
230

ISSN 1392–124X (print), ISSN 2335–884X (online) INFORMATION TECHNOLOGY AND CONTROL, 2014, T. 43, Nr. 3

Mapping Ontologies to Objects using a Transformation based on

Description Logics

Rok Žontar, Ivan Rozman, Vili Podgorelec

University of Maribor, Faculty of Electrical Engineering and Computer Science,

Smetanova 17, SI-2000 Maribor, Slovenia

e-mail: rok.zontar@um.si, ivan.rozman@um.si, vili.podgorelec@um.si

 http://dx.doi.org/10.5755/j01.itc.43.3.4952

Abstract. To manage the increasing complexity of computer systems, a need has arisen to process knowledge instead

of only data. Ontologies are nowadays widely used to describe domain knowledge, but although a high level of interest

is present with researchers, the technology has not yet sufficiently been put into practice. We present an approach that

addresses the transformation of abstract ontological concepts into everyday programming technologies in order to ease the

development of semantic web applications for solving common engineering tasks. The presented formal mapping and its

implementation - the MOOT framework - is an evolution in the field of ontology to object mapping. They rely on

description logics to formalize the transformation process and allow for a detailed discussion about the entailed

expressivity. We pay special attention to logical characteristics of roles in order to preserve as much expressivity as

possible. Furthermore, an evaluation of the system is presented, where its performance and scalability is demonstrated.

Keywords: ontologies; object-oriented programming; description logics; mapping; performance evaluation.

1. Introduction

Computer systems are becoming increasingly

complex due to both the growing number of users

and their growing demand for functionality. Processors

are more elaborate, memory systems are larger,

networks are faster, and most importantly, the amount

and complexity of data being used is overwhelming.

This increasing complexity magnifies the already

difficult task that developers face in implementing new

technologies, designed to cope with emerging needs.

As we face a paradigm shift towards a society of

knowledge, the computerized processing of

knowledge and the meaning of data is becoming one of

the key aspects of computer engineering and software

development.

The first step towards this was the formation of

ontologies, which are considered as a formal, explicit

specification of a shared conceptualization [1]. Their

formal semantics allows for describing complex

axiomatic structures of knowledge and are therefore

believed to be a core enabling technology of the

semantic web [2]. Although ontologies and ontology

languages have proven to be very popular in the field

of research, the engineering industry has yet to adopt

them. Some studies attribute this to the lack of available

tools [3], the undefined cost to benefit ratio [4] or

current organizational cultures [5]. Taking effective

use of semantic web technologies requires new skills

that developers in the industrial environment genera-

lly do not posses. Because of lack of available tools to

help them evolve, the question arises whether to tackle

this by using complex ontology processing API’s or to

employ a mapping and ease access to semantic data,

while risking some of their expressivity. We support the

solution to transform some of the semantic web

technologies into a well-known object-oriented envi-

ronment. Furthermore, we believe that bridging the

gap between abstract ontological concepts and every-

day programming technologies would largely increase

the adoption of ontologies in solving many common

engineering tasks [6]. Thereby we focus on the

developer’s perspective by helping them to access

semantically rich information in a familiar way.

The similarity between the ontological and object-

oriented worlds [7] has inspired researchers to find

new solutions on how to access semantic data. It is

undisputed that ontologies have higher expressivity

than the object-oriented paradigm [8] and that an

object-oriented model can only be created by sacrificing

some of its characteristics [9]. Our aim was to develop a

mapping which would preserve much of the

expressivity that is appreciated with ontologies and

transform it to the world of object-oriented software

systems. Thereby we base our transformation on the

formalisms of description logics (DL), which form

the logical foundation of the Web Ontology Language

(OWL) [10]. In this paper we present a general model

that enables the mapping of semantic web ontologies to

object-oriented artefacts. A detailed discussion of the

entailed expressivity is given with special attention for

the support of different DL languages. An implement-

tation of this model is provided in the form of the

MOOT framework, which maps a subset of OWL 2

mailto:rok.zontar@um.si
mailto:ivan.rozman@um.si
mailto:vili.podgorelec@um.si
mailto:vili.podgorelec@um.si

Mapping Ontologies to Objects using a Transformation based on Description Logics

231

components to the programming language Java. It

provides out of the box support for complex

mappings of individuals to objects thereby employing

an event-driven model to support logical characteristics

like inverse, symmetric, reflective and transitive roles.

We believe that supporting these characteristics is a

vital factor in building a complete and expressive

semantically supported software system. To determine

the performance and scalability of the MOOT

framework, an experiment is presented, where we

evaluate the introduced framework.

2. Related work

Mapping ontology languages to facilitate their use

has been researched from two perspectives. One

approach treats ontology as a conceptual model or

data schema and try to map it to its well-known

equivalents in the form of the UML class diagram or

Entity-Relationship model. In [11] an approach is

presented where an ontological taxonomy is

transformed into a relational database schema. A

similar approach is presented in [12], where a graph

oriented transformation is employed on OWL and

transformed into an entity-relational schema. An

advantage of this type of transformation is its ability to

precisely define constraints against entities. However,

the database schema has no native support for

hierarchical structures, which need to be induced

artificially. Furthermore, logical characteristics of

roles are not addressed. Transformation of OWL

ontologies into UML diagrams [13] is a similar

approach, which can be employed in combination with

the Model-Driven-Architecture initiative. Based on

UML class models, constraints can be, for example,

defined using rules [14] or the Object-Constraint

Language (OCL) [15].

On the other hand, the direct mapping of

ontological languages to source code has the advantage

of quick adoption and a simplified transformation model

[7]. One of the first such frameworks is Harmonia

[16], which generates Java code for the JADE

platform. Its model is unsophisticated and it does not

support various features, e.g. multiple inheritance.

The authors extended and refined their work in [17]

where they defined a solid architectural foundation on

which almost all future models build upon. We adopt

their approach, by replacing generated functionality

with an annotation based configuration model and

supporting framework. ActiveRDF [18] is an adhoc

framework for mapping RDF to the Ruby

programming language. Some open-source projects

are also available, like RDFReactor [19] and

OWL2Java [20]. RDFReactor maps triples to an

object-oriented model. The generated classes serve

purely as a proxy for querying data. We employ a

different strategy by creating a fully representative

web of objects.

OWL2Java employs a similar mechanism as RDF-

Reactor, but adds support for OWL. The Protégé

ontology editor [21] is able to generate a simple Java

API from an ontology. Compared to our system, the

mapping depends on a generated vocabulary and does

not support logical characteristics of roles. A further

attempt to facilitate ontologies and object-oriented

programming languages is presented in [22]. APIs a

gogo define a domain specific language to tackle the

complex mappings between ontologies and conceptual

APIs. Their use of a model driven approach is unique

and can only hardly be compared to our abstract

transformation given below. Sapphire [23] is probably

the most feature full framework for dealing pro-

grammatically with ontologies at the moment. In order

to provide the necessary functionality it generates

fragments of bytecode. We believe that this concept is

not beneficial, because no additional functionality can

be added to the domain model.

In contrast to most of the cited works, our model

relies on a formal model defined using DL and a set

notation. While most solutions provide language

specific point-to-point mapping, we developed a

universal model, which can be expanded to support

multiple ontological- and programming-languages.

The MOOT framework employs a simplified configu-

ration model using annotations, which enable a simple

integration and reuse of existing code. Besides that,

we provide complete out-of-the-box support for

relational inheritance and logical characteristics of

roles without intrusive code, which focuses on

developers by helping them access semantic data in a

native an easy way.

3. Mapping ontologies to objects

The transformation of data from one form into the

other is well known in the world of software engi-

neering. Techniques like serialization and deseriali-

zation are already established as is the well-known

object-relational mapping process. By defining the

mapping from ontologies to objects we follow the

aforementioned techniques and adopt their highly

regarded features in the context of the Semantic web.

We define the mapping of ontologies to objects as a

two stage process. Phase one includes the transfor-

mation of abstract ontological concepts to constructs

of an object-oriented programming language using

generation of source code and its configurations. The

second phase is responsible for performing the actual

mapping of semantic data, represented in the form of

individuals, into objects. To describe this process, we

use DL to provide formal semantics and the set

notation [24] to describe the components included in

the transformation. DL is a family of knowledge

representation formalisms based on a combination of

frames and semantic networks [25]. Its main features

include formal logic-based semantic and finite

reasoning capabilities. Our model is based on the

differentiation between the terminological TBox and

axiomatic ABox parts. We can therefore define the

ontology schema as a model (𝑂𝑀), which consists of

R. Žontar, I. Rozman, V. Podgorelec

232

a terminological (𝑇 𝐵𝑜𝑥𝑀) and axiomatic part

(𝐴 𝐵𝑜𝑥𝑀) analogue to DL:

𝑂𝑀 ≡< 𝑇 𝐵𝑜𝑥𝑀 , 𝐴𝐵𝑜𝑥𝑀 >

𝑇 𝐵𝑜𝑥𝑀 ≡< 𝐶, 𝑅𝑇 , 𝐻, 𝐸, 𝐷𝑇 > (1)

𝐴𝐵𝑜𝑥𝑀 ≡< 𝐼, 𝑅𝐴, 𝐷𝐴 >

The terminological model is a 5-tuple consisting of

sets of concepts 𝐶 , object relations 𝑅𝑇 , hierarchy 𝐻 ,

equivalence 𝐸 and datatype relations 𝐷𝑇 with the

following definitions:

𝑅𝑇 ≡ {(𝑎, 𝑟, 𝑏)|𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ∧ 𝑇 ⊑ ∀𝑟 .̅ 𝑎 ∧ 𝑇 ⊑
∀𝑟. 𝑏}

𝐻 ≡ {(𝑎, 𝑏)|𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ∧ 𝑎 ⊑𝑑 𝑏 ∧ 𝑎 /= 𝑏}

𝐸 ≡ {(𝑎, 𝑏)|𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ∧ 𝑎 ≡ 𝑏 ∧ 𝑎/= 𝑏} (2)

𝐷𝑇 ≡ {(𝑎, 𝑣, 𝑡)|𝑎 ∈ 𝐶 ∧ 𝑡 ∈ 𝐷𝑇 ∧ 𝑇 ⊑ ∀𝑣 .̅ 𝑎 ∧ 𝑇 ⊑
∀𝑣. 𝑡}

On the other hand, the axiomatic part of the

model is represented as a 3-tuple, consisting of

individuals 𝐼 , object relations 𝑅𝐴 and datatype

relations 𝐷𝐴, which we define as follows:

𝐼 ≡ {(𝑥, 𝑎)|𝑎 ∈ 𝐶 ∧ 𝑥 ∶ 𝑎}

𝑅𝐴 ≡ {(𝑥, 𝑟, 𝑦)|𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑟 ∈ 𝑅𝑇 ∧ (𝑥, 𝑦): 𝑟} (3)

𝐷𝐴 ≡ {(𝑥, 𝑟, 𝑦)|𝑥 ∈ 𝐼 ∧ 𝑣 ∈ 𝐷𝑇 ∧ (𝑥, 𝑡): 𝑣}

The abstract object-oriented model 𝑂𝑂 , which

serves as the endpoint of the transformation is defined as

follows:

𝑂𝑂 ≡< (𝐼, 𝐶, 𝐻, 𝑅, 𝑉) > (4)

where 𝐼 denotes interfaces, 𝐶 concrete classes, 𝐻 the

hierarchy between interfaces, 𝑅 the relations

between the interfaces and 𝑉 the variables.

Now let us define a function 𝑓 which transforms

the terminological model into the appropriate object-

oriented one and the axiomatic data into objects,

respectively. The function 𝑓 is defined as follows:

𝑓 = {
𝑓𝑇

𝑓𝐴
 (5)

where 𝑓𝑇 is an injective function used to transform the

terminological model into the object-oriented 𝑂𝑂:

𝑓𝑇 ∶ 𝑇 𝐵𝑜𝑥𝑇 → 𝑂𝑂. (6)

The surjective function 𝑓𝐴 is defined analogously

to 𝑓𝑇 and is used to transform the axiomatic model

into an object graph denoted as 𝑂𝑏𝑗:

𝑓𝐴 ∶ 𝐴𝐵𝑜𝑥𝑀 → 𝑂𝑏𝑗. (7)

The described transformation functions provide

only an abstract definition of the actual mapping

phase, which is dependent on the chosen ontology

language, object-oriented programming language and

development platform. Therefore, each mapping has to

specify details that rely on the expressivity of the

programming language. The expressivity of transfor-

mation is presented in the next section, where we

discuss the loss of expressivity regardless of a concrete

programming language. A detailed description of the

mapping process of the MOOT framework, which

maps OWL individuals to Java objects, is given in

Section 5.

4. Expressivity of transformation

In order to assess the expressivity preserved by the

transformations, we must first examine the expressivity

itself as it is defined in DL. As already mentioned DL

is a set of language characteristics with well-defined

semantics. Each set of characteristics adds some form

of expressivity, which are joined to form languages. A

DL language is a subset of characteristics, which forms

a comprehensive frame for a particular task [25]. Some

of the most discussed DL languages are frame

languages ℱℒ0 and ℱℒ− [26], attributive language 𝒜ℒ

and its extended version with complements 𝒜ℒ𝒞 [27].

In the semantic web, DL languages form the basis for

the web ontology language OWL, with 𝒮ℋ𝒪ℐ𝒩 (𝒟)

[28] as the logical foundation for OWL 1 and

𝒮ℋ𝒪ℐ𝒬 (𝒟) [29] as its equivalent for OWL 2. Table 1

presents a short overview of each language with their

appropriate DL constructs. We thereby resort to the use

of standard DL notation of symbols, where 𝐴 and 𝐵

denote atomic concepts, 𝐶 and 𝐷 complex concepts, 𝑅

and 𝑆 resemble abstract roles and 𝑉 concrete or

datatype roles.

To assess the ability of maintaining any level of

expressivity, we must not examine each of the given

languages. Programming languages are not often

examined from the standpoint of expressivity, although

some considerable differences exist among them. One

has to consider many characteristics and try to mini-

mize the expressivity loss when mapping from a more

expressive ontological language to a less expressive

programming language. This can be accomplished

statically, by arranging classes in their correct

hierarchical structure, or dynamically, by employing

the realization of logical characteristics and

constraints. We start our examination with the least

expressive language and discuss whether each

characteristic can be preserved.

4.1. 𝓕𝓛𝟎 and 𝓕𝓛−

First, we would like to examine the expressivity

of the frame language ℱℒ0. As it can be deduced

from Table 1, ℱℒ0 consists of atomic concepts, roles,

their intersection and the universal quantification. Con-

sidering transformation of atomic concepts to classes

and roles to methods as trivial, we turn our attention to

the intersection and universal quantification. The se-

mantics of the intersection (Listing 1) can be modeled

as a logical conjunction of two concepts. As such, the

newly formed concept has all the characteristics of

each concept occurring in the intersection. Translating

this into the hierarchical structure of object-oriented

code, a class needs to derive from both of the classes

represented in the intersection. The final construct of

Mapping Ontologies to Objects using a Transformation based on Description Logics

233

Table 1. Expressivity of different DL languages

Construct Syntax Languages

Atomic concept

Role

Intersection

Universal quantification

𝐴

𝑅

𝐶 ⊓ 𝐷

∀𝑅. 𝐶

ℱℒ0

Limited existential quantification

Top concept

∃𝑅. 𝑇

⊺

ℱℒ−

Bottom concept

Atomic negation

⊥

¬𝐴

𝒜ℒ

Complex negation

Union

Full existential quantification

¬𝐶

𝐶 ⊔ 𝐷

∃𝑅. 𝐶

𝒜ℒ𝒞

Cardinality restriction

Nominals

Role hierarchy

Inverse role

Concrete roles

≥ 𝑛𝑅 ≤ 𝑛𝑅

{𝑎1, … , 𝑎𝑛}

𝑅 ⊑ 𝑆

𝑅−

∀𝑅. 𝑉

𝒮ℋ𝒪ℐ𝒩 (𝒟)

Qualified cardinality restriction

Role inclusion axioms

≥ 𝑛𝑅. 𝐶 ≤ 𝑛𝑅. 𝐶

𝑅 ∘ 𝑆

𝒮ℋ𝒪ℐ𝒬 (𝒟)

ℱℒ0 is universal quantification, which defines that the

range of the given role consists only of individuals defi-

ned by a certain concept. As an independent construct,

the universal quantification can be confidently trans-

formed into a method using the given domain and ran-

ge. The domain needs to be defined to identify the class

in which the method resides and the range for the return

type of the method. A problem can arise when one com-

bines the universal quantification with an intersection,

thereby defining a new concept:

𝑌 𝑜𝑢𝑛𝑔𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 ≡ 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 𝑛 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟

𝐺𝑟𝑎𝑑𝑢𝑎𝑡𝑒𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ≡

𝑆𝑡𝑢𝑑𝑒𝑛𝑡 𝑛 ∀𝑡𝑎𝑘𝑒𝑠𝐶𝑜𝑢𝑟𝑠𝑒. 𝐺𝑟𝑎𝑑𝑢𝑎𝑡𝑒𝐶𝑜𝑢𝑟𝑠𝑒

The rules for transforming the intersection enable us

to identify the GraduateStudent concept and transform

it into a subclass of Student. On the other hand we

cannot directly transform the universal quantification.

Due to the limitations of modern object-oriented langua-

ges an overriding of methods is not possible in the

return type of the method. So only the left part of the

intersection will be transformed, while the universal

quantification on the right will be ignored. This weakens

the expressivity of the transformation due to the fact

that we lose some information about graduate students

which will not be inferred. Even though, this is not a

huge setback, because even DLs need the support of a

reasoner to infer this kind of knowledge.

The extended logic ℱℒ− is basically ℱℒ0 exten-

ded with limited existential quantification and a top

concept. The expressivity of the limited existential

quantification is maintained by the transformation using

the same strategy as with the universal quantification.

We can confidently argue that the roles that have defi-

ned domain and range can be preserved by the map-

ping. An example is a Bachelor, who is defined as a

person who has a bachelor’s degree:

𝐵𝑎𝑐ℎ𝑒𝑙𝑜𝑟 ≡ 𝑃 𝑒𝑟𝑠𝑜𝑛 𝑛 ∃ℎ𝑎𝑠𝐵𝑎𝑐ℎ𝑒𝑙𝑜𝑟𝐷𝑒𝑔𝑟𝑒𝑒

The top concept is used here to denote any possible

individual. In order to incorporate this in the transfor-

mation, we need to introduce a new top class all others

are derived from. This ensures that any object that

represents an individual can be reduced to this basic

type. This is similar to the root classes from modern

object-oriented languages.

4.2. 𝓐𝓛 and 𝓐𝓛𝓒

The attributive language 𝒜ℒ is sometimes referred

to as a minimal set of language characteristics, which is

of practical interest [25]. It adds to the expressivity of

ℱℒ− by introducing the atomic negation of concept and

the bottom concept, which is used to calculate inconsis-

tencies. Atomic negation is a complex operation, which

can be used by the transformation to create a class in

the hierarchical structure of the represented ontology:

𝑈𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑𝑃𝑒𝑟𝑠𝑜𝑛 ≡ ¬ 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑑𝑃𝑒𝑟𝑠𝑜𝑛

The bottom concept has no direct transformation in

the object-oriented world, because it is used only in

the process of calculating inconsistencies [30] and has

no real value when working with semantic data.

Therefore, we can confidently dismiss it in the

transformation procedure.

𝒜ℒ𝒞 is probably the most discussed of the DL

languages [27]. It is obtained by adding further cons-

tructs to 𝒜ℒ. The union of concepts 𝒰 and the full exis-

tential quantification ℰ are the most prominent of them.

Complex negation of concepts 𝒞 is another feature, but

R. Žontar, I. Rozman, V. Podgorelec

234

as it has been proven it can be equally expressed using

the union and the full existential quantification of

concepts and vice versa [25]. Therefore the languages

𝒜ℒ𝒰ℰ and 𝒜ℒ𝒞 are semantically equivalent. Due to

this theorem we use the union of concepts and the full

existential quantification in order to determine whether

our transformation preserves the expressivity of 𝒜ℒ𝒞.

The union of concepts can be regarded as a logical

disjunction. In the class hierarchy, this is expressed as

a class higher in the hierarchy. The transformation

procedure takes this into account by placing the new

concept as a superclass of both classes used in the union

operation. So each individual representing either of the

concepts will be automatically regarded as a union of

them both. Next listing is an example of a union

operation where it defines a faculty employee as either

a professor, teaching assistant or a researcher:

𝐹𝑎𝑐𝑢𝑙𝑡𝑦𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 ≡

𝑃𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟 ⊔ 𝑇𝑒𝑎𝑐ℎ𝑖𝑛𝑔𝐴𝑠𝑠𝑖𝑠𝑡𝑎𝑛𝑡 ⊔ 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟

The full existential quantification is an extension

to the limited existential quantification, already known

from ℱℒ− . Earlier we argued that the transformation

preserves the expressivity of the limited existential

quantification due to the fact that no specific concept

is declared as the range of the role. On the other hand,

the full existential quantification allows specifying a

concept in the range of a role. An example of this is

shown below, where a master is defined as a person who

received a Master’s degree:

𝑀𝑎𝑠𝑡𝑒𝑟 ≡ 𝑃𝑒𝑟𝑠𝑜𝑛 ⊓ ∃ ℎ𝑎𝑠𝐷𝑒𝑔𝑟𝑒𝑒. 𝑀𝑎𝑠𝑡𝑒𝑟𝐷𝑒𝑔𝑟𝑒𝑒

This restriction allows for precise selection of in-

dividuals based on the relationships they have. In the

object-oriented world, classes are used to describe the

structure of an object. Although hierarchy is used to

specify different types of objects, the base signature of

a method cannot be predefined in a subclass.

Therefore, a transformation cannot preserve this type of

expressivity. In order to support full existential

quantification, some other form of dynamic object

transformation would be necessary.

4.3. 𝓢𝓗𝓞𝓘𝓝 (𝓓) and 𝓢𝓗𝓞𝓘𝓠 (𝓓)

So far we have established a common basis for the

discussion of specific semantic web logics. As we

have shown, the transformation supports a wide va-

riety of 𝒜ℒ𝒞 constructs. It is not surprising that only

some of the components are partially entailed in the

transformation as most of them require a reasoner in

order to support their full expressivity. This addresses

the issue of dynamic classification of individuals,

which is something most of the other mappings do not

consider. In order to evaluate some of the non-

terminological components of 𝒮ℋ𝒪ℐ𝒩 (𝒟) and

𝒮ℋ𝒪ℐ𝒬 (𝒟) , a different model is needed which

manages the relations between objects at runtime.

The 𝒮ℋ𝒪ℐ𝒩 (𝒟) [28] DL language is the logical

foundation of the Web Ontology Language OWL DL. It

provides the semantics for the more abstract ontolo-

gical components and allows for a finite reasoning

process. 𝒮ℋ𝒪ℐ𝒬 (𝒟) [29] is an extension of

𝒮ℋ𝒪ℐ𝒩 (𝒟) developed to cope with the increasing

complexity of OWL 2 ontologies. We will assess

𝒮ℋ𝒪ℐ𝒩 (𝒟) and 𝒮ℋ𝒪ℐ𝒬 (𝒟) along each other due

to their high amount of commonalities. Both of them

are resembled by a set of logical characteristics descri-

bed using the six letters. 𝑆 is an extension of 𝒜ℒ𝒞 by

adding transitive roles. In order to support transitive

roles one has to establish a supporting system, which

ensures that the references between objects are indeed

transitive. Some mappers employ a strategy of establi-

shing these relations at the time of mapping and igno-

re them later on. Others generate source code, which

ensures that the correct references are put in place.

Although these solutions proved well, they also have

a drawback due to the introduction of high amount of

code in the domain classes. Therefore we prefer a non-

invasive approach which is reflection based and hidden

from the developer. The source code of the domain

objects should remain unaltered and be easily confi-

gured by the developer.

The same strategy could also be applied to hierar-

chical roles ℋ and their extensions in complex role in-

clusion axioms ℛ. Thereby it is necessary to distinguish

between role characteristics that provide additional

functionality (such as symmetry and reflectivity), from

those that are of a restrictive nature (such as asymmetry

and irreflectivity). While the former needs to support the

addition of new references among objects according to

the characteristics, the latter needs to prevent it. Role

inheritance is a special feature within this set. It

allows for defining roles, which are more specific

than others. This is something unknown in the object-

oriented world where polymerphism is the preferred

choice for expressing specific relations. But at the same

time, role inheritance is not problematic from the

standpoint that each role has a unique name. Therefore,

role inheritance can be successfully tackled using the

previously mentioned solutions. Role inclusion

axioms are a novelty introduced in OWL 2. In their

current form they cannot be directly transformed in the

object-oriented world, but an advanced dynamic model

could be used as for other logical characteristics.

Nominals 𝒪 represent a concept similar to enume-

ration in the object-oriented world. The main difference

between those two is that nominals are formed by

using instances, whereas enumerations are formed using

primitive types. The use of nominals results in a highly

coupled TBox and ABox. For this reason, their use is

omitted in some of the sublanguages e.g. OWL Lite

[31]. Because object-oriented languages do not allow

to define classes based on their instances, it is only

possible to map a nominal concept to a class. But at

runtime it is impossible to verify whether the instance

data match concrete objects.

Mapping Ontologies to Objects using a Transformation based on Description Logics

235

Inverse roles ℐ, in contrast to symmetric roles, are

not a typical logical characteristic because the operation

involves two roles. The first one is the original role,

while the latter one is its inverse. This enables the use

of different concepts that act in the domain and range

of the role, which is impossible to do using symmetric

roles. As other logical characteristics, inverse roles

could also be supported at runtime using a dynamic

model.

Cardinality restrictions in its unqualified 𝒩 as

well as qualified 𝒬 form are an important part of the

OWL language and are used to classify individuals

similar to the universal and existential quantification.

By default, roles cannot be restrained with a minimum

or maximum number of instances. The only restriction

available is to define new concepts which have certain

cardinality constraint defined on a role:

𝑇𝑒𝑎𝑐ℎ𝑒𝑟 ≡ 𝑃𝑒𝑟𝑠𝑜𝑛𝑛 ⊓≥ 1𝑡𝑒𝑎𝑐ℎ𝑒𝑠

𝑃𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟 ≡ 𝑃 𝑒𝑟𝑠𝑜𝑛𝑛 ⊓ ≥
1𝑡𝑒𝑎𝑐ℎ𝑒𝑠. 𝐺𝑟𝑎𝑑𝑢𝑎𝑡𝑒𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠

An exception of that applies to roles that are defined

as functional and have their cardinality fixed at one. For

any other form of cardinality the same restrictions

apply as already mentioned by the full existential quan-

tification. The mapping can support only the identifica-

tion of a new concept in the hierarchy, but cannot dy-

namically classify objects without the use of inference.

It is important to highlight the good support the

mapping offers for concrete roles (𝒟). But it is also

worth noting that in order to take effective use of

datatype roles one needs to precisely define the do-

main and range type of the role. If the range is not

specified, the content could be considered as a character

string. For most of the commonly used datatypes,

corresponding object-oriented datatypes and mappings

exist. The reason for this is the use of XML Schema

for the OWL datatypes. It must be stressed that OWL

does not impose restrictions on the cardinality of data

roles. Thus, a role may appear zero, one or more times.

Mapping this directly into the program code would

cause ambiguity and further complicate the use of

semantic data. For this reason and following the

example of other tools mentioned in the related work,

we suggest limiting the data characteristics to only one

per role. This means that one could have a concept of

a single instance of each data role.

To summarize the findings from the expressivity

check, we can say that the proposed model provides

good support for a large number of expressivity compo-

nents. Unfortunately, we were not able to provide

support for the full range of functionality that is pres-

cribed by the different DLs. However, regarding the

differences between the object-oriented programming

languages and ontologies, that was not expected. Besi-

des the quantification and cardinality restrictions, the

most challenging obstacles are to provide the support

for logical characteristics of roles, which must be esta-

blished at runtime. Our research identified two distinct

solutions, which seem prominent to tackle these chal-

lenges. One could establish the logical characteristics

of semantic data within the mapping process of indivi-

duals to objects. An advantage of this solution is its sim-

ple implementation and effective query answering ca-

pability. But on the other side, it does not preserve the

logical characteristics throughout the life cycle of the

objects when manipulating them. To ensure full support

for logical characteristics throughout the whole process,

a solution is needed in the form of a dynamic model that

instantly responds to any change in the relationship

between two objects and adapt to it accordingly.

5. The MOOT framework

The encouraging results gained from the expressi-

vity check lead us to the development of a framework,

which implements the proposed strategies and follows

the formal model presented in Section 3. We chose

OWL 2 [32] as the source ontology language and Java

as the target object-oriented language. OWL is the most

widely used ontological language at the time of wri-

ting and has been chosen because of a wide variety

of tools supporting the language. On the other hand, we

chose Java, a modern object-oriented language, as the

endpoint of the transformation. Although Java enforces

some restrictions on the conceptual model (e.g. disal-

lows multiple-inheritance) and thereby reduces the ex-

pressivity, we nevertheless address it because of its pre-

valence among developers of information systems.

The MOOT framework is comprised of two

individual components, which tightly rely on each

other to enable the generation of object-oriented

source code and establish the mapping between

ontological individuals and objects. To ease the

development process, the system is comprised of a

code generator (the MOOT Generator) and a factory

(the MOOT Mapper) that performs the mapping itself.

A model of the framework is presented in Fig. 1. The

MOOT Generator is responsible for creating object-

oriented source code based on the definitions of the

ontological components, whereas the MOOT Mapper

performs the actual mapping where individuals are

loaded into the system, transformed into their

corresponding object representation and populated with

data.

Overall the framework relies on an ontology proces-

sing API and a reasoner. The first is used to process

the ontology and the latter is used to provide addi-

tional information of the ontology. The architectural

composition of the system allows for the addition of

new APIs for managing ontologies. Further more,

weak coupling between all components enables the

support of different reasoning mechanisms. With the

abstraction of the inference procedure, we were able

to provide support for a wide range of different

reasoning mechanisms and their implementations. The

only requirement for each of them is that their

implementation is compatible with the API used to

process the ontology. By excluding programming

R. Žontar, I. Rozman, V. Podgorelec

236

Figure 1. Model of MOOT framework

interfaces for handling ontologies and reasoning

mechanisms, we were able to provide the possibility of

using our framework also with the future versions of

We argue that the presented MOOT framework,

which automatically maps ontology individuals by

generating Java source code, conforms to 𝑓. The

MOOT Generator is an implementation of 𝑓𝑇 and the

MOOT Mapper is an implementation of 𝑓𝐴 ,

respectively. The framework combines the generated

source code and its configuration using predefined

annotations, which resemble key components of

OWL. In this way, we kept the code clean and more

readable. Moreover, the generated source code and its

configuration can be added to existing source files and

therefore enable the reuse of existing classes. If this

is not needed, they are automatically added to the files

generated from an ontology schema. The detailed

description of the main components follows below.

5.1. The MOOT Generator

The MOOT Generator is responsible for creating

object-oriented source code based on the definitions of

the ontological components. The process begins with a

user defined OWL ontology that is loaded into the

system. Any valid OWL and OWL 2 ontology is

supported and can be processed in various notations,

e.g. RDF/XML, Turtle or Manchester. The ontology is

then converted into the intermediate object model,

which is a direct implementation of the formal model

defined using DL and the set notation in Section 3. The

intermediate object model consists of classes that

represent concepts, object- and datatype-properties.

Using these classes, an in-memory graph of

interconnected objects is created, which is a direct

representation of the ontology and serves as a hub in

the process of transforming the conceptual

ontological model into object-oriented source code. It

allows for greater abstraction and facilitates data

processing by eliminating the coupling between the

code generation component and the API for processing

ontological documents. From the intermediate object

model, source code is generated using predefined

template files. These are text files, defined using special

markup, which is populated using actual data at

runtime. Templates are used in order to achieve an

expandable model, which on one hand supports several

types of programming languages and on the other hand,

in combination with the intermediate object model,

supports different types of ontological languages.

The code generation component employs a well-

established strategy [17] by creating interface-class

combinations for each ontological concept. Each inter-

face represents one concept, whose methods resemble

roles in the ontological domain. Interfaces are used to

support multiple inheritance, which is, in Java, dis-

allowed with classes. Each interface has a class, which

implements all of its defined and inherited methods.

This allows hiding some of the implemented code and

equips a developer with a clean and easy to understand

class model. The static structure of the ontology is

transformed using simple transformation rules, which

are detailed in Table 2.

The initial implementation of the MOOT Generator

did not include any support of inference mechanisms.

This led to the problem of completeness, because the

Mapping Ontologies to Objects using a Transformation based on Description Logics

237

resulting source code was missing methods and the

class hierarchy was incomplete. The reason why

missing hierarchical links occurred was because we

have built the object model on top of semantically weak

data. Depending on the API used for processing

ontological documents, it is sometimes not possible to

derive the whole hierarchy of concepts and to identify

the domains and ranges of roles. To solve this problem,

we introduced a reasoner into the architecture of the

system. This could be done without negative

consequences to the performance, because it has been

proven that the TBox reasoning is very effective [33].

Only by including ABox statements the complexity

rises significantly. With an empty ABox, as it is in our

case, the reasoner is used only to infer the entire

hierarchical structure of the ontology and to identify the

concepts that appear in the domain and range of roles.

In this way, we ensure that the implicit ontological

knowledge is included as well and that the acquired

structural data of the ontology are complete. Although

the use of a reasoner is encouraged, it is up to the end

user to decide whether to use a reasoner or not.

Furthermore, one can also choose among a multitude of

supported implementations. For us, Pellet [34] was the

reasoner of choice, because its reasoning engine is

among the most widely used ones.

Fig. 2 presents a class diagram of a simple

generated schema. One can identify the main interface

Student, which implements the OWLThing top

interface. The Student interface defines a pair of get-set

methods to access a datatype role called

indexNumber and a get method takesCourse,

which is used to retrieve the related courses. The class

StudentImpl is an implementation of the Student
interface. It hosts all the implemented fields and access

methods thereby following the POJO principle. As one

can see, no additional code is being generated which is

used to perform the mapping or provide any additional

functionalities. This is all handled by the MOOT

Mapper.

5.2. The MOOT Mapper

While the generation of source code usually takes

place only once per ontology version, the second stage

of the process is executed numerous times. This is the

actual mapping where individuals are loaded into the

system, transformed into their corresponding object

representation, populated with data and returned to the

user. In order for this transformation to happen, some

kind of configuration mechanism must be put into place.

It is necessary to provide an automatically generated

baseline, which can be influenced by developers at the

implementation phase. Modern methods, such as the

conventions over configuration [35], have proven to be

unsuitable due to the uncertainty of ontological URIs.

Therefore, we needed to find a different solution to

allow dynamic loading of data and mapping them to the

correct class files. From the development of the

software systems, mainly two solutions to this problem

are used in the majority of cases. The first uses a text

Figure 2. A class diagram of the generated source code

or XML file to store the configuration properties,

while the latter stores the configuration in the form

of code annotations. Regardless of the method, the

reading and configuration management is a perfor-

mance expensive and time-consuming operation.

Therefore, we decided for the latter method, as it

allows for a transparent way of combining source code

and its configuration. Furthermore, this kind of

configuration makes

Fig. 3 provides an example of an interface with

attached annotations. The interface is identified by

the OWLClass annotation which provides the URI of

the concept. This is needed in order to identify the

individuals belonging to the concept. The next

annotation is an OWLDatatypeProperty annota-

tion. It is used to identify datatype roles. There is

only one annotation on the get method for each role.

Naming conventions are used to find the correct

method when setting values during the mapping

process. Finally, the abstract roles are identified using

an OWLObjectPropery annotation. Such roles may

have multiple annotations attached to them depending

on any special characteristics they provide. For

example, the alumni role is defined as an inverse to

the graduateFrom role as indicated by the

OWLInverseOf annotation.

The actual process that utilizes annotations in order

to map semantic data to objects is called materializa-

R. Žontar, I. Rozman, V. Podgorelec

238

Table 2. Transformation rules from OWL and DL concepts to Java code

OWL DL Java

Concepts

Top class

Bottom class

Class

Subclass

Equivalent classes

Disjoint classes

Intersection

Union

⊺

⊥

𝐶

𝐶1 𝐶 ⊑ 𝐶2

𝐶1 ≡ 𝐶2

𝐶1 ⊓ 𝐶2 ≡⊥

𝐶3 ≡ 𝐶1 ⊓ 𝐶2

𝐶3 ≡ 𝐶1 ⊔ 𝐶2

Interface OWLThing

/

𝐼 extends OWLThing, 𝐶 implements 𝐼

𝐼1 extends 𝐼2

𝐶 implements 𝐼1, 𝐼2

𝐼1 and 𝐼2 define the same method with different return types

I3 extends 𝐼1, 𝐼2

𝐼1 extends 𝐼3, 𝐼2 extends 𝐼3

Object properties

Domain

Range

Equivalent property

Functional property

⊺ ⊑ ∀𝑅−. 𝐶

⊺ ⊑ ∀𝑅. 𝐶

𝑅1 ≡ 𝑅2

⊺ ⊑ ≤ 1𝑅

𝐼 has method 𝑅

𝑅 is of type Collection< 𝐼 >

𝑅1, 𝑅2 use same backing field

𝑅 is of type 𝐼

Datatype properties

Domain Range ⊺ ⊑ ∀𝑉−. 𝐶

⊺ ⊑ ∀𝑉−. 𝐷

𝐼 has field 𝑅

𝑉 is of type 𝐷

Individuals

Individual 𝑥 ∶ 𝐶 𝑥 instanceof 𝐼

tion. Materialization is the process of manufacturing

facilities described on the basis of semantic infor-

mation. During this process the annotations are read

using reflection. This is a process of reading data from

the source code after it has already been compiled into

byte code. The entire process takes place in several

steps, which combines the query for semantic data and

reflective operations to create and populate objects

using it. Although the concept of materialization is

defined a process that transforms an object from an

abstract to a concrete form, in our case it is understood

as a specific mapping of semantic data described into

software objects. Fig. 4 shows the pseudo code for the

process.

The procedure requires an ontology document, as

well as annotated interfaces which resemble concepts as

an input. For a number of selected concepts, all indivi-

duals are retrieved. For each of them, an object of the

corresponding interface is dynamically generated,

which is then populated using its datatype roles. From

the technological perspective, ontologies use URIs to

uniquely define concepts, properties and individuals.

This prevents ambiguity between components that

share the same name. The MOOT framework preser-

ves URIs in order to precisely define the transformed

component’s name. If two or more components share

the same name, they should be separated by different

namespaces. In the current version of the framework,

we support the following methods: (a) load single

objects defined by a class and an individual’s URI and

(b) load all individuals of a given class or a collection

of classes. The system also supports two techniques for

loading related individuals. If individuals are mapped

using deep loading, all related individuals are retrieved

and their logical characteristics are applied, whereas

when shallow loading is requested none of these are

taken into consideration. To ensure that for each

resolved URI the same object is returned, we keep an

internal reference counter. This is also the time when

observers, which realize sub-role relations and other

logical characteristics, are registered.

In the implementation of the MOOT mapper,

particular attention has been paid to the provisioning of

logical characteristics of roles, which were identified as

a crucial factor in maintaining a high level of

expressivity. Our literature review has shown that the

existing approaches (presented in the related work

section) do not acknowledge them as an important

part of ensuring the integrity of semantic data. We

believe that inverse, symmetric, reflective and transitive

roles are vital factors in building a complete and

expressive semantically supported software system. To

maintain a high level of expressivity, the relationships

between objects need to physically exist in memory,

and not only be expressed in some meta-data structure.

In order to support this type of relationship we have

resorted to the event model, which implements the

observer design pattern [36]. In our case any collection

serves as an observer and is observable at the same

time. At the time of mapping, the role characteristics

are read from the annotations and a complex network

of references is being automatically put in place. The

implemented event model ensures that after each

change of a collection element all registered observers

are notified and the change is automatically pushed

across all relevant objects. This ensures that all the

necessary relationships are present and can be easily

navigated within the object graph. This has a lot of

Mapping Ontologies to Objects using a Transformation based on Description Logics

239

Table 3. Annotations and their DL equivalents

Annotation DL equivalent Location

@OWLAsymetricProperty() Asymmetric role Method

@OWLClass(String uri) Concept Interface

@OWLDatatypeProperty(String uri) Datatype role Method

@OWLDisjointWith(String uri) Disjoint concepts Interface

@OWLEquivalentClass(String uri) Equivalent concepts Method

@OWLFunctionalProperty() Functional role Method

@OWLInverseOf(String uri) Inverse role Interface

@OWLIrreflexiveProperty() Irreflexive role Method

@OWLObjectProperty(String uri) Role Method

@OWLReflexiveProperty() Reflexive role Method

@OWLSubPropertyOf(String uri) Role inheritance Method

@OWLSymmetricProperty() Symmetric role Method

@OWLTransitiveProperty() Transitive role Method

@OWLClass(id="http://example.org/univ.owl#University")

public interface University extends Organization {

@OWLDatatypeProperty(id="http://example.org/univ.owl#researchId")

String getResearchId();

void setResearchId(String value);

@OWLInverseOf(id="http://example.org/univ.owl#graduatedFrom")

@OWLObjectProperty(id="http://example.org/univ.owl#alumni")

Collection<Person> getAlumni();

}

Figure 3. Example of an interface with annotations

Input: Annotated interfaces, Ontology document

Output: Objects

for all concepts c from interfaces do

load individuals of type c from ontology

for all i in individuals do

create object o for i of type c

populate o with datatype roles

if deep loading enabled then

for all abstract roles where domain equals c do

load abstract roles recursive

end for

register observers on roles

end if

end for

end for

Figure 4. Materialization procedure for mapping individuals to objects

advantages over a conventional system based on se-

mantic triples, where roles are loaded for each query

separately. We provide a support for irreflective and

asymmetric roles in a similar manner by checking if a

R. Žontar, I. Rozman, V. Podgorelec

240

change to the collection’s elements does not inflict any

contradictory statements in the knowledge base. If such

a state would be detected, the addition of this element

to the collection is prohibited.

6. System evaluation

The performance of a system (or framework) and

its scalability are crucial factors for its adoption in

the software development process. Providing only

functionality without the corresponding performance

characteristic can result in a quick rejection. Our

motivation for the experiment was to evaluate the

system’s performance, scalability and to see whether

the MOOT framework can be effectively put into

practice. In order to observe and to predict the

behavior of the framework, we executed benchmarks

and analyzed their results using standard statistical

methods. To gain comparable results, we used the

LUBM dataset and a benchmarking framework. The

Lehigh University Benchmark (LUBM) [37] is well-

established and a de-facto standard dataset for evalua-

ting performance of semantic web technologies. In

addition to an ontology, it provides a data generator,

which ensures reproducible synthetic data of different

sizes. The ontology itself describes a university envi-

ronment, with fine grained concepts that include

departments, professors, graduate- and undergraduate-

students, courses and publications, as well as a variety of

simple and complex roles between them. In our experi-

ment we used the LUBM0 dataset generated using the

default parameters. It consists of 15 files with approxi-

mate 100,000 triples and about 17,000 individuals.

We evaluated the performance by measuring the

execution time of tasks, which are most frequently

used. These tasks include: (i) the start-up phase; (ii)

the mapping of single individuals; and (iii) the mapping

of all individuals. The first, or start-up, task is where

the mapping factory is created and the ontology model

is loaded. The second task uses the mapping factory to

load single individuals. The third stage maps all

individuals using shallow and deep loading.

To achieve statistically reliable and comparable re-

sults, we used a micro benchmark framework discu-

ssed in [38]. It measures the time of a task, while

ensuring that external influences can be neglected.

Each task is first executed once (First measurement),

after that the same task is executed until 60 repeated

executions (Mean measurement) yield statistically

insignificant differences. In this manner, it ensures the

standard deviation (SD) and confidence interval (CI) to

be within the tolerance threshold. All benchmarks were

executed on a workstation with an Intel E8400 Core2

Duo processor and 8GB of DDR3 RAM. The operating

system used in the experiment was Windows 7 and

virtual machine Java SE version 7u9 with 4GB of

dedicated memory. The version of the OWL API [39]

used to process ontologies was 3.3.

6.1. Start-up phase

In the start-up or initialization phase we measured

the execution time the framework takes to initialize all

factories and load the ontology document. The results

are presented in Fig. 5, where we plot the execution

time in relation to the size of dataset. The top higher

values represent measurements from the first execu-

tion, while the lower represents the mean values of 60

consecutive measurements. It can be undoubtedly reco-

gnized that the performance varies depending on the si-

ze of the dataset. Although the first executions proved

to be significantly slower than their means, it must be

noted that standard deviation (SD) of measurements was

always below 5%. The extreme difference between the

first execution and the rest, which can reach to a factor

of 12, can be, according to [40], generally regarded as

usual and brought back to virtual machine optimi-

zation.

It must be noted that although each file sizes only a

few hundred KB, the combined dataset achieves a size

of almost 8MB, which has an impact on the perfor-

mance. While digging deeper, we normalized the

elapsed time by the number of loaded individuals.

Fig. 6 presents the normalized mean data value in

relation to the size of dataset. Each measurement is

calculated by dividing the mean time by the number of

individuals of the dataset. Interestingly, its values first

rapidly decline and then stabilize following an inverse

logarithmic curve. This allows us to predict the time

Figure 5. Execution time taken to initialize the framework

in relation to the size of dataset

Figure 6. Time taken to initialize the framework divided by

the number of individuals in each dataset

Mapping Ontologies to Objects using a Transformation based on Description Logics

241

necessary to complete the start-up phase for large

datasets.

Further examinations proved our hypothesis that the

performance at this stage mainly depends on the time

the supporting ontology framework needs to load the

ontology model. In our case, this is accomplished

using the OWL API and we do not have the ability to

influence it at all.

6.2. Loading single individuals

The level of performance for mapping single

individuals constitutes a very important aspect of

the system’s overall performance. Ideally, one would

want a predictable behavior, which is independent

from the type of concept and the dataset size.

Therefore, we evaluated the performance by loading

individuals from different concepts and compared

them using shallow and deep loading.

The gathered data lead us to the conclusion that

shallow mapping of single individuals was indeed

independent from the size of the dataset. The system

achieved values, which deviated less than 5%,

independently from the size of the dataset. On the

other hand, different concepts proved to have very

diverse execution times. An example of this is

presented in Fig. 7, where the mapping times of two

concepts are plotted. The concept UndergraduateStu-

dent averaged a time of 273ms (SD: 6ms, CI: ±3ms),

while, on the other hand, the concept Publication

averaged a value of 80ms (SD: 2ms, CI: ±1ms). While

investigating this phenomenon, we discovered that the

times correlate with the number of datatype properties

of a given concept. When we compared the times with

deep loading, we received very diverse results. This

was due to the different numbers and types of child

individuals that had to be loaded. Therefore no

statistically relevant data can be provided.

6.3. Loading single individuals

The final test was comprised of mapping all indivi-

duals for a given dataset. Although the MOOT frame-

work does not support the mapping of individuals from

all concepts simultaneously, we achieved this by retrie-

ving all individuals from all concepts consecutively.

The results displayed in Fig. 8 clearly resemble a

linear increase of execution times as the dataset sizes

increase. Also, the clear separation between shallow

and deep loading is present here more than ever.

Regardless of the difference, we were able to

determine a linear regression function with a coefficient

of data. This allows us to draw precise predictions for

the behavior of the system, even for large datasets.

The difference between an individual mapped shallow

and deep was averaged at a factor of 5.5 with a SD
of 6%. After further investigation, we discovered that

much of the difference can be brought back to reading

annotations and creating collections, while reading role

values from datasets, and virtual machine optimization

played only a minor difference.

Figure 7. Execution times to map single individuals in

relation to the size of dataset

Figure 8. A comparison between the execution times of

deep and shallow loading

7. Conclusions

Providing developers with a simple programming

model is an important aspect in the development of

semantic web technologies. Existing systems have laid

a solid architectural foundation for the mapping of

ontological concepts to object-oriented programming

models, but mostly ignoring expressivity features like

logical characteristics of roles. We addressed this by

formally defining a transformation based on descrip-

tion logics which allows efficient mapping of ontolo-

gies to objects while preserving much of the expressi-

vity. In this manner, an expressivity check has been

performed to assess the transformations ability to

handle complex DL constructs. Based on this, the

MOOT framework was implemented that maps

OWL 2 ontologies and individuals to Java components

and objects, respectively. In our belief, the presented

framework hides the complexity of ontologies and

aligns the access to semantic data to what developers are

used to. Our framework thereby reduces the gap be-

tween ontological systems and everyday programming

R. Žontar, I. Rozman, V. Podgorelec

242

environments. To evaluate the framework performan-

ce, benchmark tests have been performed and their

results analyzed.

The acquired results show that the introduced

framework confidently handles data independently

from a given dataset. Depending on the dataset size,

the start-up performance varies, but mapping single

individuals has proven to be unaffected by that. The

variations between different concepts can be drawn

back to the number of datatype roles that need to be

set. To map whole sets of individuals, a clear linear

regression function was determined, which allows for

predicting execution times in the future. Future work on

the framework will include support for some reasoning

features and optimization of the mapping process,

especially the extensive use of reflection related

operations gives us room for further improvements.

Although, in our opinion, the trade-off between

performance characteristics and a simplified method of

accessing knowledge already clearly swings in favor of

the later.

Acknowledgments

This paper was produced within the framework of

the operation entitled "Centre of Open innovation

and ResEarch UM". The operation is co-funded by the

European Regional Development Fund and conducted

within the framework of the Operational Programme

for Strengthening Regional Development Potentials for

the period 2007–2013, development priority 1:

"Competitiveness of companies and research excel-

lence", priority axis 1.1: "Encouraging competitive

potential of enterprise and research excellence".

References

[1] T. R. Gruber. A translation approach to portable ontolo-

gy specifications. Knowledge Acquisition, 1993, Vol. 5,

No. 2, 199-220.

[2] T. Berners-Lee, J. Hendler, O. Lassila. The semantic

web. Scientific American, 2011, pp. 29-37.

[3] V. Janev, S. Vraneš. Applicability assessment of

semantic web technologies. Information Processing &

Management, 2011, Vol. 47, No. 4, 507-517.

[4] E. Della Valle, G. Niro, C. Mancas. Results of a survey

on improving the art of semantic web application

development. In: The 10th International Semantic Web

Conference, Bonn, Germany, 2011.

[5] T. Pellegrini, A. Blumauer, G. Granitzer, A. Paschke,

M. Luczak-Rösch. Semantic web awareness barometer

2009 – comparing research- and application- oriented

approaches to social software and the Semantic Web.

In: Proceedings of I-KNOW’09 and I-SEMAN-

TICS’09, Graz, Austria, 2009, pp. 518-529.

[6] V. Podgorelec, M. Grešak. Supporting the Study Pro-

cess using Semantic Web Technologies. Electronics

and Electrical Engineering, 2011, Vol. 116, No. 10,

pp. 105-108.

[7] R. Žontar, M. Heričko. Adoption of object-oriented

software metrics for ontology evaluation. In: Procee-

dings of the Fifth Balkan Conference in Informatics,

Novi Sad, Serbia, 2012, pp. 298-301.

[8] P. Bartalos, M. Bieliková. An approach to object-

ontology mapping. In: IIT, SRCâĂŞStudent Research

Conference, Bratislava, Slovakia, 2007, pp. 9-16.

[9] C. Puleston, B. Parsia. Integrating object-oriented and

ontological representations: a case study in Java and

OWL. In: International Semantic Web Conference,

Karlsruhe, Germany, 2008, pp. 130-145.

[10] F. Baader, I. Horrocks, U. Sattler. Description Logics

as Ontology Languages for the Semantic Web. Lecture

Notes in Artificial Intelligence, 2005, Vol. 2605,

pp. 228-248.

[11] E. Vysniauskas, L. Nemuraite. Transforming ontology

representation from OWL to relational database. Infor-

mation Technology and Control, 2006, Vol. 35, No. 3,

333-343.

[12] J. Trinkunas, O. Vasilecas. A graph oriented model for

ontology transformation into conceptual data model.

Information Technology and Control, 2007, Vol. 36,

No. 1, 126-132.

[13] J. Trinkunas, O. Vasilecas. Ontology transformation:

From requirements to conceptual model. Computer

Science and Information Technologies, 2009, Vol. 751,

52-64.

[14] O. Vasilecas, D. Kalibatiene, G.Guizzardi. Towards a

formal method for the transformation of ontology

axioms to application domain rules. Information Tech-

nology and Control, 2009, Vol. 38, No. 4, 271-282.

[15] D. Kalibatiene, O. Vasilecas. Application of the

Ontology Axioms for the Development of OCL

Constraints from PAL Constraints. Informatica, 2012,

Vol. 23, No. 3, 369-390.

[16] D. J. Pastor, J. Padget. Towards HARMONIA: auto-

matic generation of e-organisations from institution

specifications. In: 3rd Workshop on Ontologies and

Agent Systems, Melbourne, Australia, 2003, pp. 31-38.

[17] A. Kalyanpur, D. J. Pastor, S. Battle, J. Padget. Auto-

matic mapping of OWL ontologies into Java. In: 16th

International Conference on Software Engineering

and Knowledge Engineering, Banff, Canada, 2004,

pp. 98-103.

[18] E. Oren, R. Delbru, S. Gerke. ActiveRDF: Object-

oriented semantic web programming. In: Proceedings

of the International World-Wide Web Conference, Banff,

Canada, 2007, pp. 817-823.

[19] M. Völkel. RDFReactor – From Ontologies to Progra-

matic Data Access. In: Poster Proceedings of the

Fourth International Semantic Web Conference,

Galway, Ireland, 2005, pp. 55-60.

[20] M. Zimmermann. Owl2Java. [Online],

http://www.incunabulum.de/projects/it/owl2java.

[21] Stanford University. The Protégé Ontology Editor and

Knowledge Acquisition System. [Online], http://prote-

ge.stanford.edu/

[22] F. Parreiras, C. Saathoff. APIs a gogo: Automatic

generation of ontology APIs. In: International

Conference on Semantic Computing, Berkeley, USA,

2009, pp. 342-348.

[23] G. Stevenson, S. Dobson. Sapphire: Generating Java

runtime artefacts from OWL ontologies. In: Procee-

dings of the Advanced Information Systems Engineering

Workshops, London, UK, 2011, pp. 425-436.

http://protege.stanford.edu/
http://protege.stanford.edu/

Mapping Ontologies to Objects using a Transformation based on Description Logics

243

[24] G. Meditskos, N. Bassiliades. CLIPS-OWL: A Fra-

mework for Providing Object-Oriented Extensional On-

tology Queries in A Production Rule Engine. Data &

Knowledge Engineering, 2011, Vol. 70, No. 7,

661-681.

[25] F. Baader, D. Calvanese, D. McGuinness, D. Nardi,

P. Patel-Schneider. The description logics handbook.

Cambridge University Press, 2003.

[26] R. J. Brachman, H. J. Levesque. The Tractability of

Subsumption in Frame-Based Description Languages.

In: Proceedings of the 4th National Conference on

Artificial Intelligence, Austin, USA, 1984, pp. 34-37.

[27] M. Schmidt-Schauß, G. Smolka. Attributive concept

descriptions with complements. Artificial Intelligence,

1991, Vol. 48, No. 1, 1-26.

[28] F. Baader, I. Horrocks, U. Sattler. Description logics as

ontology languages for the semantic web. Springer,

Berlin–Heidelberg, 2005.

[29] I. Horrocks, O. Kutz, U. Sattler. The Even More

Irresistible SROIQ. In: Proceedings of the 10th

International Conference on Principles of Knowledge

Representation and Reasoning, Lake District, UK, 2006,

pp. 57-67.

[30] F. M. Donini, M. Lenzerini, D. Nardi, A. Schaerf.

Reasoning in description logics. Principles of

Knowledge representation, 1996, Vol. 1, 191-236.

[31] D. L. McGuinness, F. van Harmelen. OWL web

ontology language overview. W3C recommendation,

[Online], http://www.w3.org/TR/owl-features.

[32] B. C. Grau, I. Horrocks, B. Motik, B. Parsia, P.

Patel-Schneider, U. Sattler. OWL 2: The next step for

OWL. Journal of Web Semantics, 2008, Vol. 6, No. 4,

309-322.

[33] C. Lutz, U. Sattler, L. Tendera. The Complexity of

Finite Model Reasoning in description logics. In: Pro-

ceedings of the 19th International Conference on Auto-

mated Deduction, Miami Beach, USA, 2003, pp. 60-74.

[34] E. Sirin, B. Parsia, B. Grau, A. Kalyanpur, Y. Katz.
Pellet: A practical OWL DL reasoner. Journal of Web

Semantics, 2007, Vol. 5, No. 2, 51-53.

[35] N. Chen. Convention over configuration. [Online],

http://softwareengineering.vazexqi.com/files/conventio

n_over_configuration.pdf.

[36] G. Erich, H. Richard, J. Ralph, V. John. Design

patterns: elements of reusable object-oriented software.

Addison Wesley, Reading, 1995.

[37] Y. Guo, Z. Pan, J. Heflin. LUBM: A Benchmark for

OWL Knowledge Base Systems. Journal of Web

Semantics, 2005, Vol. 3, No. 2, 158-182.

[38] B. Boyer. Robust Java benchmarking, Part 1: Issues.

IBM, [Online], http://www.ibm.com/developerworks/-

java/library/jbenchmark1/index.html.

[39] M. Horridge, S. Bechhofer. The OWL API: A Java

API for OWL Ontologies. Semantic Web Journal, 2011,

Vol. 2, No. 1, 11-21.

[40] B. Goetz. Java theory and practice: Anatomy of a

flawed microbenchmark. IBM. [Online],

http://www.ibm.com/developerworks/java/library/jjtp0

2225/index.html.

Received December 2013.

http://www.w3.org/TR/owl-features.
http://softwareengineering.vazexqi.com/files/convention_over_configuration.pdf
http://softwareengineering.vazexqi.com/files/convention_over_configuration.pdf
http://www.ibm.com/developerworks/java/library/jbenchmark1/index.html
http://www.ibm.com/developerworks/java/library/jbenchmark1/index.html
http://www.ibm.com/developerworks/java/library/jjtp02225/index.html
http://www.ibm.com/developerworks/java/library/jjtp02225/index.html

