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Abstract. The major goal of this study was to create a continuous time Markov chain (CTMC) models of voltage 

gating of gap junction (GJ) channels formed of connexin protein. This goal was achieved by using the Piece Linear 

Aggregate (PLA) formalism to describe the function of GJs and transforming PLA into Markov process. Infinitesimal 

generator of CTMC was used to automate construction of Markov chain model from description of the system using 

PLA formalism. Developed Markov chain models were used to simulate gap junctional conductance dependence on 

transjunctional voltage. The proposed method was implemented to create models of voltage gating of GJ channels 

containing 4 and 12 gates. CTMC modeling results were compared with the results obtained using a discrete time 

Markov chain (DTMC) model. It was shown that CTMC modeling requires less CPU time than an analogous DTMC 

model. 

Keywords: Continuous time Markov chain; PLA formalism; gap junction channel; steady-state probabilities. 

 

1. Introduction 

Connexins (Cxs) is large family of integral 

membrane proteins that provide a direct pathway for 

electrical and metabolic signaling between cells [2]. 

21 Cx isoforms in humans [14] form gap junction (GJ) 

channels. Each GJ channel is composed of two 

hemichannels (HCs), each oligomerized of six Cxs. 

Cxs have four alpha helical transmembrane domains 

(M1 to M4), intracellular N- and C-termini (NT and 

CT), two extracellular loops (E1 and E2), and a 

cytoplasmic loop (CL) [15]. Docking of HCs from 

neighboring cells leads to formation of the GJ 

channels composed of 12 Cxs. 

Sensitivity to transjunctional voltage (Vj), called 

voltage-gating, appears to be common to all GJ 

channels. Symmetric reductions in junctional 

conductance (gj) for either polarity of Vj have been 

explained by the presence of a Vj-sensitive gate in 

each apposed hemichannel [1]. Gap-junctional 

communication plays important roles in many 

processes, such as impulse propagation in the heart, 

communication between neurons and glia, metabolic 

exchange between cells in the lens lacking blood 

circulation, organ formation during development, and 

regulation of cell proliferation. 

Earlier, we developed stochastic 4- and 16-state 

models of voltage gating, containing 2 and 4 gates in 

series in each GJ channel, respectively. These models 

contain a certain number (>10) of parameters and to 

estimate them global optimization (GO) algorithms 

should be used [4]. Typically, thousands of iterations 

should be used in performing GO to estimate a global 

minimum. If a single iteration of the model lasts up to 

10 s, then a search for a global minimum can take 

several hours or days. Thus, the reduction of 

computation time necessary to perform a single 

simulation is an important task.  

Preliminary studies showed [6] that modeling of 

GJ channels gating using the Markov chain formalism 

requires over 100 – fold  less CPU time than a 

simulation using DTMC model [5,13] describing the 

GJ channel containing 12 gates.  In this model, 

differently from 4- and 16-state models, it is assumed 

that each connexin protein of GJ channel contain the 

gate. Since all 12 gates operate at the same time, 

construction of the transition matrix is not a trivial 

task. Therefore, transition matrix P is dense, and the 

run-time complexity of calculation of steady-state 

probabilities is  3nO  if direct methods, i.e. Gaussian 

elimination, are applied. 

In this study, we use CTMC, instead of DTMC, to 

model gating of GJ channels. The CTMC model has 

an advantage over DTMC, because construction of 

infinitesimal generator (transition rates matrix) is 

relatively easy, since no more than a few transitions 

can happen at any state of an infinitesimal time period. 

Moreover, the run-time complexity of a steady-state 

solution is significantly lower than with DTMC, since 

the infinitesimal generator matrix Q is sparse. In some 

cases, matrix Q is tridiagonal, which allows achieving 

run-time complexity in the order of  nO  to calculate 

steady state probabilities. 

We used Piece Linear Aggregate formalism 

(PLA) [11, 12] in order to describe system behavior 

and to create an infinitesimal generator matrix of 

CTMC model of the GJ channel. Formal specification 

can be applied for verification of liveness of CTMC 

model, using special tools, e.g.,  Simple Promela 

Interpreter (SPIN) model checker [3, 8, 9].  

PLA, in essence, is equivalent to piece-linear 

Markov process. If duration of operations used in PLA 

specifications are distributed by exponential law, then 

the piece-linear Markov process becomes a linear 

CTMC process with a discrete set of states. These 

presumptions allow transforming a PLA specification 

to the specification of Markov processes and the 

automatic creation of a state-space graph of the 

analyzed system.  

As reported earlier [7], automated creation of an 

infinitesimal generator matrix can be achieved in the 

following steps: 1) formal specification of the system, 

2) creation of state-space graph, and 3) state-space 

graph transformation into the infinitesimal generator 

matrix. PLA formalism and its theoretical background 

are presented in Section 2. CTMC models of GJ 

channels are presented in Section 3. We also present 

formal specification of CTMC models using PLA 

formalism. 

2. PLA formalism for creation of continuous 

time Markov chain models 

PLA formalism is widely used for formal 

modelling and creation of models of complex systems. 

In this section, a brief description of PLA formalism is 
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presented. We also define necessary conditions 

allowing transformation of PLA model into CTMC.  

2.1. PLA formalism 

Using the aggregate approach, the system can be 

represented as a set of interacting PLAs. The PLA is 

characterized by a set of states Zz , input signals 

Xx , and output signals Yy , which varies  over a 

set of time moments Tt . To describe proper 

changes of PLA properties over time, transition H and 

output G operators must be known. 

The state Zz of the PLA is the same as the state 

of a piece-linear Markov process, i.e.       ,, tzttz   

where  t  is a discrete state component taking values 

on a countable set of values, and  tz  is a continuous 

component comprising of      tztztz k ,,, 21   

coordinates. 

When there are no inputs, the state of the 

aggregate changes in the following manner: 

  constt
,  


 
dt

tdz , (1) 

where  k  ,,, 21   is a constant vector. 

The state of the aggregate can change when an 

input signal arrives or when a continuous component 

acquires a definite value.  

Controlling sequence approach permits to define 

the continuous coordinates of PLA as follows: 

        ;,,,,,, 21 mfmmm tewtewtewtz  
 (2) 

where  mi tew ,  is the time moment in which the event 

ie    occurs.  

When the state of the system is known (  mtz , 

m = 0, 1, 2, …), then the moment, 1mt , is 

determined by an input signal arrival or by the 

following equation: 

  mim tewt ,min=1  , fi 1 . (3) 

The class of the next event, 1me , is determined by 

an input signal if it arrives at the time moment 1mt  or 

by the control coordinate, which acquires minimal 

value at the moment mt , i.e. if  mi tew ,  acquires 

minimal value, then im ee 1 . 

The operator H conditions the new state: 

    imm etzHtz ,1 
, EEei

 .
 (4) 

The output signal iy  from the set of output signals 

(  myyyY ,,, 21  ) can be generated by an 

aggregate only at moments of events from the subsets 

of internal and external events – E’ and E’’, 

respectively. The operator G determines the content of 

the output signals: 

  im etzGy , , ''' EEei  , Yy
.
 (5) 

PLA can be changed to Markov process with 

continuous time discrete state if durations of 

operations are distributed according to exponential 

law  

    ti

ji
ietPtF
 

 1
,
 (6) 

where 
i

1  is an average duration of the i
th

 operation, 

k is the number of active operations at the state z(t). 

Probability, that an event will occur at system state 

z(t), is equal to 

 






k

kt

mm etttP


11 .
 (7) 

Then, it follows that  

        tewtewttz f , ,,, ; ""

1  , (8) 

here  t  is the discrete component of the state, and

 tew i ,''  is defined as follows: 

 







.otherwise,0

;momentatactiveisoperation theif,
,''

tthi
tew i

i

 (9) 

Meta-model of PLA formalism is presented below 

and is described using the UML notation as reported 

in [10].  

The class diagram is demonstrated in Fig. 1. It 

includes inputs, outputs as well as discrete and 

continuous variables of an aggregate. 

 

 

Figure 1. The schematic structure of the aggregate
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Continuous variables are used to describe 

moments during which the internal events occur after 

operations terminate. 

Input signals cause external events.  

The modeling system consists of interconnected 

aggregates as shown in Fig. 2. 

 

 
 

Figure 2. The system of aggregates interacting throughout shown connections 

Fig. 3 shows the structure of input and output 

signals’ data. 
 

 

Figure 3. The structure of input and output signals 

 

2.2. Generation of state graph of CTMC  

The main concept for generation of open and 

closed states of gates from PLA, referred as a state 

graph, is based on the fact that the subset of internal 

events, initiating transition among states, is known in 

every state. 

The states graph of CTMC is described as 

  ,ZG , where Z is a set of system states and   is a 

set of transition rates (  0: ZZ ) . 

The generation of the Markov chain graph 

involves the following steps: 

1. Collection of information about: 

1.1. The set of internal events E. 

1.2. The initial state of the system z(0). 

1.3. The set of generated states of the system gZ , 

which initially has only one member, z(0), 

i.e.,   0zZ g  . 

1.4. The set of analyzed states 
aZ , which initially 

is empty, i.e., aZ . 

2. The search of neighboring states: 

2.1. Choose a non-analyzed state 
ag ZZz \
   

 

2.2. Search for   0,|  teEe , which can 

occur in the state  z: 

 2.2.1. Generate the set of states 
Z  into 

which the system can pass in a single step: 

    0:,,|  

iii eweezHzzZ ; 

 2.2.2. 
  Zz : 

 2.2.2.1. Add 
z to aZ , i.e.,   zZZ aa :  

 2.2.2.2. Add the new transition rate from 

state z  to 
z , i.e.,   iew : .  

3. Testing criteria defining termination of the 

algorithm: 
ga ZZ  . 

3. The model of the GJ channel containing 12 

connexins 

Here we present CTMC model of the GJ channel 

consisting of two gates in series, each containing six 

subgates, one per connexin.  We used numerical 

methods for calculation of steady-state probabilities 
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for different values of Vjs and obtained data compared 

with results acquired using DTMC model [13]. 

3.1. Conceptual model of the GJ channel 

containing 12 connexins 

Gap junctions form clusters (junctional plaques) of 

individual channels arranged in parallel in the 

junctional membrane of two adjacent cells. The GJ 

channel is composed of 2 hemichannels (left and 

right) arranged in series. Each hemichannel is 

composed/oligomerized from six Cxs forming a 

hexamer with the pore inside. We envision that each 

hemichannel forms the gate, which is composed of six 

subgates arranged in parallel, i.e. to each connexin the 

subgate is attributed and the GJ channel contains two 

gates and 12 subgates. Each subgate operates between 

open (o) and closed (c) states. For simplicity, we 

assume that only subgates in the left hemichannel 

operate [4], while subgates in the right hemichannel 

are always open (see Fig. 4). 

 
V 

 

Figure 4. Electrical scheme of the GJ channel composed of 

two hemichannels each formed of 6 connexins. 

Transjunctional voltage (Vj) controls both hemichannels 

from which only Cxs in the left hemichannel operate 

between open and closed states, while Cxs in the right 

hemichannel are always open 

The GJ channel gates in response to Vj by 

performing o↔c transitions for each subgate. Each 

subgate has a possibility for four transitions as shown 

in Fig. 5: 

 

O C 

ocp  

cop  

oop  

ccp  

 

Figure 5 The graph illustrating open (o) and closed (c) 

states of the gate and probabilities of transitions 

As reported earlier [5], probabilities of shown 

transitions can be described as follows: 

),,,(1

),,,(
),,,(

0

0

0
VVPAk

VVPAkK
VVPAp

left

left
oc left




 , (10) 

),,,(1),,,( 00 VVPApVVPAp leftocleftoo  , (11)
 

),,,(1
),,,(

0

0
VVPAk

K
VVPAp

left

leftco


 , (12)

 

),,,(1),,,( 00 VVPApVVPAp leftcoleftcc  . (13)
 

In (10) and (12), k is  

)

0

0(
),,(

VleftVPA
eVVPk left


 , (14) 

where P is a gating polarity (+1 or -1); A is a 

coefficient characterizing gating sensitivity to voltage 

(1/mV); K is a constant used to change kinetics of 

c↔o transitions (K can accelerate or decelerate c↔o 

transitions but does not affect conditions of the steady 

state); oV  is a voltage across the 

hemichannel/connexin at which probabilities for o and 

c states are equal (mV); leftV  is variable voltage 

across the subgate (mV). 

Each subgate, depending on a voltage across it 

(Vleft/right), can gate by changing stepwise between the 

open state with conductance go and the closed state 

with conductance gc. It was assumed that go and gc 

values rectify, i.e., depend on Vleft/right exponentially:  

Ro
Vorightlefto

rightleft
VP

egPVg

/

0,/ ),(



  , 

C

left

R

VP

Vcleftc egPVg



  0,),( , (15) 

where rightleftV /  is a voltage across the left or right 

hemichannel, go,V=0 and gc,V=0 are conductances at 

rightleftV / =0, and Ro and Rc are rectification 

constants. 

The conductance of the left hemichannel, when n 

Cxs are closed, can be described as follows 

         PnVgnPnVgnng leftoleftcleft ,6,  . (16) 

Similarly, the conductance of the right 

hemichannel is 

    PnVgng leftoright ,6  . (17) 

During gating, conductances of subgates range 

between ),( / PVg rightlefto
 and ),( PVg leftc

, and the total 

conductance of the GJ channel can be found using 

steady-state probabilities of Markov chain model of 

the left hemichannel (see the section 3.2): 

 



6

0n

leftnleft ngg  , (18) 

where n  is a steady-state probability for  n Cxs in 

the left hemichannel to be closed.  

Conductance of the GJ channel depends on the 

voltage, i.e. the circuit is nonlinear. In order to 

calculate voltage across each Cx, we used an iterative 

procedure [13]. We assumed that the value of voltage 

is settled, if a difference between voltage values, 

calculated at two consecutive iterations is less than 

0.1 %. Calculation showed that no more than 5 

iterations were needed to achieve aforesaid precision. 
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3.2. CTMC model of the GJ channel containing 12 

connexins 

In order to create a CTMC model of GJ, we use 

the following relation in describing probabilities and 

rates of subgate’s transitions (see Fig. 6):  


 oc

òc
p

 and 


 co
co

p
, (19) 

where τ is a short period of time, in which the 

probability to observe multiple transitions is 

negligible, i.e. for ji  ,   0ijp  if 0 .  

 

O C 

oc  

co  
 

Figure 6. The graph illustrating open (o) and closed (c) 

states of a gate with transition rates 

Assuming a CTMC model allows using PLA 

formalism for automatic model creation, an aggregate 

specification of the continuous time Markov chain 

model of GJ channel is presented below. 

1. The set of input signals:  X = Ø. 

2. The set of output signals: Y = Ø. 

3. The set of external events:  E' = Ø.  

4. The set of internal events:  "
2

"
1," eeE  , 

where 
"
1e is a transition from the closed to the open 

state of the subgate in the left hemichannel; 
"
2e is a 

transition of the subgate in the left hemichannel from 

the open to the closed state. 

5. The transition rates between states of the system: 

     tnVtne lleftcol "
1       tnVtne lleftocl 6"

2  . 

6. The discrete component of the state:     tnt l ;  

  6,0tnl
,  where  tnl  is the number of Cxs in 

closed state in the left hemichannel. 

7. The continuous component of the state: 

      tewtewtz ,,, "
2

"
1

. 

8. Initial state of the system:      06,0,0 leftoc Vtz  . 

9. Internal transition operators: 

 "
1eH : / transition from closed to open state in the 

left hemichannel / 

 
   
 


 


;,

,0,1
0

otherwisetn

tniftn
tn

l

ll
l

 

        ;110,"
1  tnVtntew lleftcol 

  

        .170,"
2  tnVtntew lleftocl 

  

 "
2eH : / transition from open to closed state in the 

left hemichannel / 

 
   
 


 


;,

,0,1
0

otherwisetn

tniftn
tn

l

ll
l

 

        110,"
1  tnVtntew lleftcol 

;  

            





 


.,0

,1,11
0,"

2
otherwise

tniftnVtn
tew llleft

l
ocl

 

Aggregate specification can be applied to 

automatically construct the infinitesimal generator Q. 

Formation of matrix   ,,1,, njiqij Q

 

by the 

aggregate specification is achieved using the 

following relations: 

  ;itnl      ;0 jtnl      ;''
1 ijqtew   (20) 

where i is row index; j is column index; ijq  is 

entry of the matrix Q.  

The infinitesimal generator matrix 𝐐     of CTMC 

model of the GJ channel with 12 gates is as follows 

 































*600000

*50000

02*4000

003*300

0004*20

00005*

000006*

12

co

occo

occo

occo

occo

occo

oc















Q

 (21) 

where diagonal entries (denoted as *) are equal to the 

negated sum of the  non-diagonal entries in that row. 

Transition rates of the matrix 𝐐     in (21) depend on 

the voltage across the left and right hemichannels, i.e. 

  lleftococ nV   and   lleftcoco nV  . 

Since infinitesimal generator 𝐐     is a tridiagonal 

matrix, it can be stored in compact format as shown in 

Figure 7.  

Memory requirements to store the entire 

infinitesimal generator matrix Q are equal to 𝑛 , while 

the compact storage scheme requires to store only 3n 

elements. 

3.3. The comparison of numerical solution and 

results of DTMC and CTMC models 

The steady-state solution of vector π of CTMC can 

be found from  

0Qπ  , (22) 

where Q is infinitesimal  matrix of transition rates, 

describing a continuous time Markov chain;  0 denotes 

a zero row vector of length n. 

Since Q is a singular matrix (   1 nrank Q ), an 

additional condition is used to obtain the unique 

solution  

1
1




n

i
i . (23)
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n 
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qn2 0 qn1 
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Matrix 
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



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
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Figure 7. Compact storage scheme of an infinitesimal generator A 

The transition probability matrix P for DTMC 

model of the GJ channel is dense [13], i.e. the matrix 

P consists of nonzero entries. Therefore, the matrix P 

must be stored in a two-dimensional array of size 𝑛 , 

and the run-time complexity of a direct algorithm 

(e.g., Gaussian elimination) for calculating the steady-

state solution is equal to  3nO  [16]. 

Conversely, the infinitesimal generator matrix Q 

for CTMC model of the gap junction channel is a 

tridiagonal matrix (21). In that case, the run-time 

complexity of an algorithm for solving (22) is equal to 

O(n) [16]. It can be achieved by using the following 

recursive procedure: 
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 (24) 

Recursive procedure  (24) can easily be imple-

mented if the infinitesimal generator Q is stored in 

compact format. In that case, j indices of entries ijq  

must be replaced as follows: 

















.1,3

;0,2

;1,1

jiif

jiif

jiif

j  (25) 

We calculated conductance of GJ channel at 

different Vj values using compact storage schemes and 

system of equations indicated as  (24) to find steady-

state probabilities of CTMC. The results were 

compared to the results of DTMC model presented in 

[13]. Calculation was performed using a PC with Intel 

Core i5-3450 CPU @ 3.09 GHz with 4 cores, 3.41 GB 

of RAM available. We used MATLAB programming 

language in order to form transition matrix (for 

DTMC) or infinitesimal generator (for CTMC), to 

estimate steady state probabilities and to calculate 

conductance at single voltage value. Modeling results 

were identical (with 0.0001 precision) to the modeling 

results obtained by DTMC model [13], but CTMC 

modeling required significantly less CPU time. It 

required 15.2 ms on average to calculate conductance 

of DTMC model at chosen voltage value, while the 

same calculation took 0.49 ms if CTMC model was 

used.  

3.4. CTMC model of the GJ channel containing 4 

gates 

The GJ channel is composed of two hemichannels 

(left and right), with two gates (k1 and k2) in the left 

and two gates (k3 and k4) in the right hemichannel 

(see Fig. 8). Each connexin can be in two states, open 

and closed. In this model, we assume that all gates 

operate in response to applied voltage.  

 

Figure 8 Electrical scheme of the GJ channel composed of 

two hemichannels each containing two gates 

Gating probabilities and conductance of open and 

closed gates can be calculated as described using 

equations (10)-(15). Conductance of the GJ channel 

with four gates, depending on the number of open and 

closed gates on the left and right side, can be found 

from: 

   
,

1
4

1

1
,

oc

nm

g
nm

g
nm

g




 (26) 

where m ( 2,0m ) is the number of closed gates on 

the left side; n ( 2,0n ) is the number of closed gates 

on the right side.   
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Stationary conductance g of the GJ can be found 

from 

 
 


2

0

2

0

,,

m n

nmnm gg  , (27) 

where 
nm,  is a steady-state probability for  m and n 

numbers of gates closed in the left and right 

hemichannel, respectively. 

An aggregate specification of the continuous time 

Markov chain model of GJ channel containing 4 gates 

is presented below: 

1. The set of input signals:  X = Ø. 

2. The set of output signals: Y = Ø. 

3. The set of external events:  E' = Ø. 

4. The set of internal events:  "
4

"
3

"
2

"
1 ,,," eeeeE  , 

where 
"
1e - transition from closed to open state in the 

left hemichannel,  

 
"
2e - transition from open to closed state in the 

left hemichannel, 
"
3e - transition from closed to open state in the 

right hemichannel,  
"
4e - transition from open to closed state in the 

right hemichannel. 

5. The transition rates between states of the system:  
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6. The discrete component of the state: 

      tntnt rl , ;      2,0;2,0  tntn rl
,   

where  tnl  is the number of connexins in closed state 

in the left hemichannel; 

 tnr  is the number of connexins in closed state in the 

right hemichannel 

7. The continuous component of the state: 

          tewtewtewtewtz ,,,,,,, "
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8. Initial state of the system:     ,,,,0,0tz . 

9. Internal transition operators: 
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3.5. Modelling results of the GJ channel model 

containing 4 gates 

An infinitesimal generator matrix  4
Q  of CTMC 

model of the GJ channel is as follows: 
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 (28) 

 

Transition rates of the matrix  𝐐    in equation (28) 

depend on voltages across the left and right 

hemichannels, i.e.       
lleft

l

co

l

co nV  ,

      lleft

l

oc

l

oc nV        rright
r
co

r
co nV ,       rright

r
oc

r
oc nV  

and    lleftrright nVVnV  .  

Results are presented in Table 1, which shows 

calculated conductances at different Vj values. 

Modeling results are obtained from CTMC model and 

simulation of the GJ channel [4].  

Table 1.  Voltage-dependent conductance in the GJ channel 

containing 4 connexins: comparison of simulation and 

CTMC modeling results  

Voltage, mV 

Conductance, pS 

Simulation CTMC model 

-200 0.2110 0.2105 

-160 0.2643 0.2657 

-120 0.3120 0.3176 

-80 0.5664 0.5435 

-40 0.9304 0.9561 

0 0.9833 1.0000 

40 0.9451 0.9561 

80 0.5332 0.5435 

120 0.3164 0.3176 

160 0.2609 0.2657 

200 0.2085 0.2105 

 

Table 1 shows that CTMC model and simulation 

produce similar results. Calculation was performed 

using a PC with Intel Core 2 Duo CPU T9400 @ 

2.53 GHz 2.53 GHz and 4 GB of physical RAM. 

Preliminary data showed [6] that continuous time 

Markov chain modeling required significantly less 

CPU time than simulation.  

4. Conclusion 

Our results shows that the CMCT model of GJ 

channel is less complex than an analogous DTMC 

model, so it is possible to apply Markov model 

creation tools using a/the PLA method. Creation of 

infinitesimal generator is derived from the description 

of system behavior.  

In this paper, we showed that the use of CTMC 

(instead of DTMC) to model GJ channels enables to 

reduce computation time ~30 times. This can be 

achieved since the infinitesimal generator of CTMC 

arising from GJ channel model, is sparse. This ensures 

faster creation of infinitesimal generator Q of CTMC 

model than the transition matrix P of analogous 

DTMC model of GJ channel. Sparsity of Q also 

allows using efficient numerical methods to calculate 

steady-state probabilities.  
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