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Abstract. The mathematical model of the mutual synchronization system with complete graph structure, composed 
of 𝑛 (𝑛 ∈ 𝑁) oscillators, is investigated. This mathematical model is defined by the matrix differential equation with 
delayed argument. The solution of the matrix differential equation with delayed argument is obtained by applying the 
Lambert W function method. On the base of this solution, the step responses matrix of the synchronization system is 
defined and the transients in the system are investigated. The results of calculations, received by the Lambert function 
method, the dde23 method in Matlab and the exact method of consequent integration, are compared. 
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1. Introduction 
Control systems and engineering techniques have 

become an integral part of modern technology. These 
systems are often components added to other complex 
systems to increase their functionality or to meet the 
set of design criteria. Usually they are being 
investigated by applying their mathematical models. 
More exact analysis of the systems demands the use of 
the more complicated mathematical models. Often the 
delays of the signals, transferred along the control 
system, must be included into these models. The 
delays make the investigation of the model more 
cumbersome. Usually investigation of such model 
demands solution of delay differential equation. The 
principal difficulty in solving delay differential 
equation lies in its special transcendental character. 
The characteristic equation of linear delay differential 
equation is transcendental and has infinite number of 
roots. For solution of this characteristic equation in the 
present work we use a method based on the 
application of Lambert W functions. The Lambert W 
functions for analytic investigations of various 
dynamical systems with delays were applied by 

several authors [1–5]. In [1, 2], the new analytic 
approach to obtain the complete solution for systems 
of delay differential equations based on the concept of 
Lambert W function is presented. In [3], Yi et al. have 
considered the problem of feedback controller design 
via eigenvalue assignment for systems of linear delay 
differential equations using Lambert W function 
method. In [4], the approach of using the Lambert W 
functions to time domain analysis of a class of 
fractional order time delay systems is extended. In [5], 
a survey on analysis of delay systems via Lambert W 
function is given. In all these works the systems of 
differential equations of order not greater then third 
were investigated by applying the Lambert W function 
method. 

In the present work, we apply Lambert W function 
method to investigate synchronization systems, 
described by linear systems of delay differential 
equations up to fifteenth order. The relative errors of 
the obtained results are evaluated using the solutions 
obtained by the exact method of consequent 
integration. 
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2. Formulation of the problem 
In the presented work, the multidimensional 

control system with delays and with structure of 
complete graph is investigated. The mathematical 
model of this system is the matrix differential equation 
with delayed argument [6–9]  

),(=)()()( 21 tztxBtxBtx t−++′  (1) 

,0],[),(=)( tφ −∈tttx  

where ( )Tn txtxtxtx )()()(=)( 21   is the desired 
vector function, 𝑇(here and in what follows) denotes 
the operation of transposition, 𝜏  is a constant time 
delay, )(tφ  is a vector–valued preshape (initial) 
function, )(tz  is a free term (continuous function 
depending on the initial conditions), 𝜅 is a coefficient, 
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( nnRE ×∈  is the identity matrix, matrix nnRB ×∈  
outlines the structure of the internal links of the 
system). 

As an example of a control system, described by 
the equation (1), the mutual synchronization system of 
the communication network, having structure of the 
complete graph and composed of 𝑛 oscillators, can be 
pointed out [8] (in Fig. 1 the scheme of the internal 
links of the system, composed of 5 oscillators, is 
presented). In this case, the symbol )(txi  in (1) stands 
for the phase of the 𝑖–th oscillator. 

 
Figure 1. The scheme of internal links of the system, 

when 𝑛 = 5 
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here )1,=((0)=0 nixx ii  is the initial phase of the 
𝑖–th oscillator’s oscillation, )(tf i  is the frequency of 
the 𝑖 –th oscillator, if 0  is the own frequency (the 
frequency of the 𝑖 –th oscillator when the control 
signal is disconnected). The meaning of (5) is the 
following: the control signal to the 𝑖–th oscillator at 
time 𝑡 = 0 is connected up. Before this time moment 
the 𝑖–th oscillator works with its own frequency if0

. 
Taking into account (5), we get the following 
expressions for the initial vector function )(tφ  and the 
free vector )(tz  of (1):  
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3. Solution of the matrix differential equation 
with delayed argument 

If to apply the Lambert W function method (see 
[10], p. 23), the solution of (1) on the interval [ )+∞0,  
can be expressed as follows:  
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here kC  is a 𝑛 × 1  coefficient matrix–column 
computed from the given preshape function 

)(=)( ttx φ , which is an initial state of delay 
differential equation (1) for ,0][ t−∈t , and kC ′ is a 
𝑛 × 𝑛 coefficient matrix computed from the given free 
term )(tz  of the matrix differential equation (1) 
(procedures of calculation of these matrices are 
explained in [1], p. 222 and [2], p. 2434). In the 
computations of the solution )(tx  we shall use the 
approximate expression, obtained from (9) at fixed 
and finite 𝑁: 
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4. The step responses matrix of the system 
A good representation about transients in the 

system can be obtained by determining its responses 
to perturbations having form of the unit jump [6]. The 
response of the 𝑖–th oscillator’s oscillation phase to a 
unit jump in the j –th oscillator’s oscillation phase we 
shall call the step response )(thij . The set of the step 

responses ( )njithij 1,=,)(  forms 𝑛 × 𝑛  matrix 

( ))(=)( thth ij  (the step responses matrix of the 
synchronization system). We shall find the matrix 

)(th . 
When the increment of the phase of the 𝑗 –th 

oscillator takes form of the unit jump, the increment of 
the free term of the equation (1) can be expressed as 
follows 

;)(=)( )( jIttz δ∆  (11) 

here )( jI  is the matrix–column all entries of which 
are zeros except the 𝑗–th element, which is equal to 1, 
𝛿(𝑡)  is the Dirac delta function. Taking this into 
account and using (1), we get the following 
differential equation for step responses 

( )njithij 1,=,)(  of the system:  
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j
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here ( )Tnjjjj thththth )()()(=)( 21   is the 𝑗 –th 
column of the step responses matrix )(th , matrices 

1B  and 2B  are defined by (2) and (3), respectively. 
Firstly, we shall find the solution of (12) on the 

interval [ ]t0, . 

Column–vector )( t−th j  is a zero column–vector 
on the interval [ ]t0,  due to the initial conditions (see 
(12)). Taking this into account on the interval [ ]t0, , 
we get the following system of differential equations 
for the step responses ),(thij  nji 1,=, :  
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Solution of (13) is the set of functions: 0 = )(thij  

if ji ≠  and )1(=)( teth t
ij

κ−  if ji =  ( nji 1,=, ); 

here )1(t  is the Heaviside step function. 
Using the solution of (13), the differential equation 

(12) on the interval [ )+∞,t  can be presented as 
homogeneous matrix delay–differential equation  
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here 𝜑𝑗(𝑡)  is the preshape vector–function. The 
entries of the vector–function 𝜑𝑗(𝑡)  assume the 
following values: 
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Applying the Lambert function method, the 
solution of (14) on the interval [ )+∞,t  can be 
expressed as follows [see [2], p. 2434]:  
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k TeBW −  is the value of the 𝑘–th branch 𝑊𝑘(𝐻)  

of the matrix Lambert function 𝑊(𝐻)  at 
t1

2= BTeBH − , 𝐶𝑘(𝑗) are the complex–valued vectors 
corresponding to the preshape vector–function 𝜑𝑗(𝑡) 
(see (15)). The algorithms for finding )( jCk  and 𝑊𝑘 
are explained in [2, p. 2434–2435]. From (16) the 
approximate expression for ℎ𝑗(𝑡) follows: 
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here 𝑁 is a sufficiently large natural number. 

5. Investigating of stability 
Analyzing the distribution of roots of the 

transcendental characteristic equation of delay system 
we can obtain information about its stability. Let’s 
write down the characteristic equation of investigated 
system and find out the closed form solution of it. 

Let’s write down homogeneous differential 
equation corresponding to (1):  

0,=)()()( 21 t−++′ txBtxBtx
,0].[),(=)( tφ −∈tttx  (18) 

Assuming that a solution of homogeneous 
differential equation is a vector function  

Cetx St=)(  (19) 

and substituting it into (18), we get the transcendental 
characteristic equation  

0=21
tSeBBS −++  (20) 

(here 𝑆  is 𝑛 × 𝑛  numerical matrix, 𝐶 is a nonzero 
numerical vector with 𝑛 entries; the entries of 𝑆 and 𝐶 
are some complex numbers). Function (19) will be a 
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solution of the homogeneous differential equation (18) 
if matrix 𝑆  in its expression will be a root of the 
transcendental characteristic equation (20). We shall 
find the closed form expression for roots of (20). 

Multiplying both sides of (20) by tSe , we get  

( ) .= 21 BeBS S −+ − t  (21) 

Performing further transformations, we multiply 

both sides of (21) by 
tt 1Be . This yields  

( ) .= 1
2

1
1

ttt tt BBS eBeeBS −+ −
 

Recall that the matrices 1B  and 2B  in equation (18) 
commute. Then 𝑆 and 1B  will commute as well (see, 
for example, [10], p. 119). Taking this into account, 
we can write  

( ) ( ) .= 1
2

1
1
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We know [12] that the Lambert W function is a 
function satisfying equality  
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Equating (22) and (23), we obtain  

( ) ).(= 1
21

ttt BeBWBS −+  

From this equality, we get the closed form 
expression for the roots of (20): 
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1
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Since the Lambert W function has an infinite 
number of branches, the matrix transcendental 
characteristic equation (20) will have an infinite 
number of roots, which can be expressed as follows:  
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.2,1,0,= ±±k  

If matrix tt 1
2= BeBH −  is diagonalizable, then we 

compute the eigenvalues nii 1,=,Λ  of 𝐻  and the 
corresponding eigenvector matrix𝑉. To each branch 𝑘 

)1,0,1,...,,...,=( +∞−−∞k  of the Lambert W 
function, we get:  

( ) .)(),...,(),(diag=)( 1
21

−ΛΛΛ VWWWVHW nkkkk  

If 𝐻  is not diagonalizable, then 𝑊𝑘(𝐻) has more 
complicated structure (see, for example, [17], p. 
2125). 

Having found matrix 𝑆𝑘  ( 2,...1,0,= ±±k ), we 

calculate its eigenvalues )1,=(, niikλ . Analysis of 

distribution of these eigenvalues on the complex plane 
provides information about stability of the system (the 
system can be asymptotically stable, unstable or 
marginally stable [16]). 

6. Comparing the Lambert function method 
with the exact method of consequent 
integration 

The solutions of matrix delay differential equations 
(1) and (14) are presented by the infinite functional 
series (see (9) and (16)), which determines the exact 
solutions. In the real calculations we apply the 
approximate formulas (10) and (17), obtained from (9) 
and (16) with finite 𝑁 (2𝑁 + 1 indicates the number 
of branches of the Lambert W function, which are 
used in calculation of the solutions). 

We shall investigate the rate of convergence of the 
approximate solutions of matrix delay–differential 
equation (14) to its exact solution with increasing 𝑁. 
For this purpose, we shall apply the exact expressions 
found by the method of consequent integration 
(method of “steps”) [8, 11]. 

We present the solution of (1), applying the 
Laplace transform, as follows [8]:  
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here ( ))(1 pFL−  is the inverse Laplace transform of 
)( pF . 

Let’s write down the step responses matrix of the 
system. Using (1), (12) and (25), we obtain  

,
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The inverse Laplace transform, applied to the right 
hand side of the latter expression, gives  
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here { }ijlB  is the 𝑖𝑗–th entry of the matrix lB . Note, 
that (26) and (27) represent the exact expressions of 
the solutions on the interval )1)(0,( t+d . 

The step response )(11 th κ  of mutual 
synchronization system with a complete graph 
structure, computed by Lambert W function method 
with different values of N  and by the exact method 
of consequent integration, are presented in Fig. 2. In 
this figure the graphs of the solutions, obtained by 
dde23 program in MATLAB, for the sake of 
comparison, are presented, as well. 

The relative errors 𝛿 obtained at 𝜅𝑡 = 2.5 (at mid 
point of the interval [0,5] ), using the Lambert W 
function method with different values of 𝑁 and the 
numerical method based on the dde23 program in 
MATLAB, are presented in the Table 1, when 𝑛 = 5, 

1=κ  Hz, and in the Table 2, when 𝑛 = 15, 1=κ  

Hz. We can see from the tables, that, if 𝜏  is small 
(𝜅𝑡 ≪ 1 ), then the results obtained by Lambert W 
function method are more accurate if to compare them 
with the corresponding results got by the dde23 
program in MATLAB. With an increase of the number 
of oscillators 𝑛 , the accuracy of the Lambert W 
function method has tendency to increase. 

Table 1. The relative error 𝛿 when 𝑛 = 5 

𝜿𝝉 
LAMBERT 

DDE23 𝑵 
1 5 30 80 

0.01 0.0000027 0.0000023 0.000013 0.0000054 0.0016 
0.1 0.00083 0.00057 0.00013 0.000051 0.00019 
1 0.017 0.0039 0.00075 0.00029 0.00092 

 

Table 2. The relative error 𝛿 when 𝑛 = 15 

𝜿𝝉 
LAMBERT 

DDE23 𝑵 
1 5 30 80 

0.01 0.000045 0.000034 0.000023 0.0000092 0.0093 
0.1 0.0014 0.0010 0.00023 0.000092 0.0092 
1 0.0370 0.0109 0.0022 0.000089 0.00092 

 
 

 
(a) (b) 

Figure 2.  Graphs of the step response ℎ11(𝜅𝑡) calculated by three methods: 1) the Lambert W function method with different 
values of 𝑁, 2) numerical method using dde23 program in MATLAB, 3) exact method of consequent integration (method of 

“steps”) 

7. Numerical results 

7.1. Transients 

For the calculation of the phase differences 
)()( txtx ji −  and the step responses )(thij

, we have 
applied the formulas (10) and (17), respectively, with 

80=N  (this means that we have used 161 branches of 
the Lambert W function in the computations). On the 
base of the results in Section 6, the graphs of the 
transients, presented below, are sufficiently accurate 

(in the presented figures these graphs practically 
coincide with the exact ones). 

The calculations are performed assuming:  
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In Fig. 3 the graphs of the phase difference 
)()( 12 txtx −  are given at different values of 𝜅𝜏 and for 

different numbers of oscillators in the synchronization 
system with parameters of the system defined by (28). 
From the figure, we see that the character of the 
transients in the synchronization system crucially 
depends on 𝑛  (the number of oscillators in the 
synchronization system). If 𝑛 = 3, the transients get 
oscillatory features when 𝜅𝜏 ≥ 1, and with increase of 

𝜅𝜏  the oscillatory features of the transients tend to 
increase. If 𝑛 = 15, the transients in the system go 
without oscillatory features even when  𝜅𝜏 = 2.5 . 
With an increase of 𝑛 and 𝜅𝜏 the duration of transients 
in the system changes insignificantly. In Fig. 4 the 
graphs of the phase differences ),()(1 txtx j−   

𝑗 = 4,10,14 are presented.  

 

  
(a) (b) 

Figure 3. Graphs of the phase difference 𝑥1(𝑡) − 𝑥2(𝑡) 

 

The graphs of some step responses are given in 
Fig. 5. The graphs presented on these figures show 
that the system under consideration is marginally 
stable since the step responses tend to positive finite 
values when 𝜅𝑡  tends to infinity (the characteristic 
equation of the system has simple zero root). 

7.2. Stability 

Analyzing the distribution of the eigenvalues of 
matrices 𝑆𝑘  ( 𝑘 = 0, ±1, ±2, … ) (the roots of the 
characteristic equation (20)) on the complex plane one 
can make a conclusion about system’s stability. In 
Fig. 6, the distribution of the eigenvalues )1,5=(, iikλ  
of the matrices 0,1,2)=(kSk  is presented on the 
complex plane for the case 𝑛 = 5 (the eigenvalues of 
the matrices )3,4,5,=( kS k  are not shown here since 
they have greater in absolute value negative real parts 
and are located outside the drawing). From the figure 
it follows that the right most eigenvalue is 0,1λ . This 
eigenvalue is simple and has zero real part. This fact 
indicates that the system is marginally stable [16]. 
This conclusion coincides with the one obtained from 
the analysis of the graphs of step responses. In Fig. 7, 
the relation between real parts of eigenvalues 

)1,5=(0, iiλ  of matrix 𝑆0 and delay 𝜏 is presented. 

Similar conclusions follow for other values of 𝑛. 

 
Figure 4. Graphs of the phase differences 𝑥1(𝑡) − 𝑥𝑗(𝑡) 

8. Conclusions 
1. The Lambert function method is used for 

calculation of transients in the synchronization 
system, when the structure of the internal links in the 
system bear form of the complete graph. It is shown 
that using 161 branches of the Lambert W function 
(taking 80=N ) in calculations of step responses 

)( thij κ , the relative error is not greater than 0.001 for 

2.5=tκ  and 15≤n  (here 𝑛 is the number of oscillators 
in the synchronization system). 

2. The Lambert W function method has the 
advantage in comparison with a method of consequent 
integration (method of “steps”), as time of calculation 
of transients by this method does not depend on delay
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(a) (b) 

Figure 5. Graphs of the step response )(11 th κ

 

Figure 6. Distribution of eigenvalues )1,5=(, iikλ  of 

matrices 0,1,2)=(kSk  on the complex plane 

 
Figure 7. Relation between real parts of eigenvalues 

)1,5=(0, iiλ  of matrix 𝑆0 and delay 𝜏 

size, whereas time of calculation of transients by 
means of a method of consequent integration is in 
inverse proportion to the delay size. 

3. The Lambert W function method has the 
advantage in comparison with a numerical method 

based on the application of dde23 program in 
MATLAB, if the product 𝜅𝜏 is small (𝜅𝜏 ≪ 1). 

4. The method of research of dynamics, used in the 
presented work, can also be applied to other control 
systems, described by the linear matrix differential 
equations with delayed arguments and with 
commuting coefficient matrices.  
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