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. A computation procedure is developed for identification of dynamic model intended for solving the 
biomass growth-related optimization problems at fed-batch fermentation processes. The model identification relies on 
exploiting a versatile structure model that covers several particular structure models commonly used in bioprocess 
engineering practice. The model parameters are found by using experimental data of batch or fed-batch fermentation 
processes and a consecutive identification procedure, which includes preliminary estimation of the parameters. 
Practical application of the proposed procedure of model identification is demonstrated for solving the feed-rate 
optimization problem in fed-batch culture Escherichia coli. 

: Model identification; Optimization; Fed-batch fermentation process. 

The fed-batch culture technology is widely used in 
biotechnology for production of desired products: 
enzymes, antibiotics, recombinant proteins, etc. In 
fed-batch processes, the state of microorganisms’
culture depends on concentrations of reacting 
substances that are controlled at desired levels by 
manipulating the feed-rate of substrate solution [1]. 
The feed-rate optimization is an urgent technological 
task at development of new and improvement of 
existent fermentation processes.

Modern approaches to dynamic optimization of 
fermentation processes refer to mathematical models, 
which are used for solving the practical optimization 
problems by mathematical methods [2-14]. 
Thereupon, identification of reasonable mathematical 
models of fermentation processes is the first stage of 
solving the model-based optimization problems.

The common type of models employed for 
optimization purposes are the first principle models, in 
which the rates of biochemical transformations in the 
mass balance equations are described by suitable 
kinetic relationships [15, 16], and the hybrid models, 
in which the rates are modeled by artificial neural 
networks [ 8-10].

Identification of the first principle models is not a 
trivial task and requires from the investigator specific 
experience and knowledge of the bioprocess 
modelling. The criterion of model quality usually is a 

coincidence between experimental data and model 
predictions; therefore, the model identification 
formalism is to find the most suitable kinetic 
relationships among the known ones that minimize the 
prediction error. It should be noted that a wide variety 
of kinetic relationships are developed for the modeling 
of particular bioprocesses [16]. The selection of 
suitable one requires knowledge of approximation 
abilities of functional relationships of various 
structures and detailed analysis of experimental data. 
In addition, identification of the nonlinear kinetic 
model parameters requires to predetermine or to guess 
initial values of the parameters in order to start an 
iterative identification procedure. Thereupon, 
identification of the first principle models by the 
traditional approach is a time-consuming task and is 
not attractive in daily bioengineering practice. It 
should be stressed that identification procedure of the 
hybrid models can be formalized [17], however, 
training of the neural networks requires sufficient 
statistics of experimental data. Thus, the hybrid 
models are not suitable at development of the new 
processes when only a limited amount of experimental 
data is available.

For solving the model-based feed-rate optimization 
problems several aproaches are commonly used. For 
simple mechanistic models of particular structures, 
analytical solutions and calculation algorithms can be 
obtained from the necessary conditions of optimality 
of the Maximum Principle [2-7]. For the models of 



more complicated structure and the hybrid models, the 
parametric optimization approach is found to be 
effective for the feed-rate calculation [10-14]. In the 
parametric optimization procedure, the feed-rate time 
profiles are approximated by the time functions of 
universal structures, and the dynamic optimization 
problem is transformed into the nonlinear 
programming problem of optimization the parameters 
of the approximating function.

In this work we develop a universal optimization 
procedure for solving the model-based feed-rate time 
profile optimization problem of fed–batch 
fermentation process without external navigation 
directly from the process experimental data. In the 
optimization procedure, the dynamic model of 
universal structure is applied that covers the most 
common kinetic relationships and has a modest 
number of parameters to be identified. The presented 
approach allows overcoming the main problems of the 
model identification that complicate realization of 
automatic identification procedure: selection of 
relevant structure of dynamic model and 
determination of the first approach values of model 
parameters necessary to start the iterative 
identification procedure and to ensure fast 
convergence to the optimum values. The model-based 
optimal feed-rate calculation is performed by using the 
parametric optimization approach [14], in which 
parameters of the predetermined shape feed-rate time 
profile are calculated by the random search 
algorithm [18].

The generalized model structure
The structure of dynamic model is chosen referring 

to analysis of kinetic relationships, which are used in 
mechanistic models for predicting the specific rates of 
biomass growth and substrate consumption [15, 16]. 
The selected structure model covers several typical 
mechanistic models that are most often used for 
modeling of batch and fed-batch fermentation 
processes:
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where is specific biomass growth rate, is specific 
substrate consumption rate, is biomass 
concentration, is substrate concentration; is the 
volume of cultural liquid, is feeding rate (control 

action), s is feeding substrate concentration, k , k ,
k , Y , , , , , are model parameters 
subjected to identification.

In the presented model, equations (1)-(3) stand for 
dynamic mass balances on biomass, substrate and 
volume of cultural liquid, respectively. The specific 
growth rate of biomass (5) follows the Monod kinetics 
with extra regulatory terms that take into account the 
inhibitory effects of high substrate and biomass 
concentrations. The specific death rate (6) is assumed 
to be linear dependent on the biomass concentration. 
The specific substrate consumption rate (7) is 
proportional with the specific growth rate of biomass, 
and the extra terms are introduced to take into account 
the biomass concentration-related changes of yield 
coefficient and the biomass maintenance 
requirements.

Identification of parameters of the nonlinear model 
(1)-(7) by minimizing error between experimental data 
and the model predictions is not a trivial task because 
the first approach values of model parameters required 
in the iterative search algorithms are not known in 
advance. Setting of random initial values is not a 
reasonable approach as the random values may be far 
from those minimizing the fitting error, and 
convergence of numerical search procedure of the nine 
parameters may be poor. In addition, some parameters 
(Monod constant k , inhibitory constant k , yield 
coefficient Y , maximum specific growth rate ,
etc) have physiological interpretation and random 
selection of the initial values of parameters does not 
guarantee their convergence to meaningful values.

The model identification difficulties also arise if 
the available number of experimental data points from 
investigated process is too small to ensure 
identification of model parameter values that provide 
the model with good prediction properties.

In this work, we develop a procedure for the model 
(1)-(7) identification, in which the experimental data 
are firstly approximated by a flexible logistic function 
that is well suited for approximation of s-type curves. 
The logistic function is further used to generate an 
extended number of data points for the dynamic model 
identification. The proposed identification procedure 
also includes estimation of the first approach values of 
model parameters that are further improved by an 
iterative search algorithm.  
Procedure for identification of model parameters 

The identification procedure consists of the 
following steps:
1. Approximation of experimental data from batch or 
fed-batch cultivation processes ( ) , ( ) , ( ) ,

( ) = ( ) ( ) and ( ) = ( ) ( ) ,
= 1, … ,  ( is the number of experimental points) 

by the following logistic function:

=
[1 + exp( )] , (8)



where is the input variable (time), is the output 
variable ( , , ,   ), and are identifiable 
parameters, is the order of power series. 

By processing the fed-batch culture experiments, 
the data from batch and feeding periods are 
approximated separately.

The parameters of the logistic function (8) are 
identified by transforming the function into a form 
that is linear with respect to parameters : 

( )
= .  (9)

With the experimental data points 
( ), ( ), ( ), ( ), ( ) and the predetermined 

value of parameter ,  the parameters can be 
directly calculated by the least squares method (LSM) 
[19]. The procedure of the parameters calculation is 
repeated for the consistently increasing values of 
until the best fitting of the model (8) predictions to the 
experimental data points (minimum sum-of-squared 
error) is obtained.
2. Generation of data points for the dynamic model 
identification.

An extended number of data points , , , , .
= 1, … ,  ( is the number of the generated data 

points) for identification of the dynamic model (1)-(7) 
is calculated from the identified logistic functions:

= 1 + exp , = 1, … ,   (10) 

The corresponding data points of the specific rates

= and = are

calculated from the derivatives of the logistic function 
(8): 

= .  (11) 

3. Estimation of the parameters k , k , k , of the 
model equations (4) - (6), assuming = 0, = 0. 

With the above assumption, equation (4) is 
transformed into the inverse form:

+
= +

1
+

1
.  (12) 

The advantage of structure of the equation (12) is 
that it is linear with respect to the model parameter 
relationships k , 1 , 1 k . With the 
data points , generated at Step 2 and the 
predetermined value of parameter k , the above 
parameter relationships can be directly calculated by 
using the LSM. The parameters calculation procedure 
is repeatedly performed for the consistently increasing 
values of k until the best fitting of model predictions
to the data points (minimum sum-of-squared error) is 

obtained. The parameters k , k , are then 
calculated from the identified parameter relationships.
4. Estimation of the parameter Y of the model 
equation (7), assuming = 0, = 0. 

With the above assumption, the parameter Y is 
estimated by using the LSM from the equation

( , ) = ( , ) (13)

by using the data , calculated at Step 2, and the 
corresponding data calculated from the 
equation (5) with the parameter k , k , values 
estimated at Step 4.
5. Improvement of the model parameter values by an 
iterative search algorithm.

For improvement of the parameter first approach 
values obtained at Steps 3, 4, the chemotaxis 
stochastic search algorithm [18] is applied. A criterion 
used in the iterative search procedure is minimization 
of the fitting function (sum-of-squared errors): 

= min
, , , , , x  

+ ,

 
. (9)

where , , , are model predictions of the data 
points , and , are maximum values from 
the data arrays.

The model-based feed-rate optimization task is 
solved by applying the parametric optimization 
approach [14] and the evolutionary programming 
algorithm [18]. Referring to investigation results of 
different shape feed-rate time-profiles used for model-
based optimization of various fermentation processes 
[14], we applied in the parametric optimization 
procedure the exponential-type feed-rate time profile, 
which requires a modest number of parameters to be 
optimized and provides with good approximation of 
optimal feed-rate. The structure of the feed-rate 
control algorithm is as follows:
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where _ , _ , and are parameters 
subjected to optimization.

The technological objective of optimization is to 
maximize the yield of biomass at the end of fed-batch 
cycle:

= max
_ , _ , ,  

( ) ( ), (17) 

where is the process end time.
A typical technological restriction on the total 

substrate to be fed is equivalent to the restriction on 
the final volume of cultural liquid ( ( ) ) and 



can be easily introduced in the iterative optimization 
procedure.

Based on the presented methods and algorithms of 
the proposed model identification and the feed-rate 
optimization, a computation program can be 
developed, which provides direct calculation of an 
optimal feed-rate time profile for particular 
fermentation process from the relevant experimental 
data. The computation flow-chart is presented in 
Figure 1.

Flow-chart of the model-based optimal feed-rate 
computation procedure

E. coli
Working capacities of the dynamic model 

identification and the model-based optimization 
algorithms were tested for optimization of 
recombinant E. coli fed-batch cultivation process. 
Experimental data points from fed-batch cultivation 
process are presented in Figure 2 (for the sake of 
confidentiality, experimental conditions and 
measurement units are not presented). Approximation 
of the experimental data with the logistic functions (8) 
(at power series order = 3) is shown in Figure 2 by 

dotted lines. The parameters of the dynamic model 
(1)-(7) were identified from an extended number of 
data points ( = 1000 ) obtained from the logistic 
function. Initial values of process variables and 
restriction on final volume correspond to those in the 
model identification experiment: ( ) = 0.104 ,

( ) = 8.87 , ( ) = 7.0 , ( ) 8.8 , where is 
process start time. The calculated values of the 
dynamic model parameters are given in Table 1. The 
process prediction by the dynamic model is shown in 
Figure 2 by solid lines.

Identification results for the dynamic model 
(1)-(7) 

The model identification results presented in 
Figure 2 demonstrate quite accurate fitting of the 
model to experimental data and validate practical 
efficiency of the model identification procedure.

The model-based process optimization was 
performed by applying the evolutionary programming 
algorithm with random settings of initial values of 
parameters of the control algorithm (15). The 
restriction was imposed on the total substrate to be 
fed, which corresponds to that in the model 
identification experiment. The calculated parameter 
values of the optimal control algorithm are the 
following: _ = 6.  , _ = 10. ,

= 0.233, = 0.221. 
Figure 3 is representative of the model-based 

optimization results. The calculated optimal 
trajectories of the feed-rate, biomass concentration, 
substrate concentration and the total biomass
accumulation are depicted by solid lines. For 
comparison, the time trajectories of the feed-rate and 
the total biomass at the process used for model 
identification are depicted by dashed lines.

Values of dynamic model (1)-(7) parameters

Model parameters
sk ik xk xsY 1 2 3 4 max

First  approach values 2.95 55828 0.106 0.474 0 0 0 0 0.832
Final values 0.358 65565 0.0403 0.343 0.00483 0.000382 0.00196 0.0147 0.736



Time trajectories of the optimized process 
variables: (a)–feed-rate, (b)–biomass concentration, 

(c)-substrate concentration, (d)–total biomass
(performance index)

As it follows from the optimization results 
presented in Figure 3, the optimal feed-rate control 
increases the yield of biomass by 3.5 % and decreases
the process duration by 4.4 % compared with the 
results of fed-batch process used for identification of 
the dynamic model.

The identification procedure of fed-batch 
fermentation process model is developed that 
formalizes fitting of dynamic model of the versatile 
structure to particular experimental data. The steps of 
identification procedure include initial approximation 
of experimental data from batch or fed-batch 
fermentation processes by formal logistic 
relationships, estimation of the first approach values 
of dynamic model parameters, and iterative 
improvement of the parameter values. The main 
advantage of the proposed identification approach is 
formalization of the experimental data-based 
identification procedure and avoidance of testing 
kinetic models of various structures. 

The developed identification and optimization 
procedures were tested for identification of 
mathematical model of particular fermentation process 
and model-based optimization of feed-rate time profile 
maximizing the yield of biomass at the end of 
cultivation cycle. The investigation results validate 
practical efficiency of the model identification and 
model-based optimization approach.

The presented model-based feed-rate optimization 
approach allows development a user-friendly 
computation program, which provides direct 
calculation of optimal feed-rate time profiles for 
particular fermentation processes from the relevant 
experimental data.
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