated as follows: 

𝜑𝜑𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = (1 − 𝜀𝜀𝜀𝜀)+𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑇𝑇𝑇𝑇𝑗𝑗𝑗𝑗−20,                                    (9) 
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parameter that controls the degree of impact of 
the fall time, 0<ε<1. The value of weight will 
change with the increase of time. Since the 
exponential function is included in the formula, 
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where , φij is the weight of path (i,j) at time t; 
γ is the  factor  of weight. 
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improvement method, the procedures of the 
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point received. Set the parameters according 
to the actual situation 

Step2. Initialize algorithm. 
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the initial position of the search vessel, 
constructs its route according to Equation 
(10). Update the value of every ant’s tabu 
table and LK . 

Step4. When all ants reach the end, record 
the value of LK  and L�  in this iteration. The 
updating rule in Equations (5)-(7) is applied 

3.2. Ant Colony Algorithm Based on Path 
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The mathematical model of Ant Colony Algorithm is 
an ideal assumption. However, there are many exter-
nal factors in the actual maritime search and rescue 
operation. In order to increase the practicability of 
Ant Colony Algorithm in maritime search and rescue 
route selection, the path weight matrix is introduced 
into the algorithm. 
When choosing search and rescue routes, optimal path 
is not necessarily the shortest path, time of falling into 
the water of each search and rescue target should also 
be taken into account. Search and rescue vessels should 
have priority to reach the target with a longer time to 
fall into the water if the distance between the two roads 
is not much different. In this paper, the weight of each 
path is valued depends on how long the next target 
point is in the water, such as T1, T2, T3, T4. According 
to the duration of each target point, the weight value of 
all routes are calculated as follows:
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included in the formula, the longer the falling time 
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where φij is the weight of path (i,j) at time t; γ is the  
factor  of weight.

3.3. Overall Procedure of Improved Ant 
Colony Optimization
According to the description of above improvement 
method, the procedures of the design of search and 
rescue routes are described as follows:
Step1. Enter the coordinates of each target point re-
ceived. Set the parameters according to the actual sit-
uation
Step2. Initialize algorithm.
Step3. Each ant starts at the starting point, the ini-
tial position of the search vessel, constructs its route 
according to Equation (10). Update the value of every 
ant’s tabu table and LK.
Step4. When all ants reach the end, record the val-
ue of LK and L– in this iteration. The updating rule in 
Equations (5)-(7) is applied to change pheromone 
level.
Step5. Update the global optimal solution. If the cur-
rent shortest path length is shorter than the global 
shortest path length, the global solution is replaced by 
the current solution.
Step6. If the largest iteration number reaches, the 
calculation stops. Otherwise, go to Step3.
The pseudocode of the improved algorithm is as fol-
lows:
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procedure AS
for each edge

set initial pheromone t0.

end for
while not stop

for esch ant k
set an initial city.
for i=1 to n
choose next city j with the probability
given by Equation (10).
end for

end for
compute the length ck of the tour    
constructed by the kth ant.
for each edge
update the pheromone value by Equation (5).
end for

end while
print result.
end procedure

4. Algorithm Simulation
This article uses MATLAB simulation for both the 
original and improved algorithms in different grid 
maps to verify the effectiveness and reliability of the 
improved ACO.
The simulation experiment set a point as the start-
ing point and have other 10 points. It aims to find the 
shortest path by going through 10 points from the 
starting point. Experimental method is used to deter-
mine the optimal combination of each parameter in 
the algorithm, and the values of parameters are shown 
in Table 1, where α, β and γ represent the weight fac-
tors of pheromone, distance and falling time, respec-
tively. The different collocation of these parameters 
may affect the calculation, and the values of these pa-
rameters are generally between [0.7-1]. Pheromone re-
currence factor ρ determines the residual pheromone 
after each round of search. The reasonable value of 
this parameter can prevent the pheromone concentra-
tion from increasing rapidly and make the algorithm 
fall into local optimum. λ determines the function im-

age of the adaptive dynamic factor, and the value in 
this paper is between [1-2]. Moreover, the number of 
ants(k) is twice the number of target points.

Table 1
The values of parameters 

parameter value

Pheromone factor (α) 0.7

Heuristic factor (β) 0.9

Time factor (γ) 1

Volatility coefficient (ρ) 0.3

The parameter of function (λ) 2

Pheromone amount(Q) 100

Maximum iterations(m) 200

When the weight of path is not introduced (φij = 1), 
the shortest one is the optimal path. Table 2 shows 
a comparison between the results of the basic ACO, 
the improved ACO and another modified Ant Colo-
ny mentioned in literature [22, 24]. The experiment 
simulates 10, 15 and 20 target points, respectively, and 
was performed 1000 times each. 

Table 2

(a) Statistical results of the probability of finding the 
optimal solution/%

(b) Normalize the length of the average path

The number of target points 10 15 20

original ACO 67.5 51.7 37.8

algorithm in [21] 89.7 74.5 49.0

algorithm in [19] 90.3 77.2 54.7

improved ACO 97.9 80 68.3

The number of target points 10 15 20

original ACO 1.0020 1.0076 1.0023

algorithm in [21] 1.0006 1.0050 1.0007

algorithm in [19] 1.0005 1.0064 1.0005

improved ACO 1.0001 1.0043 1.0003
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(c) Statistical results of average iteration times

Table 2(a) shows the probability of finding the opti-
mal solution under different conditions, that's the 
probability of finding the optimal solution in 1000 tri-
als. It is observed that the improved algorithm is more 
likely to find the optimal solution by the algorithm 
in this paper has improved the pheromone updating 
strategy. Due to the introduction of adaptive dynamic 
factor in pheromone updating strategy, the improved 
algorithm makes pheromone updating process more 
reasonable. In this way, the problem of the algorithm 
easily falling into the local optimal solution are allevi-
ated, and the probability of finding the optimal solu-
tion is improved. 
Calculate the average length of all paths calculated by 
each group and normalizing the length of the average 
path (the length of the average path / the length of the 
shortest path). The results are shown in Table 2(b). It 
can be concluded that the results of normalizing the 
length of the average path in the improved algorithm 
is smaller. That is, the search results of the algorithm 
mainly focus on the shortest path and some subopti-
mal path
Count the average of iterations in each experiment 
shows in Table 2(c). It can be seen that the algorithm 
has good convergence and can find the optimal solu-
tion quickly.
In order to prove the improvement effect of the al-
gorithm, preform the non-parametric ranking based 
Friedman test in Table 3.  The ranking is on account of 

The number of target points 10 15 20

original ACO 50.812 80.122 61.926

algorithm in [21] 42.480 76.476 67.044

algorithm in [19] 33.808 55.008 41.403

improved ACO 33.642 62.793 38.378

Table 3
Ranking the indicators 

original ACO algorithm in [21] algorithm in [19] improved ACO

Probability of search 4 3 2 1

average path 4 2 3 1

average iteration times 4 3 1 2

the calculation results of each algorithm under three 
indexes. Based on this, the comparison of each algo-
rithm are analyzed. 
The test statistics are calculated as follows:

𝑋𝑋𝑋𝑋2= 12
3 × 4 × 5

(122+ 82+62+ 42)−3×3×5 = 7 (11)

Since X2 is greater than X2
0.05[2], it can be concluded 

that the calculation results of the four algorithms are 
significantly different. That is, the improved algo-
rithm is significantly improved compared with other 
algorithms.
Figure 2 shows the convergence  of different algo-
rithms. It can be seen more intuitively that the orig-
inal ACO may stop searching in the early stages of 
optimization and fall into local optimum. However, 
the addition of the adaptive dynamic factors , the im-
proved algorithm will keep searching to find the opti-
mal solution.

Figure 2 
Contrast diagram of convergence
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adaptive dynamic factors α , the improved 
algorithm will keep searching to find the 
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When the path weight is not introduced, the 
algorithm is required to find the shortest 
route as many other ACOs. In the experiment 
No. 1 in Table 2, the optimal path 
optimization result is shown in Figure 3(a). 
The total distance of the path is 798.4493. 
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When the path weight is not introduced, the algorithm 
is required to find the shortest route as many other 
ACOs. In the experiment No. 1 in Table 2, the optimal 
path optimization result is shown in Figure 3(a). The 
total distance of the path is 798.4493. When the path 
weight is introduced as need, the weight value of each 
path is related to the corresponding falling time. The 
optimal path optimization result is shown in Figure 
3(b). The total distance of the path is 817.5914.
The comparison test results show that when the time 
factor is introduced as the path weight, as the Ant Col-
ony Algorithm is used to design the search and res-
cue route, the optimal route may become longer, but 
it will go through the target point with a longer time 
of falling into the water first. In addition, as the time 
of drowning increases, the route will be optimized in 
real time, as shown in Figure 3(c). If a person falls into 
the water for too long in the process of search and res-
cue, the route will be changed in real time to ensure 
the survival of the personnel. In this way, everyone's 
rescue time can be guaranteed to ensure the surviv-
al rate. This has important practical significance in 
search and rescue operations.

5. The Application of Improved ACO 
on Search and Rescue Based on 
Multi-Objective
Maritime search and rescue system is mainly divided 
into two parts, monitoring center and user terminal. 
Here is the working principle of the system. When a 
person falls into water, the user terminal will send po-
sitioning information to the monitoring center which 
will design a reasonable search and rescue route af-
terwards. Then, the ship will search and rescue ac-
cording to that.
In the process of maritime search and rescue, there 
are usually many targets. The targets may drift due 
to the action of water flow and wind, and their posi-
tions will change. Meanwhile, the number of search 
and rescue vessels is often more than one. Therefore, 
this algorithm can also be used to design reasonable 
search and rescue routes for multiple vessels, in order 
to achieve higher efficiency in search and rescue.
MATLAB is used to simulate the search and rescue 
route design, the experiment assumed that there 

Figure 3 
Optimal path planning

(c)

(a)

(b)
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are two vessels. The result of route design is shown 
in Figure 4 and in Figure 4(a) is the route designed 
with 10 target points, while there are 20 target points, 
the route is shown in Figure 4(b). It can be proved 
that this algorithm can design reasonable route for 
multi-target search and rescue. In the course of route 
design, the falling time factor is taken into account, 
and the route can be optimized in real time during 
search and rescue. 
The effect of the algorithm in the actual application 
is shown in Figures 5-6. There are 10 search and res-
cue points distributed in one sea area, and two search 
and rescue vessels on the shore. Each search and res-

Figure 4 
Simulation  result

(a) Simulation  result with 10 target points

(b) Simulation  result with 20 target points

cue point sends out the help signal at different times. 
Based on the location and time information of each 
point received, the monitoring center designs a rea-
sonable search and rescue route for the two vessels 
to achieve better results. The route design results of 
the two ships are shown in Figure 5(a). In addition, as 
the search time increases, the route can be adjusted in 
real time in Figure 5(b). This can avoid the danger of 
some targets being too long due to falling water, so as 
to ensure the survival rate of personnel.
The experiment proves that the improved ACO can 
design routes for multiple targets effectively, and 
can be applied to multiple search and rescue vessels. 
Since the time of falling into the water is taken into 
account in the algorithm, it is more in line with actual 

Figure 5
Route design results

(a) Route design result at the beginning

(b) Route design result during driving
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needs. The use of this algorithm to design search and 
rescue routes can improve the timeliness of search 
and rescue effectively, and has great significance for 
maritime search and rescue operations. 

6. Conclusion
This article proposes a solution to the problem that 
the original ACO is easy to fall into local optimum 
during searching. By adding inverse tangent func-
tion as dynamic factor in updating pheromone, the 
improved Ant Colony Optimization can adaptively 
adjust the pheromone update strategy of the optimal 

solution in each iteration. It can effectively alleviate 
the problem that the Ant Colony Algorithm is prone to 
fall into the local optimal solution, and the probability 
of getting an optimal solution increase. At the same 
time, the path weight is introduced into the algorithm, 
so that the obtained optimal path is more in line with 
the requirements in practical applications.
In addition, the improved Ant Colony Optimization  
can be applied to maritime search and rescue activi-
ties. Simulation results show that the algorithm can 
effectively design a reasonable search and rescue 
routes for multiple vessels. This is of great signifi-
cance in maritime search and rescue.
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