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Abstract. A significant part of the non-linguistic information carried in speech refers to the speaker and his/her 
internal state. This study investigates sixteen features based on fundamental frequency of speech F0 in order to detect 
stress in speakers. The most effective features resulting from experiments are presented here. The total frequency 
ranges of F0 across specific short-time speech segments created by two or three frames having stable F0 values were 
evaluated as the best features for speaker-independent stress detection. F0 contours were computed frame-by-frame 
using an optimized autocorrelation function. In our experiments, we used utterances spoken by 14 male speakers and 
taken from own database of speech under real psychological stress. 

Keywords: speech signal processing; fundamental frequency; statistical evaluation. 

 

1. Introduction 
Speech presents two broad groups of information. 

It carries linguistic information and information about 
manner of speech production having no linguistic 
function. The fundamental frequency of speech signal 
(usually abbreviated as F0) is a widely used non-
linguistic speech feature which can be directly 
identified by human observers – it is well audible. 
Fundamental frequency is also one of the main factors 
which can distinguish the speaker’s sex. Typical 
values of F0 are 110 Hz for male speech and 210 Hz 
for female speech. Most values of F0 among people 
aged 20 to 70 years lie between 80-170 Hz for men, 
150-260 Hz for women and 300-500 Hz for children 
[1]. There are Gaussian distributions of these ranges. 
Usually, the mean of F0 varies slightly during the time 
of day; in the morning it is lower than in the evening. 
Humans perceive fundamental frequency as pitch. 
However, perceived pitch (subjective attribute) is 
influenced by both sound frequency (physical 
attribute) and sound intensity. The human sensitivity 
to pitch is sharper than the sensitivity to resonance 
bandwidth of vocal tract [11], represented by 
formants. 

Fundamental frequency is an important feature that 
characterizes the individual speakers and their 
emotional state. Considering the function of vocal 
tract, fundamental frequency is short-term determined 
by the rate at which vocal cords vibrate at any given 

time. The mean fundamental frequency characterising 
a speaker is determined primarily according to the 
membranous length of the speaker’s vocal folds [14]. 

In West languages, i.e. in all European languages, 
dynamic variability of F0 relates principally to the 
intonation of spoken words [8]. On the contrary, in 
east tonal languages such as Mandarin-Chinese, Thai, 
and Vietnamese, F0 contours distinguish the meaning 
of words. For instance, Chinese has four relatively 
distinct tone types, i.e. constant, rising, falling, and 
falling then rising [16]. 

1.1. Methods for estimating fundamental frequency 

By the signal theory, fundamental frequency can 
be seen as the lowest frequency in a harmonic series 
representing periodic parts of a speech signal. Because 
of its importance, many methods for estimating 
fundamental frequency have been proposed and 
widely studied in speech processing literature. All 
developed methods generally fall into four categories 
depending on the features’ domain; i.e. time domain, 
frequency domain, hybrid time and frequency domain, 
and event detection methods. 

The most obvious way to measure the F0 value is 
to derive it from the speech waveform. However, 
accurate and reliable measurement of F0 from the 
acoustic waveform alone may be in some cases quite 
difficult because the speech waveform varies both in 
period and in the detail structure of the waveform 
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within a period. One of the first algorithms to appear, 
and one of the simplest, is an algorithm that uses 
multiple measurements of periodicity in the signal and 
chooses between them to determine the voicing state 
and fundamental frequency. This algorithm was 
originally known in literature as the Gold-Rabiner’s 
algorithm [3], and motivated many other variants 
based on time-domain measurements. Some basic 
algorithms operating in the time domain as well as in 
the frequency domain are described in [11]. One 
event-based algorithm utilizing the dyadic wavelet 
transform is introduced in [7]. Usually, the event-
based methods attempt to determine the instant when 
the glottis closes and thus these detectors can 
accurately estimate the individual periods within a 
time segment since they do not assume quasi-
stationarity during the measurement interval. An 
effective method for estimating F0 of the vocal part in 
polyphonic audio signals can be found, for example, 
in [7]. This approach is also applicable to a speech 
signal with background music. Finally, an algorithm 
that is rarely used in real-time speech systems, but 
often used for research experimentation, operates on 
the cepstrum of the speech signal [10]. This algorithm 
is still popular today as an accurate method for 
estimating the fundamental frequency in extremely 
quiet laboratory recording conditions. The details of 
individual algorithms are beyond the scope of this 
paper. A good overview of fundamental frequency 
determination is given, for instance, in the monograph 
[5] and in [6]. 

In general, all of the proposed methods have their 
limitations, and no presently available algorithm can 
be expected to give perfect F0 values across a wide 
range of applications and operating environments. The 
measured raw values of F0 usually need to be post-
processed in order to eliminate isolated errors. Post-
processing algorithms involve smoothing the derived 
F0 contour, rejecting too short voiced or unvoiced 
segments, rejecting low-energy voiced segments, etc. 
For instance, a set of post-processing techniques 
applied to five F0 determination algorithms is 
introduced and its performance is evaluated in [15]. 

1.2. Outline 

In Section 2, our way of speech processing and F0 
estimation will be introduced. Experimental setups are 
reported in Section 3 which is divided into two 
subsections. The first subsection describes speech 
materials used in our experiments. In the second 
subsection we present the main findings on the effect 
of psychological stress on statistical parameters of 
several F0 characteristics. Finally, Section 4 briefly 
concludes the paper and gives some suggestions for 
future work. 

2. Algorithm used for determining F0 
In our experiments, the fundamental frequency F0 

was estimated frame-by-frame on the basis of a 

modified autocorrelation function. In this algorithm, 
voicing and fundamental frequency are computed 
simultaneously using the high peaks of a speech signal 
only while other signal samples on middle and low 
levels are suppressed [11]. 

Firstly, a clipping level CL was set in each frame m 
as a fixed percentage of the smaller value of two 
maximum signal amplitudes measured in the previous 
frame m–1 and in the following frame m+1. A clipped 
signal )(~ ns  obtained from the speech signal s(n) 
results, after amplitude normalization, in three 
different values only: 1)(~ +=ns  if s(n) > CL, 1)(~ −=ns  
if s(n) < – CL, and 0)(~ =ns  otherwise. Then, the short-
time autocorrelation of the clipped signal was 
estimated as 

,)(~)(~)(
1

knsnskR
kN

n
+= ∑

−

=

 (1) 

where N denotes the length of the speech frame, and k 
lies in the interval 0 ≤ k ≤ N–1. Figure 1 illustrates two 
typical autocorrelation functions obtained from both a 
voiced and unvoiced speech frame.  

Furthermore, the autocorrelation wave was 
processed. The highest peak in the autocorrelation 
function, except for R(0), must be located (as marked 
with a vertical dashed line at kP in Fig. 1) and then its 
value is compared to a fixed threshold derived from 
the R(0) value. If the peak exceeds the threshold, the 
frame is classed as voiced else as unvoiced: 

≈≥ )0()( P RkR α          voiced, (2) 

≈< )0()( P RkR α         unvoiced. (3) 
 

 

 
Figure 1. Autocorrelation function of clipped voiced  

speech (top) and unvoiced speech (bottom) 
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In the case of a voiced frame, the fundamental 
frequency is defined by the position of the highest 
peak kP and by the sampling frequency of the speech 
signal fsam  

.
P

sam
0 k

fF =  (4) 

For unvoiced speech, the fundamental frequency is 
undefined and set F0 ≡ 0 by convention. A more 
detailed description of this algorithm also including a 
discussion can be found in [11]. 

In order to optimize the used algorithm, several 
reasonable combinations of numeric values for the 
clipping level CL and for the threshold α were 
examined on the basis of normal speech. Generally, 
the autocorrelation threshold defines how strong the 
selection of voiced frames is, while the clipping level 
gives accurate indication of the F0 values. For each 
combination of CL and α, the percentage of frames v 
classified as voiced and error rate e for F0 estimation 
were investigated. Here, the error rate was calculated 
by a simple approach considering gross errors only 
represented by isolated F0 estimates outlying from a 
frequency band defined by interval ±50 Hz around the 
mean of F0. Table 1 summarizes the averaged results 
obtained from speech signal spoken by five speakers.  

Table 1. Evaluation of the F0 estimation algorithm for more 
numeric combinations of parameters CL and α 

CL 
α = 0.3   α = 0.4   α = 0.5 

e 
[%] 

v 
[%] 

e 
[%] 

v 
[%] 

e 
[%] 

v 
[%] 

0.5 3 31 1 27 0 19 
0.6 5 38 2 32 0 25 
0.7 7 41 4 35 1 26 
0.8 8 42 5 33 2 20 
0.9 13 30 9 21 4 11 

 
In the later experiments performed in this study, 

fixed values of CL=0.6 and α=0.4 were used. The 
choice for these values can be seen as a compromise 
between low error rate and high efficiency of the 
selection of voiced frames. However, in some cases, 
extraneous peaks can appear in the autocorrelation 
function which decreases the accuracy of F0 
estimation. To obtain the true values of F0 for 
statistical analysis, the search range of kP was limited 
to 32 ≤ kP ≤ 100, corresponding to the F0 range of 80-
250 Hz (for male speech in our case). Additionally, 
irregularities in F0 contour doubling and halving F0 
were eliminated. Using the described algorithm, 
Figure 2 shows an example of a detailed F0 contour of 
the Czech word večer (meaning evening in English) 
spoken by a male speaker. 

It should be noted that there exists no best method 
to estimate fundamental frequency. We applied the 
above described algorithm because it is robust against 
noise, produces good estimates of the fundamental 

frequency, requires only a small number of standard 
arithmetic computations, and thus it can be easily 
implemented in digital hardware. 

 
Figure 2. Czech word “večer” aligned with its speech 

waveform and corresponding F0 contour 

3. Experimental Results 

3.1. Speech data 

A suitable corpus of speech data is a very 
important prerequisite for effective speech research. 
Although a range of databases with speech under 
stress exist, they cover very different types of speech 
data and are only partly useful for research into stress. 
Available databases were created mostly by recordings 
under simulated stress. Some information about 
existing English and German databases appropriate for 
research into speech under stress may be found in 
[13]. 

In our experiments we used Czech speech material 
from the database Exam Stress collected under real 
psychological stress. In this database, stress was 
induced by the final examinations at our university 
held in oral form in front of a board of examiners. The 
speakers were male pre-graduate students (Czech 
natives). The speech data contains paired neutral 
speech and stressed speech spoken by all speakers. 
The examinations at a university can be considered as 
a medium stress condition influencing the individual 
students in different degrees. The database Exam 
Stress was recorded with the task of stress 
identification in mind.  

In our experiments, the time series of fundamental 
frequency was estimated on a frame basis in both 
neutral and stressed speech in fourteen speakers. The 
speech signal from the database Exam Stress (22 kHz, 
16 bits) was resampled at 8 kHz and short-time 
segmented by a rectangular window (20 ms) without 
overlapping. 

3.2. Statistical results 

The fundamental frequency of voice F0 and some 
of its derivatives were investigated independent of 
pronounced words using statistical parameters. The 
first measurement was focused on the estimation of 
length of speech signal needed for calculation of 
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reliable basic statistical parameters of F0. 
Experimental results show that a data set of 
approximately 2500 values (i.e., 2500 voiced speech 
frames) satisfies statistical reliability. Figure 3 
illustrates the development of cumulative values of 
mean µ(F0) and standard deviation σ(F0) calculated 
from two different parts of a male speech. 

 

 
Figure 3. Cumulative values of mean µ (top) and standard 

deviation σ (bottom) of the fundamental frequency  
obtained from two different sets of 10 to 3000  

voiced speech frames 

A series of experiments was conducted to study the 
effects of stress on fundamental frequency. As a first 
step, F0 contour was calculated for every speech 
signal. Then, parts with local short-time stable F0 were 
investigated in each F0 contour. In this step, “twins” 
and “triples” were detected which represent short 
chains of two or three adjacent frames of 20 ms 
having constant F0 (taking into account F0 values 
rounded to the nearest whole number). Chains of four 
and more adjacent frames containing constant F0 
occur very rarely (less than 0.5% of voiced frames). 
Thus, they were not considered in our analysis. Figure 
4 illustrates the individual histograms of F0, twins and 
triples for one male speaker measured in both states; 
neutral and under stress. 

In the long-term analysis of F0 data for detection 
of stress, the following 4 parameters of distribution 
were used in our experiments:  

1. Arithmetic mean µ; 
2. Standard deviation σ; 
3. Skewness (3rd order moment) skew; 
4. Kurtosis (4th order moment) kurt. 

Skewness is a measure of the asymmetry of the 
data around the mean. Kurtosis measures the degree of 
peakedness of a distribution and it is zero only for 
Gaussian distribution. Applying the 4 parameters on 
distributions of all three features, i.e. F0, twins and 
triples, give 12 features. In addition, frequency range 
and score of twins and triples were taken into account. 
All together 16 features were computed for every 
speech signal. Frequency range is given as a 
difference between the maximum and minimum 
frequencies at which twins or triples occur. Score (in 
percentage) is defined as the ratio of the number of 

twins or triples to the number of all voiced frames in 
an utterance. Table 2 shows a numerical example of all 
these features for the same speaker as in Fig. 5. 

 

 

 
Figure 4. Individual histograms of F0 (top), twins (middle) 
and triples (bottom) for the speaker Ka. Solid line graphs 

stand for neutral speech, dashed line graphs stand for 
stressed speech 

 

Table 2. Statistical results for the speaker Ka 

Feature Neutral speech Stressed 
speech 

µ(F0) 115.3 140.1 
σ(F0) 7.3 11.5 

skew(F0) 0.039 0.126 
kurt(F0) 4.125 0.992 
µ(twins) 114.9 139.0 
σ(twins) 6.6 11.8 

skew(twins) 0.030 –0.396 
kurt(twins) 0.352 3.857 

range(twins) 42 116 
score(twins) 8.5 8.0 

µ(triples) 113.8 141.7 
σ(triples) 5.2 9.9 

skew(triples) –0.302 –0.190 
kurt(triples) –0.584 0.486 

range(triples) 21 51 
score(triples) 1.14 1.02 
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The numerical movements of each feature due to 
stress can be classified into three broad categories: 
rising, falling and no changing. Table 3 summarizes 
the movements of all features measured in all 14 
speakers. In this case, weak changes of feature values 
(less than ±5% of the value in neutral speech) were 
considered as in the category “No change”. 

Table 3. Summary of up and down movements of feature 
values in stressed speech 

Feature 
Number of speakers 

Rising No 
change Falling 

µ(F0) 13 1 0 
σ(F0) 12 0 2 

skew(F0) 12 0 2 
kurt(F0) 6 0 8 
µ(twins) 12 2 0 
σ(twins) 10 2 2 

skew(twins) 8 0 6 
kurt(twins) 5 0 9 

range(twins) 13 1 0 
score(twins) 7 2 5 

µ(triples) 13 1 0 
σ(triples) 11 0 3 

skew(triples) 5 0 9 
kurt(triples) 11 0 3 

range(triples) 13 1 0 
score(triples) 3 3 8 

 
Here it is evident that the used features contain 

different amounts of information relevant to stress 
detection. To rate the discriminative power of each 
feature x, the individual features were evaluated by 
means of two criteria. The first criterion Q, introduced 
in [9] as the quality metric Q3, is based on the ratio of 
intra/inter class nearest neighbour distances. In the 
case of two classes, i.e. two speaker’s state, it becomes 
the simplified form as 

,
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where d (.) denotes the squared Euclidean distance and 
ε is a small constant. The second criterion used, the 
discrimination factor DF, is defined as follows: 
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In equation (6), Δx stands for inter-state 
differences of the feature x separated into two series: 

,0if nsnspos ≥−−=D jjjjk xxxxx  (7a) 

,0if nsnsneg <−−=D jjjjl xxxxx  (7b) 

where k=1,2,… and l=1,2,... denote running indices 
for positive and negative differences, respectively. In 
equations (5) to (7), 𝑥𝑗𝑛 is the j-th sample of feature x 
from the class “neutral speech” and 𝑥𝑖𝑠  

 
is the i-th 

sample of feature x from the class “stressed speech”, 
1≤ i ≤ J, 1≤ j ≤ J, and J=14 is the number of speakers. 
When a feature differs significantly from the neutral 
speech to the stressed speech, it is expected that the 
criterion Q gives low value. Conversely, low value of 
DF means bad discriminative power.  

Both criteria Q and DF were applied separately for 
each feature listed in Table 3 across all speakers. First, 
all features were ranked in two lists, once by Q values 
and once by DF values, in ascending order. Then, the 
final order of features was created according to the 
average rank computed from feature positions in both 
individual rank lists. In this way, Table 4 shows the 
ranked features with their numeric values of Q and 
DF. Note that Q and DF have different numerical 
scale. Generally, these criteria can be applied as a fast 
and efficient feature pre-selection approach. 

Table 4. Ranked features across all speakers in terms of Q 
and DF 

Rank Feature Q DF 

1 range(triples) 0.5 3.8 
2 range(twins) 0.2 3.1 
3 skew(F0) 14.1 4.0 
4 µ(triples) 9.4 1.9 
5 µ(F0) 12.2 1.6 
6 σ(triples) 2.1 1.3 

7-8 skew(twins) 44.6 3.6 
7-8 score(twins) 0.8 0.06 
9 kurt(F0) 15.3 1.8 
10 kurt(triples) 26.4 1.9 
11 µ(twins) 14.7 1.5 
12 kurt(twins) 9.5 1.3 
13 score(triples) 7.5 0.5 
14 σ(F0) 25.1 1.4 
15 σ(twins) 120 1.4 
16 skew(triples) 109 1.2 

 
The results show that a majority of speakers 

produce speech with a higher F0 when speaking under 
stress (see Table 3). This effect confirms the findings 
in previous studies [4], [12]. On the other hand, an 
increase of F0 alone may also reflect other factors 
influencing speech, for instance alcoholic intoxication 
[2] or the well-known Lombard reflex. We have 
measured a significant increase of mean values not 
only for single F0 samples, but also for twins and 
triples. However, the most effective features for 
speaker-independent stress detection according to the 
criteria Q and DF seem to be the frequency range of 
twins and triples (see Table 4) which extend when 
speaking under stress. 
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4. Conclusion and future work 

It is generally accepted that changes in the 
fundamental frequency of voice reflect a speaker’s 
emotional state. While emotion researchers reported 
mostly on average F0 only, we investigated the 
influence of exam stress on the distributions of F0 and 
multiple frames having constant F0, i.e. twins and 
triples. A set of 16 features based on F0 was measured 
and evaluated for the capability of detecting stress. 
The new proposed features, twins and triples give 
promising results for further research. All experiments 
were carried out on recordings containing speech data 
in two classes only: neutral speech and stressed 
speech. 

In future research, it will be necessary to enlarge 
our database by adding recordings with other types of 
emotions that can affect speech features similarly like 
stress. Furthermore, it will be useful to analyse the 
described speech features in adverse acoustic 
conditions using nonstationary ambient noise 
modeling [17]. The goal of this research is the 
development of algorithms for automatic detection of 
true stress during speech dialogue. In this way, F0 
might act as a robust feature applicable to a remote 
psychological check of humans operating in very 
responsible work places such as air traffic control, 
chief of command in military crisis situations, etc.  

Acknowledgements 
The research was supported by the WICOMT 

project; registration number CZ.1.07/2.3.00/20.0007 
financed from the operational program Education for 
Competitiveness. The support of the project MOBYS 
financed from BUT Brno is also gratefully 
acknowledged. 

References 
[1] R. J. Baken, R. F. Orlikoff. Clinical Measurement of 

Speech and Voice. San Diego: Singular Publishing, 
2000. 

[2] B. Baumeister, Ch. Heinrich, F. Schiel. The 
influence of alcoholic intoxication on the fundamental 
frequency of female and male speakers. Journal of the 
Acoustical Society of America, 2012, Vol. 132, No. 1, 
442-451. 

[3] B. Gold, L. R. Rabiner. Parallel processing 
techniques for estimating pitch periods of speech in the 
time domain. Journal of the Acoustical Society of 

America, 1969, Vol. 46, No. 2, 442-448. 
[4] J. H. Hansen, S. E. Ghazale. Getting started with 

SUSAS. In: Proceedings of the 8th European 
Conference on Speech Communication and 
Technology, Rhodes, 1997, pp. 1743-1746. 

[5] W. J. Hess. Pitch determination of speech signals – 
algorithms and devices. New York: Springer-Verlag, 
1983. 

[6] W. J. Hess. Pitch and voicing determination. In 
Furui, S., Sondhi, M. (eds.). Advances in Speech Signal 
Processing. New York: Marcel Dekker, 1992, 
pp. 3-48. 

[7] S. Kadambe, G. F. Boudreaux. Application of the 
wavelet transform for pitch detection of speech signals. 
IEEE Transactions on Information Theory, 1992, 
Vol. 38, No. 2, 917-924. 

[8] R. D. Ladd. Intonational Phonology. Cambridge: 
Cambridge University Press, 1996. 

[9] R. Lileikyte, L. Telksnys. Quality estimation of 
speech recognition features for dynamic time  
warping classifier. Information Technology and 
Control, 2012, Vol. 41, No. 3, 268-273. 
http://dx.doi.org/10.5755/j01.itc.41.2.914 

[10] A. M. Noll. Cepstrum pitch determination. Journal of 
the Acoustic Society of America, 1967, Vol. 41, No. 2, 
293-309. 

[11] L. R. Rabiner, R. W. Schafer. Theory and 
Applications of Digital Speech Processing. London: 
Prentice Hall, 2011. 

[12] M. Sigmund, T. Dostal. Analysis of emotional stress 
in speech. In: Proceedings of International Conference 
on Artificial Intelligence and Applications, Innsbruck, 
2004, pp. 317-322. 

[13] M. Sigmund. Influence of psychological stress on 
formant structure of vowels. Electronics and Electrical 
Engineering, 2012, Vol. 18, No. 10, 45-48. 

[14] I. R. Titze. Physiologic and acoustic differences 
between male and female voices. Journal of the 
Acoustical Society of America, 1989, Vol. 85, No. 4, 
1699-1707. 

[15] P. Veprek, M. Scordilis. Analysis, enhancement and 
evaluation of five pitch determination techniques. 
Speech Communication, 2002, Vol. 37, No. 3, 
249-270. 

[16] Y. Wu, K. Hemmi, K. Inoue. A tone recognition of 
polysyllabic Chinese words using an approximation 
model of four tone pitch patterns. In: Proceedings of 
International Conference on Industrial Electronics, 
Control and Instrumentation, Kobe, 1991, 
pp. 2115-2119.  

[17] P. Zelinka, M. Sigmund. Hierarchical classification 
tree modeling of nonstationary noise for robust speech 
recognition. Information Technology and Control, 
2010, Vol. 39, No. 3, 202-210. 

Received March 2013. 

 


