
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2013, Vol.42, No.1

University of Maribor, Faculty of Electrical Engineering and Computer Science
Smetanova 17, SI-2000 Maribor, Slovenia

e-mail: iztok.fister@guest.arnes.si1, tomaz.kosar@uni-mb.si2,
iztok.fister@uni-mb.si3, marjan.mernik@uni-mb.si4

http://dx.doi.org/10.5755/j01.itc.42.1.1968

. EasyTime is a domain-specific language (DSL) for measuring time during sports competitions. A
distinguishing feature of DSLs is that they are much more amenable to change, and EasyTime is no exception in this
regard. This paper introduces two new EasyTime features: classifications of competitors into categories, and the
inclusion of competitions where the number of laps must be dynamically determined. It shows how such extensions
can be incrementally added into the base-language reusing most of the language specifications. Two case studies are
presented showing the suitability of this approach.

: Domain-specific languages; Language composition; Incremental language development; EasyTime.

Domain-specific languages (DSLs) are languages
tailored to specific application domain [1–4]. They
offer substantial gains regarding expressiveness and
ease of use compared with general-purpose languages
(GPLs) within their domain of application [5–7].
However, DSLs are more amenable to changes [1, 8]
since stakeholders’ requirements frequently change. In
order to design and implement DSLs more easily, we
need to develop fully modular, extensible, and
reusable language descriptions, whilst some of the
descriptions could even be inferred from DSL
programs [9, 10]. The language designer wants to
include new language features incrementally as the
programming language evolves. Ideally, a language
designer would like to build a language simply by
reusing different language definition modules
(language components), such as modules for
expressions, declarations, etc., as well as to extend
previous language specifications. In the case of
general software development the use of object-
oriented techniques and concepts like encapsulation
and inheritance, greatly improves incremental
software development, whilst reusability is even
further enhanced using aspect-oriented techniques
[11]. The object-oriented, as well as the aspect-
oriented techniques and concepts, have also been
integrated into programming language specifications
[12, 13] making new features more easily

implemented. One of such tools, where object-
oriented and aspect-oriented concepts have been
incorporated, is the LISA tool [8, 14]. This paper
shows how LISA is used within the incremental
development of Easy-Time DSL, which has been
developed recently for measuring time at different
sports competitions (e.g., triathlon, cycling) [15, 16].
EasyTime DSL has already proved to be successful
when used at real sport events (e.g., World
Championship in the double ultra triathlon in 2009,
National (Slovenian) Championship in the time-trials
for cycles in 2010), so the requirements are changing
quickly. Recent extensions to EasyTime have included
the possibility of classifying competitors into different
categories, where the number of laps is different for
each category, and the inclusion of competitions
where the number of laps can be dynamically
determined during a competition (e.g., biathlon, where
the number of extra laps depends on missed shots).
The objective of this paper is to introduce
EasyTime++ DSL, which supports these new
extensions, as well as to show how such an extension
can be incrementally developed using the introduced
LISA tool.

The structure of this paper is as follows: in
Section 2 an overview of the language composition is
presented. Section 3 briefly introduces EasyTime
DSL, whilst the core of this paper is Section 4, which
describes how the extensions in EasyTime++ have
been specified and implemented. Some examples are

presented in Section 5. The paper is concluded with
Section 6, where a brief overview and word about
future work is described.

Several kinds of language composition have been
identified in the literature [8, 17–24]. In their recent
paper [17], Erdweg et al., point out that language
composition has obtained little attention, that it is still
insufficiently understood, and that the terminology is
confusing thus indicating that the research is
inadequate, as yet. Erdweg et al. identified the
language composeability not as a property of
languages themselves, but as a property of language
definition (e.g., how language specifications can be
composed together). The following types of language
composition have been distinguished in [17]: language
extension (which subsumes also language restriction),
language unification, self-extension, and extension
composition. In language extension the specifications
of base language are extended with a new language
specification fragment , which typically makes little
sense when regarded independently from the base
language . Hence, language is a dominant
language, which can be a DSL or a GPL, and serves as
a base for other languages. Language extension, as a
kind of language composition, is denoted as
indicating that the base language has been extended
with the language . The LISA tool supports language
extensions when single attribute grammar inheritance
[8] is employed. As is shown in Section 4,
EasyTime++ is a language extension over the base
language Easy-Time (EasyTime / EasyTime++). In
language unification the composition of language
specifications is not based on the dominance of one
language, but is based on equal terms. The dominance
of one language over another does not exist and both
language specifications are complete and standalone
(note that in the case of language extension the
language specifications for the extended part makes
little sense alone). Language unification, as a kind of
language composition, is denoted as ,
describing the language composition of languages
and using a glue code g. Since LISA supports
multiple attribute grammar inheritance [8], language
unification is easily achieved by inheriting both
language specifications (from and), where the
glue code is specified as a new language specification
fragment. In selfextension the language specifications
do not change. The language itself is powerful enough
for new extensions to be implemented using macros,
function composition, and libraries that provide
domain-specific constructs. This form of language
composition is called ’pure language embedding’ [3].
Functional languages are these languages particularly
suitable for self-extension. Self-extension, as a kind of
language composition, is denoted as indicating
that the host language has been self-extended with
the embedded language . The last form of language

composition is extension composition, which
describes how language specifications also support the
combination of various language compositions. That is
showing how different compositions can work
together. This kind of language composition can also
be described as high-order language composition.
Languageunification allows for such higher-order
compositionper se (e.g., ()). Whilst
some other useful examples of higher-order language
composition like () , and
can not always be easily achieved. Extension
compositions involving language extension and
language unification can also be easily achieved in the
LISA tool.

In addition to LISA, which has been in existence
since 1999, there are also other similar tools (e.g.,
Phobos [18], JastAdd [19], Silver [20], XMF [21],
Tatoo [22], MontiCore [23], JAYCO [25], UUAG
[26]) that enable various language compositions. Note,
that the most well-known tools for syntax and the
semantic specification of programming languages,
Lex and Yacc [27], don’t support language
composition per se. For example, language extension
is possible by manually changing base language
specifications by invasively adding the specification
for extended language . Hence, change is done in a
non-disciplined manner, thus prohibiting further reuse
of specifications. On the other hand, language
composition can be done on top of Lex and Yacc (e.g.,
[28]). Here, it is desirable to briefly mention JastAdd
[19] and Silver [20], since both are based on Attribute
Grammars, as in the LISA case. JastAdd [19] is
centered around object-oriented representation of the
abstract syntax tree (AST). Non-terminals act as
abstract super classes and productions act as
specialized concrete subclasses that specify the
syntactic structure, attributes, and semantic rules. All
these elements can be inherited, specialized, and
overridden within subclasses. The idea of aspect-
orientation inJastAdd is to define each aspect of the
language in a separate class and then weave them
together at appropriate places. The JastAdd system is a
class weaver: it reads all the JastAdd modules and
weaves the fields and methods into the appropriate
classes during the generation of the AST classes.
Developers have the possibility of combining various
language specificationsfollowing the separation of
different language aspects amongst different classes.
Silver [20] uses a concept called ’forwarding’ to
achieve modular language extensions, where the
extension construct is translated into semantically
equivalent constructs within the host language. Hence,
forwarding only allows those new constructs that can
be expressed as a combination of existing language
constructs. Additional Silver features like: with-
clause, auto-copying of inherited attributes, collection
attributes, pattern matching, and type-safe
polymorphic lists, allow for the host language to be
extended in a more flexible manner, although still
restrictive.

Measuring time in Ironman triathlon

EasyTime was developed for measuring time
during Double ultra triathlon in 2009. At that time, the
organizers of this competition were confronted with
the problem of how to measure the times of
competitors within three disciplines using a limited
number of measuring devices. Besides this limitation,
measures needed to be reliable and accurate,
especially, because of its long duration. Although the
measuring time for the triathlon was our first specific
task, the goal was to develop a DSL for measuring
time for any competition. A domain analysis was
performed [15] using feature diagrams [29] with the
aim of identifying common and variable concepts,
their relations, and structure of particular concepts. In
the case of EasyTime, the concept race consists of
subconcepts: events (e.g., swimming, cycling, and
running), control points (starting and finishing lines,
the number of laps), the measuring time (updating
time and decrementing laps), optional transition area
(difference between the finish and start times), and
agents (automatic or manual). In the next step, these
concepts were mapped to the context-free grammar
nonterminalsof EasyTime. Finally, its whole syntax
and semantics were developed [15].

In order to illustrate the power of EasyTime, lets
describe the Ironman triathlon, as presented in
Figure 1. This triathlon consists of: 3.8 km swim, 180
km cycling, and a 42 km run. These disciplines run
one after another with two interruptions: In the first,
those competitors who have finished with swimming
prepare themselves for the cycling, whilst in the
second, those competitors who have finished the
cycling prepare themselves for running. Both
interruptions occur within so-called transition areas.
Their times spent within these areas are added to their
swimming, cycling, and running times, in order to
obtain the total times of specific competitors.

Typically, the organizers divide those courses on
which they run particular disciplines into laps because
of easier management. As can be seen in Figure 1,

competitors need to accomplish 4 laps of swimming, 4
laps of cycling, and 8 laps of running. These laps
represent another demand for the measuring time in
such competitions because, besides the intermediate
times of each lap, decrementing also needs to be
performed. In order to reduce the number of
measuring devices, a measuring point (MP in Figure
1) at which the intermediate time is measured and the
number of laps is decremented, can be incorporated.
In other words, when the number of laps is zero the
last intermediatetime becomes the final time of a
specific discipline.

This characteristic of the triathlon is put to
profitableuse by EasyTime. In fact, EasyTime is a
DSL that enables the organizers of sporting
competitions to adapt measuring systems for various
kinds of competitions, reduce the number of
measuring devices, and achieve accuracy and
reliability. The EasyTime program runs on a
measuring system and employs a set of agents that
control the measuring devices. For measuring time
during Inronman, as illustrated in Figure 1, the
EasyTime program presented in Program 1 is used.

At the start of Program 1, two agents are defined:
The former describes a measuring device on which
manual measuring time is performed on a portable
computer by an operator, whilst the latter denotes a
measuring device that automatically tracks an event
caused when a competitor crossing the measuring
place, based on RFID technology [30]. Typically, the
automatic measuring place is implemented as a mat
that acts as an antenna having two functions: Firstly,
the antenna induces a passive tag that is born by
competitor. Secondly, this induced tag acts as a
transmitter that transmits its identification code to a
measuring device. The transmitted code is detected by
the measuring device as an event. This event is
transmitted to the measuring system and recorded into
a database by an agent.

After the agents definition in Program 1, a
declaration of variables follows. For each measuring
place, two variables are defined in general: an
intermediate time INTERx and a laps counter

EasyTime program for measuring time in
Ironman
1: 1 manual "man.dat"; //definition of manual agent

2: 2 auto 192.168.225.100; //definition of automatic agent
3: // definition of variables
4: var ROUND1 4;

5: var INTER1 0;

6: var SWIM 0;

7: var TRANS1 0;

8: var ROUND2 4;

9: var INTER2 0;

10: var BIKE 0;

11: var TRANS2 0;

12: var ROUND3 8;

13: var INTER3 0;

14: var RUN 0;

15: // definition of measuring place 1
16: mp[1] agnt[1] {

17: (true) upd INTER1;

18: (true) dec ROUND1;

19: (ROUND1 == 0) upd SWIM;

20: }
21: // definition of measuring place 2
22: mp[2] agnt[1] {

23: (true) upd TRANS1;

24: }
25: // definition of measuring place 3
26: mp[3] agnt[2] {

27: (true) upd INTER2;

28: (true) dec ROUND2;

29: (ROUND2 == 0) upd BIKE;

30: }
31: // definition of measuring place 4
32: mp[4] agnt[2] {

33: (true) upd INTER3;

34: (ROUND3 == 8) upd TRANS2;

35: (true) dec ROUND3;

36: (ROUND3 == 0) upd RUN;

37: }

ROUNDx. The final achievements of a competitor for
specific disciplines are saved within variables SWIM,
BIKE, and RUN.

The EasyTime program is completed by
definitions of measuring places mp[i], where i
represents its identification number that must be
defined uniquely. The measuring place represents a
physical device that is connected to a measuring
device. The measuring device can support more
measuring places simultaneously. Conversely to a
measuring place, a control point (CP in Figure 1)
represents an event from a logical point of view and
denotes the specific location on the course, where the
referees need to track the time information about
competitors. As a matter of fact, the control points in
EasyTime are directly mapped into variables. The
identification numbers of each agent responsible for
transmitting the events is assigned to each measuring
place. For example, manual agent agnt[1] in line 16 of
Program 1 controls the first measuring place.

Before recording the event into a database, a
sequence of statements in curly brackets are
interpreted on an abstract machine (AM). These
statements are in forms of () ,

where denotes a sequence of instructions
that are executed when the value of returns
value . Typically, two instructions are employed
in EasyTime++: and . The former update the
value of variable in the database, whilst the latter
decrements its value.

Although, DSLs can be implemented in vastly
possible ways [1], an appropriate implementation
when the end-users are not also the programmers is, a
compiler/interpreter approach [31]. Hence, EasyTime
was implemented using a compiler generator tool
called LISA [8, 14]. The LISA specifications include
lexical, syntax and semantic specifications. Whilst
classical regular expressions and BNF are used for the
first two specifications, the third specifications are
based on Attribute Grammars [32]. One of the
distinguishing features of a LISA compiler generator
is that specifications (lexical, syntax, and semantics)
can be easily reused and extended. An overall view of
LISA specifications is given in Listing 1.

Overall view of LISA specifications

 [extends , . . . ,] {
 {

[[P] | [P]] R regular expr.

}
type A1; :::;AM

[[Y] j [Y]] Z {
X X . . . X {

semantic functions }

|
X X . . . X compute {

semantic functions }
;
}

[[N] j [N]] M {
operations on semantic domains

}

}

EasyTime’s formal description was introduced in
[15], whilst the mapping of EasyTime’s denotational
semantics into attribute grammars, as well as its
implementation, are presented in [16]. Due to
requested extensions of EasyTime the language has
evolved into EasyTime++. This section describes the
formal specifications that were necessary for the
change. Due to the space constraints, we are unable to
include complete specifications. Interested readers are
further referred to [15, 16].

The first small change was done within the
semantic domain , which represents a
database of competitors (Listing 2). The additional
components are now and . Along
with , RFID, , and , the

and regarding competitors have
added to the semantic domain . The second,
and the most important change within the semantic
domains is how the , which is the mapping from
variables to values, has been modelled (Listing 2).
Within EasyTime, the was a simple mapping:

, however in EasyTime++ an
initial value of an attribute depends on categories, and
a variable, called ’dynamicvar’, can also be initialized
during a run-time. Hence, the State is now modelled
as: = (()×).

Semantic domains in EasyTime++

={0, 1, 2, 3 ...}
={ , }
=(Id×RFID×LastName×FirstName×Gender×Category)*

) ×)

Let us describe the using a simple excerpt
from EasyTime++ declarations. Three variables were
declared within an EasyTime++ program (Program 2).
The first variable, 1 specifies that all
competitors need to complete 50 laps, hence in a
database of competitors the attribute 1 is set
at 50 for all competitors. The second variable,

2, specifies that, in a case where a competitor
belongs to = 1, he/she needs to complete
20 laps, whilst a competitor within = 2
only needs 10 laps. In the database of competitors, the
attribute 2 is initialized according to the
category. For all competitors in the first category this
attribute will be initialized to 20, and for all
competitors in the second category to 10. The third
variable, , is a dynamic variable and its
initial value for each competitor will be set during the
run-time.

Excerpt from EasyTime++ declarations
1: var ROUND1 := 50;
2: var ROUND2 := { (category==1) 20,

3: (category==2) 10 };

4: dynamicvar PENALTY; // definition of dynamic var.

The in EasyTime++ is mapping which maps
variable names (e.g., 1 , 2 ,

) into two components. The first component
is itself a mapping from to (e.g.,

), whilst the second component
indicates whether a variable is dynamic or not. To
cope with this new model for variables in
EasyTime++, the following LISA methods are needed

(note that the mapping from to can
be implemented using a hashtable [16], see
Program 3).

Implementation of EasyTime++ State in LISA
1: method M_Var
2: class Var {

3: String name;

4: Hashtable values;

5: boolean isDynamic;

6: Var (String name, Hashtable values,

7: boolean isDynamic) {

8: this.name = name;

9: this.values = values;

10: this.isDynamic = isDynamic;

11: }

12: // Java methods are omitted

13: …

14: }

15: }
16:
17: method VarEnvironment {
18: import java.util.*;

19: public Hashtable put (Hashtable env, Var aVar) {

20: env = (Hashtable)env.clone();

21: env.put(aVar.getName(), aVar);

22: return env;

23: } // java method

24: } // Lisa method

Since all changes in EasyTime++ are done in a
declaration part the semantic function D (for full
description of EasyTime semantic functions please see
[15, 16]), which describes the meanings of the
declarations needs to be changed accordingly
(Listing 3).

Semantic function maps the syntactic construct
, representing the declarations, into its meaning

, which is a mapping from to .
Note, how the first component of is defined in a
case where the categories are unspecified (first
equation in Listing 3), and in a case of dynamic
variables (third equation in Listing 3). In the first
equation, it is stated that variable is mapped to value

regardless of category. The mapping function
. is a constant function. The second

equation states that variable is mapped to different
values (e.g., ,) according to different categories
(e.g., ,), whilst in the third equation, the
variable x is mapped to undefined value regardless
of category. In the case of dynamic variables the
second component of ()
× - is true, otherwise it is false.

Meaning of declarations in EasyTime++

:

a = (.) ×

{ a , a } = [({ a , a } ×)]

= (.) ×

; = ()

The aforementioned changes in formal specifica-
tions of EasyTime++ also require changes in the
implementation part. Note that changes are required in
the lexical part (new keywords category and
dynamicvar, new separator), syntax part (new syntax
rules for declarations), as well as in the semantic part
(new semantics for declarations). All the other parts of
EasyTime (e.g., agents, measuring places, statements)
[16] are intact and hence can be completely reused.
Since EasyTime is implemented in LISA, which
supports attribute grammar inheritance [8], and where
lexical, syntax and semantic specifications can be
inherited, it was natural to extend Easy-Time
specifications written in LISA for implementing
EasyTime++, thus achieving incremental language
development. Program 4 shows the LISA specification
of EasyTime++. Note, how all EasyTime
specifications have been reused (’language
EasyTime++ extends EasyTime’). In the inherited
specifications it was necessary to override rule ,
which contained syntactic and semantic specifications
for declarations, add some new grammar productions
and their semantics (rule), as well as add
new atribute of type , which
were attached to the non-terminal , and extend
regular definitions for and .
Overall less than 70 lines of LISA specifications have
been newly written to obtain the complete compiler
for EasyTime++. Note that this is an example of
language extension where language specifications’
fragment (Program 4) alone does not make any sense
and can not exist without base-language specifications
(for complete EasyTime specifications in LISA see
[16]). Hence, this kind of language composition can
be denoted as EasyTime EasyTime++.

In order to test EasyTime++ DSL two casestudies
were performed:

cyclo-cross Grand-prix, and
biathlon.

The former was experienced in practice, whilst the
latter could be taken as proof of concept. In the rest of
this section, both case-studies are discussed in detail.

This case-study tested the introduction of
categories in EasyTime++. Cyclo-cross is a relatively
new sport that typically takes place in winter and is
dedicated to cycle road-riders who are preparing for
the new season. Races usually consist of several laps
of a short course featuring pavements, wooded trails,
grass, steep hills, and obstacles.

In this case-study, one lap of 2.5 km was used
(Figure 2). According to the number of laps, the
competitors were divided into three categories, as
follows:

LISA specification of EasyTime++
1: language EasyTime++ extends EasyTime {
2: lexicon {
3: extends Separator,
4: extends Keyword category | dynamicvar
5: }
6: attributes Hashtable*.varvalues;
7: rule extends Start
8: compute { }
9: }
10: rule overrides Dec {
11: DEC::=var#Id:=#Int; compute {
12: //category is not specified; isDynamic=false
13: DEC.outState = put(DEC.inState,
14: new Var(#Id.value(),
15: put(new Hashtable(), "0",
16: Integer.valueOf(#Int.value()).intValue()),false));
17: };
18: DEC ::= dynamicvar #Id ; compute {
19: // category can not be specified; isDynamic=true
20: DEC.outState = put(DEC.inState,
21: new Var(Id.value(), null, true));
22: };
23: DEC ::= var #Id := { CTGRS } ; compute {
24: // categories are specified and can’t be dynamic
25: DEC.outState = put(DEC.inState,
26: new Var(#Id.value(), CTGRS.varvalues, false));
27: };
28: }
29: rule Categories {
30: CTGRS ::= (category == #Int) -> #Int , CTGRS
31: compute {
32: CTGRS[0].varvalues = put(CTGRS[1].varvalues,
33: #Int[0].value(),
34: Integer.valueOf(#Int[1].value()).intValue());
35: };
36: CTGRS ::= (category == #Int) -> #Int compute {
37: CTGRS.varvalues = put(new Hashtable(),
38: #Int[0].value(),
39: Integer.valueOf(#Int[1].value()).intValue());
40: };
41: }
42: ...
43: // LISA methods
44: }

4 laps: junior men and women up to 15 years
old (U-15),
6 laps: junior men and women up to 19 years
old (U-19), and
9 laps: absolute categories (U-23, Elite,
Masters).

In order to make the competition more interesting,
the organizers allowed all the competitors onto the
course simultaneously. Only one measuring device
with two measuring places was needed for measuring
this competition because the course passed at one
location. Here, the intermediate times of laps were
measured and, thereby, decremented the laps’ counters
of specific competitors. When the laps counter
reached zero the finish time of the competitor was
reported. However, how many laps to go depended on
the category to which the specific competitor
belonged.

Track layout of the cyclo-cross competition

The EasyTime++ program for measuring time in
this competition can be seen by Program 5. Note that
here both measuring places, i.e., mats, were laid so
that the whole length of the finish line was captured.
In line with this, a competitor can cross either of both
mats. As a result, the programs for both measuring
devices are the same, and work in parallel.

EasyTime++ program for measuring time in
cyclo-cross competition
1: 2 auto 192.168.225.100; // definition of agent
2: var BIKE 0;
3: var ROUND1 {(category ==1) 4,
4: (category == 2) 6, (category ==3) 9 };
5: // definition of measuring place 1
6: mp[1] agnt[2] {
7: (true) dec ROUND1;
8: (ROUND1 == 0) upd BIKE;
9: }
10: // definition of measuring place 2
11: mp[2] agnt[2] {
12: (true) dec ROUND1;
13: (ROUND1 == 0) upd BIKE;
14: }

In summary, measuring time in cyclo-cross
performed well with EasyTime++. Although the
organizers prepared three different lengths of courses,
six different lists of results were obtained according to
gender. Fortunately, in our case the gender could be
handled by a database system, whilst the EasyTime++
program was unaware of it.

A biathlon was the second case-study for Easy-
Time++. Biathlon refers specifically to the winter
sport that combines cross-country skiing and rifle
shooting. As can be seen from Figure 3, competitors
start with skiing. Skiing is interrupted by rifle
shooting. Typically, biathlon consists of 4 laps of
skiing. The shooting appears close to the end of a lap.

Two positions for competitors are allowed when
shooting, i.e., prone and standing. Interestingly, the
number of missed shoots is penalized by the additional
number of penalty laps. Note that the time spent
within the penalty laps are added to the total time of
the competitor. The time of the penalty lap is typically
taken to be between 20-30 seconds.

The EasyTime++ program for measuring time in
biathlon can be seen by Program 6. Three measuring
devices are needed to cover this competition. Each
measuring device realizes one measuring place.
Moreover, each measuring place also represents a
control point. In contrast to Ironman, in a biathlon
time spent in penalty loops is of no interest in the
preferred race. Here, only the total time of competitor
is important.

Measuring time in biathlon competitions

EasyTime++ program for measuring time in
biathlon competition
1: 1 auto 192.168.225.110; // definition of agent 1
2: 2 auto 192.168.225.100; // definition of agent 2
3: var ROUND 4;
4: var RUN 0;
5: dynamicvar PENALTY; // definition of dynam.variable
6: // definition of measuring place 1
7: mp[1] agnt[1] {
8: (true) upd PENALTY;
9: }
10: // definition of measuring place 2
11: mp[2] agnt[2] {
12: (true) dec PENALTY;
13: }
14: // definition of measuring place 3
15: mp[3] agnt[2] {
16: (true) dec ROUND;
17: (ROUND == 0) upd RUN;
18: }

In summary, the first device represents the special
measuring device for counting hits. The agent
assigned to this device puts the number of missed hits
into the database variable PENALTY, dynamically.
Note that this device is treated in EasyTime like an
ordinary measuring device. The second measuring
device is dealt with by counting the penalty laps,
whilst the third device measures the final time.

Easy language composition is still an open-issue
within programming language research. In particular,
a new young field of software language engineering is
of interest regarding engineering principles when
constructing new languages, whether general-purpose
or domain-specific. A language designer would like to
build a new language simply by composing different
components and/or extending previous components.
This paper has presented EasyTime++ DSL as a
language extension of EasyTime, where the base
language specifications written in the LISA compiler
generator have been extended with new features, thus
enabling the introduction of categories into
competitions, and those new competitions where the
number of laps is dynamically determined. The
implemented multiple attribute grammar inheritance in
LISA enables easy language composition since
lexical, syntax, and semantic specifications can be
reused and extended. In such a manner, an incremental
language development using LISA has been
demonstrated. The suitability of EasyTime++ was
shown in two case studies: cyclo-cross Grand-prix and
a biathlon. More extensive experimental work, which
would include other types of language compositions
and more DSLs, is also planned in the future.

[1] When and how
to develop domain-specific languages. IN: ACM
Computing Surveys, 2005, Vol. 37, No. 4, pp. 316-344.

[2] Domain-specific
languages: an annotated bibliography. In: ACM
SIGPLAN Notices, 2000, Vol. 35, No. 6, pp. 26–36.

[3] Building domain-specific embedded
languages. In: ACM Computing Surveys, 1996,
28(4es).

[4] Domain Specific Languages. In: Addison-
Wesley Professional, 2010.

[5]
Program comprehension for

domainspecific languages. In: Computer Science and
Information Systems, 2008, Vol. 5, No. 2, pp. 1–17.

[6]

Comparing General-Purpose and Domain-Specific
Languages: An Empirical Study. In: Computer Science
and Information Systems, 2010, Vol. 7, No. 2,
pp. 247-264.

[7] Program
comprehension of domain-specific and general-
purpose languages: comparison using a family of
experiments. In: Empiricalsoftware engineering, 2012,
Vol. 17, No. 3, pp. 276–304.

[8] . Incremental programming
language development. In: Computer Languages,
Systems and Structures, 2005, Vol. 31, No. 1, pp. 1-16.

[9] Embedding
DSLs into GPLs: A Grammatical Inference Approach.
In: Information Technology and Control, 2011,
Vol. 40, No. 4, pp. 307-315.

[10] A
memetic grammar inference algorithm for language
learning. In: Applied Soft Computing, 2012, Vol. 12,
No. 3, pp. 1006-1020.

[11] Aspect-oriented programming. In: ACM
Computing Surveys, 1996, Vol. 28, No. 4, Article No.
154.

[12] Term
rewriting meets aspect-oriented programming.
In: Processes, Terms and Cycles: Steps on the Road to
Infinity, Springer-Verlag, 2005, pp. 88–105.

[13] Aspect-Oriented Attribute
Grammars. In: Electronics and Electrical Engineering,
2011, Vol. 10, No. 116, pp. 99–104.

[14]
Automatic generation of

language-based tools using LISA. In: IEE
Proceedings-Software Engineering, 2005, Vol. 152,
No. 2, pp. 54-69.

[15] Design
and implementation of domain-specific language
Easytime. In: Computer Languages, Systems and
Structures, 2011, Vol. 37, No. 4, pp. 276-304.

[16]
Implementation of EasyTime Formal Semantics using
a LISA Compiler Generator. In: Computer Science and
Information Systems, 2012, Vol. 9, No. 3,
pp. 1019-1044.

[17] Language
Composition Untangled. In: Proceedings of
Workshop on Language Descriptions, Tools and
Applications (LDTA’12). Available at
http://www.informatik.unimarburg.de/~seba/publicatio
ns/languagecomposition.pdf, 2012.

[18] Phobos: A front-end approach
to extensible compilers. In: Proceedings of the 36th
Annual Hawaii International Conference on System
Sciences (HICSS36), 2003.

[19] JastAdd: an aspectoriented
compiler construction system. In: Science of Computer
Programming, 2003, Vol. 47, No. 1, pp. 37–58.

[20] Silver:
An extensible attribute grammar system. In: Science of
Computer Programming, 2010, Vol. 75, No. 1,
pp. 39-54.

[21] Superlanguages:
Developing languages and applications with XMF.
Published online at: hhtp://bit.ly/HiTOKp, 2008.

[22] A simple
implementation of grammar libraries. In: Computer
Science and Information Systems, 2007, Vol. 4, No. 2,
pp. 65–77.

[23] MontiCore:
Modular development of textual domain specific
languages. In: Proceedings of the 30th International
Conference on Software Engineering (SLE 2008),
2008, pp. 925–926.

[24] Mapping
Syntax Extensions. In: Information Technology and
Control, 2002, Vol. 24, No. 3, pp. 35-48.

[25]
Annotation Based Parser Generator. In: Computer
Science and Information Systems, 2010, Vol. 7, No. 2,
pp. 291-307.

[26] UUAG
Meets AspectAG: How to make Attribute

Grammars First-Class. In: Proceedings of
Workshop on Language Descriptions, Tools and
Applications (LDTA’12). Available at
http://www.cs.uu.nl/research/techreps/repo/CS-
2011/2011-029.pdf, 2012.

[27] Lex & yacc. O’Reilly
Media, 2nd Edition, 1992.

[28]
Component-based LR parsing. In: Computer
Languages, Systems and Structures, 2010, Vol. 36,
No. 1, pp. 16-33.

[29] Measuring Complexity
of Domain Models Represented by Feature Diagrams.

In: Information Technology and Control, 2009,
Vol. 38, No. 3, pp. 179-187.

[30] RFID Handbook. John Wiley & Sons,
2010.

[31]
A Preliminary Study on Various

Implementation Approaches of Domain-Specific
Language. In: Information and Software Technology,
2008, Vol. 50, No. 5, pp. 390-405.

[32] Attribute Grammar Paradigms - A High-
Level Methodology in Language Implementation.
ACM Computing Surveys, 1995, Vol. 27, No. 2,
pp. 196-255.

Received June 2012.

