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. EasyTime is a domain-specific language (DSL) for measuring time during sports competitions. A 
distinguishing feature of DSLs is that they are much more amenable to change, and EasyTime is no exception in this 
regard. This paper introduces two new EasyTime features: classifications of competitors into categories, and the 
inclusion of competitions where the number of laps must be dynamically determined. It shows how such extensions 
can be incrementally added into the base-language reusing most of the language specifications. Two case studies are 
presented showing the suitability of this approach. 

: Domain-specific languages; Language composition; Incremental language development; EasyTime.

Domain-specific languages (DSLs) are languages
tailored to specific application domain [1–4]. They 
offer substantial gains regarding expressiveness and
ease of use compared with general-purpose languages
(GPLs) within their domain of application [5–7].
However, DSLs are more amenable to changes [1, 8]
since stakeholders’ requirements frequently change. In 
order to design and implement DSLs more easily, we 
need to develop fully modular, extensible, and
reusable language descriptions, whilst some of the
descriptions could even be inferred from DSL 
programs [9, 10]. The language designer wants to 
include new language features incrementally as the 
programming language evolves. Ideally, a language 
designer would like to build a language simply by 
reusing different language definition modules 
(language components), such as modules for 
expressions, declarations, etc., as well as to extend 
previous language specifications. In the case of 
general software development the use of object-
oriented techniques and concepts like encapsulation 
and inheritance, greatly improves incremental 
software development, whilst reusability is even 
further enhanced using aspect-oriented techniques 
[11]. The object-oriented, as well as the aspect-
oriented techniques and concepts, have also been 
integrated into programming language specifications
[12, 13] making new features more easily 

implemented. One of such tools, where object-
oriented and aspect-oriented concepts have been 
incorporated, is the LISA tool [8, 14]. This paper 
shows how LISA is used within the incremental 
development of Easy-Time DSL, which has been 
developed recently for measuring time at different 
sports competitions (e.g., triathlon, cycling) [15, 16]. 
EasyTime DSL has already proved to be successful 
when used at real sport events (e.g., World 
Championship in the double ultra triathlon in 2009, 
National (Slovenian) Championship in the time-trials 
for cycles in 2010), so the requirements are changing 
quickly. Recent extensions to EasyTime have included 
the possibility of classifying competitors into different 
categories, where the number of laps is different for 
each category, and the inclusion of competitions 
where the number of laps can be dynamically 
determined during a competition (e.g., biathlon, where 
the number of extra laps depends on missed shots). 
The objective of this paper is to introduce 
EasyTime++ DSL, which supports these new 
extensions, as well as to show how such an extension
can be incrementally developed using the introduced 
LISA tool.

The structure of this paper is as follows: in 
Section 2 an overview of the language composition is 
presented. Section 3 briefly introduces EasyTime 
DSL, whilst the core of this paper is Section 4, which 
describes how the extensions in EasyTime++ have 
been specified and implemented. Some examples are 



presented in Section 5. The paper is concluded with 
Section 6, where a brief overview and word about 
future work is described.

Several kinds of language composition have been
identified in the literature [8, 17–24]. In their recent
paper [17], Erdweg et al., point out that language
composition has obtained little attention, that it is still
insufficiently understood, and that the terminology is
confusing thus indicating that the research is 
inadequate, as yet. Erdweg et al. identified the 
language composeability not as a property of 
languages themselves, but as a property of language 
definition (e.g., how language specifications can be 
composed together). The following types of language 
composition have been distinguished in [17]: language 
extension (which subsumes also language restriction), 
language unification, self-extension, and extension 
composition. In language extension the specifications 
of base language are extended with a new language 
specification fragment , which typically makes little 
sense when regarded independently from the base 
language . Hence, language is a dominant 
language, which can be a DSL or a GPL, and serves as 
a base for other languages. Language extension, as a 
kind of language composition, is denoted as 
indicating that the base language has been extended 
with the language . The LISA tool supports language 
extensions when single attribute grammar inheritance 
[8] is employed. As is shown in Section 4, 
EasyTime++ is a language extension over the base 
language Easy-Time (EasyTime / EasyTime++). In 
language unification the composition of language 
specifications is not based on the dominance of one 
language, but is based on equal terms. The dominance 
of one language over another does not exist and both 
language specifications are complete and standalone 
(note that in the case of language extension the 
language specifications for the extended part makes 
little sense alone). Language unification, as a kind of 
language composition, is denoted as ,
describing the language composition of languages 
and using a glue code g. Since LISA supports 
multiple attribute grammar inheritance [8], language 
unification is easily achieved by inheriting both 
language specifications (from and ), where the 
glue code is specified as a new language specification 
fragment. In selfextension the language specifications 
do not change. The language itself is powerful enough 
for new extensions to be implemented using macros, 
function composition, and libraries that provide 
domain-specific constructs. This form of language 
composition is called ’pure language embedding’ [3]. 
Functional languages are these languages particularly 
suitable for self-extension. Self-extension, as a kind of 
language composition, is denoted as indicating 
that the host language has been self-extended with 
the embedded language . The last form of language 

composition is extension composition, which 
describes how language specifications also support the 
combination of various language compositions. That is 
showing how different compositions can work 
together. This kind of language composition can also 
be described as high-order language composition. 
Languageunification allows for such higher-order 
compositionper se (e.g., ( ) ). Whilst 
some other useful examples of higher-order language 
composition like ( ) , and 
can not always be easily achieved. Extension 
compositions involving language extension and 
language unification can also be easily achieved in the 
LISA tool.

In addition to LISA, which has been in existence
since 1999, there are also other similar tools (e.g.,
Phobos [18], JastAdd [19], Silver [20], XMF [21],
Tatoo [22], MontiCore [23], JAYCO [25], UUAG
[26]) that enable various language compositions. Note, 
that the most well-known tools for syntax and the 
semantic specification of programming languages,
Lex and Yacc [27], don’t support language
composition per se. For example, language extension
is possible by manually changing base language
specifications by invasively adding the specification
for extended language . Hence, change is done in a 
non-disciplined manner, thus prohibiting further reuse 
of specifications. On the other hand, language
composition can be done on top of Lex and Yacc (e.g., 
[28]). Here, it is desirable to briefly mention JastAdd 
[19] and Silver [20], since both are based on Attribute 
Grammars, as in the LISA case. JastAdd [19] is 
centered around object-oriented representation of the
abstract syntax tree (AST). Non-terminals act as 
abstract super classes and productions act as 
specialized concrete subclasses that specify the 
syntactic structure, attributes, and semantic rules. All 
these elements can be inherited, specialized, and 
overridden within subclasses. The idea of aspect-
orientation inJastAdd is to define each aspect of the 
language in a separate class and then weave them 
together at appropriate places. The JastAdd system is a 
class weaver: it reads all the JastAdd modules and 
weaves the fields and methods into the appropriate 
classes during the generation of the AST classes. 
Developers have the possibility of combining various 
language specificationsfollowing the separation of 
different language aspects amongst different classes. 
Silver [20] uses a concept called ’forwarding’ to 
achieve modular language extensions, where the 
extension construct is translated into semantically 
equivalent constructs within the host language. Hence, 
forwarding only allows those new constructs that can 
be expressed as a combination of existing language 
constructs. Additional Silver features like: with-
clause, auto-copying of inherited attributes, collection 
attributes, pattern matching, and type-safe 
polymorphic lists, allow for the host language to be 
extended in a more flexible manner, although still 
restrictive.



Measuring time in Ironman triathlon

EasyTime was developed for measuring time
during Double ultra triathlon in 2009. At that time, the 
organizers of this competition were confronted with 
the problem of how to measure the times of
competitors within three disciplines using a limited
number of measuring devices. Besides this limitation,
measures needed to be reliable and accurate, 
especially, because of its long duration. Although the
measuring time for the triathlon was our first specific
task, the goal was to develop a DSL for measuring
time for any competition. A domain analysis was 
performed [15] using feature diagrams [29] with the 
aim of identifying common and variable concepts, 
their relations, and structure of particular concepts. In 
the case of EasyTime, the concept race consists of 
subconcepts: events (e.g., swimming, cycling, and 
running), control points (starting and finishing lines, 
the number of laps), the measuring time (updating 
time and decrementing laps), optional transition area 
(difference between the finish and start times), and 
agents (automatic or manual). In the next step, these 
concepts were mapped to the context-free grammar 
nonterminalsof EasyTime. Finally, its whole syntax 
and semantics were developed [15].

In order to illustrate the power of EasyTime, lets
describe the Ironman triathlon, as presented in 
Figure 1. This triathlon consists of: 3.8 km swim, 180 
km cycling, and a 42 km run. These disciplines run 
one after another with two interruptions: In the first, 
those competitors who have finished with swimming 
prepare themselves for the cycling, whilst in the 
second, those competitors who have finished the 
cycling prepare themselves for running. Both 
interruptions occur within so-called transition areas. 
Their times spent within these areas are added to their 
swimming, cycling, and running times, in order to 
obtain the total times of specific competitors.

Typically, the organizers divide those courses on
which they run particular disciplines into laps because
of easier management. As can be seen in Figure 1,

competitors need to accomplish 4 laps of swimming, 4
laps of cycling, and 8 laps of running. These laps
represent another demand for the measuring time in
such competitions because, besides the intermediate
times of each lap, decrementing also needs to be 
performed. In order to reduce the number of 
measuring devices, a measuring point (MP in Figure 
1) at which the intermediate time is measured and the 
number of laps is decremented, can be incorporated. 
In other words, when the number of laps is zero the 
last intermediatetime becomes the final time of a 
specific discipline.

This characteristic of the triathlon is put to 
profitableuse by EasyTime. In fact, EasyTime is a 
DSL that enables the organizers of sporting 
competitions to adapt measuring systems for various 
kinds of competitions, reduce the number of 
measuring devices, and achieve accuracy and 
reliability. The EasyTime program runs on a 
measuring system and employs a set of agents that 
control the measuring devices. For measuring time 
during Inronman, as illustrated in Figure 1, the 
EasyTime program presented in Program 1 is used.

At the start of Program 1, two agents are defined:
The former describes a measuring device on which
manual measuring time is performed on a portable
computer by an operator, whilst the latter denotes a
measuring device that automatically tracks an event
caused when a competitor crossing the measuring
place, based on RFID technology [30]. Typically, the
automatic measuring place is implemented as a mat
that acts as an antenna having two functions: Firstly,
the antenna induces a passive tag that is born by 
competitor. Secondly, this induced tag acts as a 
transmitter that transmits its identification code to a 
measuring device. The transmitted code is detected by 
the measuring device as an event. This event is 
transmitted to the measuring system and recorded into 
a database by an agent.

After the agents definition in Program 1, a 
declaration of variables follows. For each measuring 
place, two variables are defined in general: an 
intermediate time INTERx and a laps counter



EasyTime program for measuring time in 
Ironman 
1: 1 manual "man.dat"; //definition of manual agent

2: 2 auto 192.168.225.100; //definition of automatic agent
3: // definition of variables
4: var ROUND1 4;

5: var INTER1 0;

6: var SWIM 0;

7: var TRANS1 0;

8: var ROUND2 4;

9: var INTER2 0;

10: var BIKE 0;

11: var TRANS2 0;

12: var ROUND3 8;

13: var INTER3 0;

14: var RUN 0;

15: // definition of measuring place 1
16: mp[1] agnt[1] {

17: (true) upd INTER1;

18: (true) dec ROUND1;

19: (ROUND1 == 0) upd SWIM;

20: }
21: // definition of measuring place 2
22: mp[2] agnt[1] {

23: (true) upd TRANS1;

24: }
25: // definition of measuring place 3
26: mp[3] agnt[2] {

27: (true) upd INTER2;

28: (true) dec ROUND2;

29: (ROUND2 == 0) upd BIKE;

30: }
31: // definition of measuring place 4
32: mp[4] agnt[2] {

33: (true) upd INTER3;

34: (ROUND3 == 8) upd TRANS2;

35: (true) dec ROUND3;

36: (ROUND3 == 0) upd RUN;

37: }

ROUNDx. The final achievements of a competitor for 
specific disciplines are saved within variables SWIM, 
BIKE, and RUN.

The EasyTime program is completed by 
definitions of measuring places mp[i], where i 
represents its identification number that must be 
defined uniquely. The measuring place represents a 
physical device that is connected to a measuring 
device. The measuring device can support more 
measuring places simultaneously. Conversely to a 
measuring place, a control point (CP in Figure 1) 
represents an event from a logical point of view and 
denotes the specific location on the course, where the 
referees need to track the time information about
competitors. As a matter of fact, the control points in 
EasyTime are directly mapped into variables. The 
identification numbers of each agent responsible for 
transmitting the events is assigned to each measuring 
place. For example, manual agent agnt[1] in line 16 of 
Program 1 controls the first measuring place.

Before recording the event into a database, a 
sequence of statements in curly brackets are 
interpreted on an abstract machine (AM). These 
statements are in forms of ( ) ,

where denotes a sequence of instructions 
that are executed when the value of returns 
value . Typically, two instructions are employed 
in EasyTime++: and . The former update the 
value of variable in the database, whilst the latter 
decrements its value.

Although, DSLs can be implemented in vastly
possible ways [1], an appropriate implementation
when the end-users are not also the programmers is, a
compiler/interpreter approach [31]. Hence, EasyTime
was implemented using a compiler generator tool
called LISA [8, 14]. The LISA specifications include
lexical, syntax and semantic specifications. Whilst
classical regular expressions and BNF are used for the 
first two specifications, the third specifications are
based on Attribute Grammars [32]. One of the 
distinguishing features of a LISA compiler generator 
is that specifications (lexical, syntax, and semantics) 
can be easily reused and extended. An overall view of 
LISA specifications is given in Listing 1.  

Overall view of LISA specifications

 [extends , . . . , ] {
 { 

[[P]  | [P] ] R regular expr.

} 
type A1; :::;AM

[[Y] j [Y] ] Z {
X X . . . X  { 

semantic functions }

| 
X X . . . X compute {

semantic functions }
; 
} 

[[N] j [N] ] M {
operations on semantic domains

} 

}

EasyTime’s formal description was introduced in 
[15], whilst the mapping of EasyTime’s denotational 
semantics into attribute grammars, as well as its 
implementation, are presented in [16]. Due to 
requested extensions of EasyTime the language has 
evolved into EasyTime++. This section describes the 
formal specifications that were necessary for the 
change. Due to the space constraints, we are unable to 
include complete specifications. Interested readers are 
further referred to [15, 16].

The first small change was done within the 
semantic domain , which represents a 
database of competitors (Listing 2). The additional
components are now and . Along 
with , RFID, , and , the 



and regarding competitors have 
added to the semantic domain . The second, 
and the most important change within the semantic 
domains is how the , which is the mapping from 
variables to values, has been modelled (Listing 2). 
Within EasyTime, the was a simple mapping: 

, however in EasyTime++ an 
initial value of an attribute depends on categories, and 
a variable, called ’dynamicvar’, can also be initialized 
during a run-time. Hence, the State is now modelled 
as: = (( )× ). 

Semantic domains in EasyTime++

={0, 1, 2, 3 ...}
={ , } 
=(Id×RFID×LastName×FirstName×Gender×Category)* 

) × )

Let us describe the using a simple excerpt 
from EasyTime++ declarations. Three variables were 
declared within an EasyTime++ program (Program 2). 
The first variable, 1 specifies that all 
competitors need to complete 50 laps, hence in a 
database of competitors the attribute 1 is set 
at 50 for all competitors. The second variable, 

2, specifies that, in a case where a competitor 
belongs to = 1, he/she needs to complete 
20 laps, whilst a competitor within = 2
only needs 10 laps. In the database of competitors, the 
attribute 2 is initialized according to the 
category. For all competitors in the first category this 
attribute will be initialized to 20, and for all 
competitors in the second category to 10. The third 
variable, , is a dynamic variable and its 
initial value for each competitor will be set during the 
run-time.

Excerpt from EasyTime++ declarations
1: var ROUND1 := 50;
2: var ROUND2 := { (category==1) 20,

3: (category==2) 10 };

4: dynamicvar PENALTY; // definition of dynamic var.

The in EasyTime++ is mapping which maps 
variable names (e.g., 1 , 2 ,

) into two components. The first component 
is itself a mapping from to (e.g., 

), whilst the second component 
indicates whether a variable is dynamic or not. To 
cope with this new model for variables in 
EasyTime++, the following LISA methods are needed 

(note that the mapping from to can 
be implemented using a hashtable [16], see 
Program 3).

Implementation of EasyTime++ State in LISA
1: method M_Var
2: class Var {

3: String name;

4: Hashtable values;

5: boolean isDynamic;

6: Var (String name, Hashtable values,

7: boolean isDynamic) {

8: this.name = name;

9: this.values = values;

10: this.isDynamic = isDynamic;

11:  } 

12: // Java methods are omitted

13:  … 

14:  } 

15: }
16: 
17: method VarEnvironment {
18: import java.util.*;

19: public Hashtable put (Hashtable env, Var aVar) {

20: env = (Hashtable)env.clone();

21: env.put(aVar.getName(), aVar);

22: return env;

23: } // java method

24: } // Lisa method

Since all changes in EasyTime++ are done in a
declaration part the semantic function D (for full 
description of EasyTime semantic functions please see 
[15, 16]), which describes the meanings of the 
declarations needs to be changed accordingly 
(Listing 3).

Semantic function maps the syntactic construct
, representing the declarations, into its meaning 

, which is a mapping from to .
Note, how the first component of is defined in a 
case where the categories are unspecified (first 
equation in Listing 3), and in a case of dynamic
variables (third equation in Listing 3). In the first 
equation, it is stated that variable is mapped to value 

regardless of category. The mapping function
. is a constant function. The second

equation states that variable is mapped to different
values (e.g., , ) according to different categories
(e.g., , ), whilst in the third equation, the 
variable x is mapped to undefined value regardless 
of category. In the case of dynamic variables the 
second component of ( )
× - is true, otherwise it is false.

Meaning of declarations in EasyTime++

:   

a = ( . ) ×

{ a , a }  = [ ({ a , a } × )]

= ( . ) ×

; = ( )



The aforementioned changes in formal specifica-
tions of EasyTime++ also require changes in the 
implementation part. Note that changes are required in 
the lexical part (new keywords category and 
dynamicvar, new separator), syntax part (new syntax 
rules for declarations), as well as in the semantic part 
(new semantics for declarations). All the other parts of 
EasyTime (e.g., agents, measuring places, statements) 
[16] are intact and hence can be completely reused. 
Since EasyTime is implemented in LISA, which 
supports attribute grammar inheritance [8], and where 
lexical, syntax and semantic specifications can be 
inherited, it was natural to extend Easy-Time 
specifications written in LISA for implementing 
EasyTime++, thus achieving incremental language 
development. Program 4 shows the LISA specification 
of EasyTime++. Note, how all EasyTime 
specifications have been reused (’language 
EasyTime++ extends EasyTime’). In the inherited 
specifications it was necessary to override rule ,
which contained syntactic and semantic specifications 
for declarations, add some new grammar productions 
and their semantics (rule ), as well as add 
new atribute of type , which 
were attached to the non-terminal , and extend 
regular definitions for and .
Overall less than 70 lines of LISA specifications have 
been newly written to obtain the complete compiler 
for EasyTime++. Note that this is an example of 
language extension where language specifications’ 
fragment (Program 4) alone does not make any sense 
and can not exist without base-language specifications 
(for complete EasyTime specifications in LISA see 
[16]). Hence, this kind of language composition can 
be denoted as EasyTime EasyTime++.

In order to test EasyTime++ DSL two casestudies 
were performed:

cyclo-cross Grand-prix, and
biathlon.

The former was experienced in practice, whilst the 
latter could be taken as proof of concept. In the rest of 
this section, both case-studies are discussed in detail.

This case-study tested the introduction of 
categories in EasyTime++. Cyclo-cross is a relatively 
new sport that typically takes place in winter and is 
dedicated to cycle road-riders who are preparing for 
the new season. Races usually consist of several laps 
of a short course featuring pavements, wooded trails, 
grass, steep hills, and obstacles.

In this case-study, one lap of 2.5 km was used 
(Figure 2). According to the number of laps, the 
competitors were divided into three categories, as 
follows:

LISA specification of EasyTime++
1: language EasyTime++ extends EasyTime {
2: lexicon {
3:  extends Separator,
4:  extends Keyword category | dynamicvar
5: } 
6: attributes Hashtable*.varvalues;
7:  rule extends Start
8: compute { }
9: }
10: rule overrides Dec {
11:  DEC::=var#Id:=#Int; compute {
12: //category is not specified; isDynamic=false
13:  DEC.outState = put(DEC.inState,
14:  new Var(#Id.value(),
15:  put(new Hashtable(), "0",
16:  Integer.valueOf(#Int.value()).intValue()),false));
17: };
18: DEC ::= dynamicvar #Id ; compute {
19: // category can not be specified; isDynamic=true
20: DEC.outState = put(DEC.inState,
21: new Var(Id.value(), null, true));
22: };
23: DEC ::= var #Id := { CTGRS } ; compute {
24: // categories are specified and can’t be dynamic
25: DEC.outState = put(DEC.inState,
26: new Var(#Id.value(), CTGRS.varvalues, false));
27: };
28: }
29: rule Categories {
30: CTGRS ::= ( category == #Int ) -> #Int , CTGRS
31: compute {
32: CTGRS[0].varvalues = put(CTGRS[1].varvalues,
33: #Int[0].value(),
34: Integer.valueOf(#Int[1].value()).intValue());
35: };
36: CTGRS ::= ( category == #Int ) -> #Int compute {
37: CTGRS.varvalues = put(new Hashtable(),
38: #Int[0].value(),
39: Integer.valueOf(#Int[1].value()).intValue());
40: };
41: }
42: ...
43: // LISA methods
44: }

4 laps: junior men and women up to 15 years 
old (U-15),
6 laps: junior men and women up to 19 years 
old (U-19), and
9 laps: absolute categories (U-23, Elite,
Masters).

In order to make the competition more interesting, 
the organizers allowed all the competitors onto the 
course simultaneously. Only one measuring device 
with two measuring places was needed for measuring 
this competition because the course passed at one 
location. Here, the intermediate times of laps were 
measured and, thereby, decremented the laps’ counters 
of specific competitors. When the laps counter 
reached zero the finish time of the competitor was 
reported. However, how many laps to go depended on 
the category to which the specific competitor 
belonged.



Track layout of the cyclo-cross competition

The EasyTime++ program for measuring time in
this competition can be seen by Program 5. Note that
here both measuring places, i.e., mats, were laid so
that the whole length of the finish line was captured.
In line with this, a competitor can cross either of both
mats. As a result, the programs for both measuring
devices are the same, and work in parallel.

EasyTime++ program for measuring time in 
cyclo-cross competition
1: 2 auto 192.168.225.100; // definition of agent
2: var BIKE 0;
3: var ROUND1 {(category ==1) 4,
4: (category == 2) 6, (category ==3) 9 };
5: // definition of measuring place 1
6: mp[1] agnt[2] {
7: (true) dec ROUND1;
8: (ROUND1 == 0) upd BIKE;
9: }
10: // definition of measuring place 2
11: mp[2] agnt[2] {
12: (true) dec ROUND1;
13: (ROUND1 == 0) upd BIKE;
14: }

In summary, measuring time in cyclo-cross 
performed well with EasyTime++. Although the 
organizers prepared three different lengths of courses, 
six different lists of results were obtained according to
gender. Fortunately, in our case the gender could be
handled by a database system, whilst the EasyTime++
program was unaware of it.

A biathlon was the second case-study for Easy- 
Time++. Biathlon refers specifically to the winter
sport that combines cross-country skiing and rifle
shooting. As can be seen from Figure 3, competitors
start with skiing. Skiing is interrupted by rifle 
shooting. Typically, biathlon consists of 4 laps of 
skiing. The shooting appears close to the end of a lap. 

Two positions for competitors are allowed when 
shooting, i.e., prone and standing. Interestingly, the 
number of missed shoots is penalized by the additional 
number of penalty laps. Note that the time spent 
within the penalty laps are added to the total time of 
the competitor. The time of the penalty lap is typically 
taken to be between 20-30 seconds.

The EasyTime++ program for measuring time in 
biathlon can be seen by Program 6. Three measuring
devices are needed to cover this competition. Each 
measuring device realizes one measuring place.
Moreover, each measuring place also represents a
control point. In contrast to Ironman, in a biathlon
time spent in penalty loops is of no interest in the 
preferred race. Here, only the total time of competitor 
is important.

Measuring time in biathlon competitions

EasyTime++ program for measuring time in 
biathlon competition
1: 1 auto 192.168.225.110; // definition of agent 1
2: 2 auto 192.168.225.100; // definition of agent 2
3: var ROUND 4;
4: var RUN 0;
5: dynamicvar PENALTY; // definition of dynam.variable
6: // definition of measuring place 1
7: mp[1] agnt[1] {
8: (true) upd PENALTY;
9: }
10: // definition of measuring place 2
11: mp[2] agnt[2] {
12: (true) dec PENALTY;
13: }
14: // definition of measuring place 3
15: mp[3] agnt[2] {
16: (true) dec ROUND;
17: (ROUND == 0) upd RUN;
18: }

In summary, the first device represents the special
measuring device for counting hits. The agent 
assigned to this device puts the number of missed hits
into the database variable PENALTY, dynamically.
Note that this device is treated in EasyTime like an
ordinary measuring device. The second measuring 
device is dealt with by counting the penalty laps, 
whilst the third device measures the final time.



Easy language composition is still an open-issue
within programming language research. In particular,
a new young field of software language engineering is 
of interest regarding engineering principles when
constructing new languages, whether general-purpose
or domain-specific. A language designer would like to 
build a new language simply by composing different
components and/or extending previous components.
This paper has presented EasyTime++ DSL as a
language extension of EasyTime, where the base
language specifications written in the LISA compiler
generator have been extended with new features, thus 
enabling the introduction of categories into
competitions, and those new competitions where the
number of laps is dynamically determined. The 
implemented multiple attribute grammar inheritance in 
LISA enables easy language composition since 
lexical, syntax, and semantic specifications can be 
reused and extended. In such a manner, an incremental 
language development using LISA has been 
demonstrated. The suitability of EasyTime++ was 
shown in two case studies: cyclo-cross Grand-prix and 
a biathlon. More extensive experimental work, which 
would include other types of language compositions
and more DSLs, is also planned in the future.
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