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Abstract. The paper is concerned with the synchronization problem of a general class of multi-input multi-output 
(MIMO) nonlinear continuous-time systems under sampled-data output feedback control. The main contributions of 
the present paper are twofold: (i) we provide a unified synthesis method and synchronization criteria for MIMO 
Lipschitz nonlinear continuous-time systems; (ii) we present a systematic computable framework based on the sum of 
squares (SOS) and linear matrix inequality (LMI) software tools for polynomial nonlinear systems. From the viewpoint 
of observer theory, we design an observer driven by sampled-data output for Lipschitz nonlinear continuous-time 
systems, when the output of the plant can be measured only at sampling instants. Furthermore, the presented method 
can ensure exponential convergence of the observer error, rather than practical convergence. Finally, an illustrative 
example is also given to demonstrate the effectiveness of the proposed approach. 
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1. Introduction 
Synchronization is an universal and important 

concept for dynamical systems. Among a number of 
research results in this area, a master-slave structure is 
usually taken as a typical model. Given a particular 
dynamical system called the master, together with an 
identical system, the aim is to synchronize the 
complete or partial response of the slave system to the 
master system, by using a signal derived from the 
master system. From the viewpoint of control theory, 
the master-slave synchronization scheme can also be 
seen as a special case of the observer design problem 
[1], which provides a solution framework based on 
nonlinear observer theory. This kind of observer-based 
approach has extensively been investigated in a 
number of research works [2-3]. 

Nowadays, modern controllers are typically 
implemented digitally and this strongly motivates 
investigation of sampled-data systems. Recent 
advancements in digital technology have rendered 
remarkable merit to digital control systems exhibiting 
flexibility in implementation of complex control 
algorithms [4]. 

To the best of our knowledge, the problem of 
sampleddata synchronization for a general class of 

nonlinear systems has not been investigated and still 
remains challenging, which motivates the present 
study. Most of existing results are based on 
continuous-time synchronization controllers, which 
require the output of master systems be measured in 
continuous-time, and so are not implemented by 
digital devices. In addition, the problem of sampled-
data synchronization is related to the called 
continuous-discrete observer from control theory, 
which has been considered for nonlinear systems 
based on the hybrid control approach and high-gain 
technique in [58]. However, these results only deal 
with some special classes of nonlinear systems, and 
can not apply to more general classes of nonlinear 
systems, which restricts the use of the methods. They 
are also not applicable to the systems studied in this 
paper. 

In this note, we develop a unified design method 
of sampled-data output feedback controller for 
synchronization of MIMO Lipschitz nonlinear 
continuous-time systems based on an input delay 
approach [9] and linear parameter varying (LPV) 
framework [10-11]. The sampled-data output feedback 
controller guaranteeing exponential convergence of 
synchronization errors is computed by LMIs. Finally, 
we give an example used to demonstrate the 
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application and effectiveness of the proposed 
approach. 

2. Problem statement and preliminaries 
Given a sampling period 𝑇 > 0, consider the follo-

wing general master-slave type of coupled systems 
under sampled-data output feedback controller 

ℳ: �
�̇�(𝑡) = 𝑓(𝑥(𝑡))
𝑦(𝑡) = ℎ�𝑥(𝑡)�

𝑆: �
𝑥�̇(𝑡) = 𝑓�𝑥�(𝑡)� + 𝑢(𝑡)

𝑦�(𝑡) = ℎ�𝑥�(𝑡)�

𝒸: 𝑢(𝑡)=−𝐾�𝑦(𝑡𝑘)−𝑦�(𝑡𝑘)�,
𝑡𝑘≤𝑡<𝑡𝑘+1,   𝑡𝑘=𝑘𝑇,   𝑘=0,1,2,⋯,

 (1) 

which consists consists of master system ℳ , slave 
system 𝑆  and sampled-data controller 𝒸  with 𝑓(0) =
0, ℎ(0) = 0, where ℳ  and 𝑆  are identical nonlinear 
systems with state vectors 𝑥, 𝑥� ∈ 𝑅𝑛 , and outputs 
𝑦,𝑦� ∈ 𝑅𝑚  respectively, the mappings 𝑓  and ℎ  are 
nonlinear functions. The synchronization scheme (1) 
aims at synchronizing the slave system 𝑆 to the master 
system ℳ  by employing sampled-data output 
feedback controller 𝒸. Then, our objective is to find a 
sampled-data controller gain matrix 𝐾, such that the 
synchronization error �̃�(𝑡) = 𝑥(𝑡) − 𝑥�(𝑡)  is 
exponentially convergent to zero. 

Remark 1. In fact, the formulated synchronization 
problem above can also be viewed as a special case of 
the observer design problem for nonlinear systems 
under the condition that the output of the plant is 
available only at sampling instants, i.e. the slave 
system with sampled-data controller can be treated as 
an observer driven by sampled-data output for the 
master system. The original theory and design 
procedures for continuous-time full-order observers 
driven by sampled-data output or delayed sampled-
data output have been presented for linear time-
invariant systems in the references [12-13]. 

Remark 2. It should be noted that it is 
significantly different between nonlinear sampled-data 
observer and nonlinear continuous-time observer 
driven by sampled-data output, although they all use 
only sampled data of the output. As we have known, a 
sampled-data observer can be modeled as discrete-
time systems and observers driven by sampled data is 
a typical class of hybrid systems. A general design 
framework of sampled-data observer for nonlinear 
systems has been recently proposed based on an 
approximate discrete-time model and emulation 
method in [14], where the Duffing system has been 
also used as an illustrative example to show how these 
methods could be used. However, the resulting 
designs only can guarantee practical convergence 
rather than exponential convergence of the observer 
error, which means that the observer error converges 

to a neighborhood of zero, rather than converges to 
zero, see also the references [15-16]. 

In the following part of the paper, we will make 
the further assumptions. 

A1. The functions 𝑓(𝑥):𝑅𝑛 → 𝑅𝑛 and ℎ(𝑥):𝑅𝑛 → 𝑅𝑚 
are differentiable with respect to 𝑥. 

A2. Define Θ as a convex hull of Ω, where 𝛺 ⊂ 𝑅𝑛 is 
an open and connect set, and assume that the functions 
𝑓(𝑥), ℎ(𝑥) satisfy the following conditions for 𝑥 ∈ Θ 

−∞<𝛼𝑖,𝑗≤
𝜕𝑓𝑖
𝜕𝑥𝑗

≤𝛼𝑖,𝑗<+∞,1≤𝑖,𝑗≤𝑛

−∞<𝛽𝑟,𝑠≤
𝜕ℎ𝑟
𝜕𝑥𝑠

≤𝛽𝑟,𝑠<+∞,1≤𝑟≤𝑚,1≤𝑠≤𝑛,
  (2) 

where 𝛼𝑖,𝑗 and 𝛼𝑖,𝑗 are the lower and the upper bounds 
of elements of the Jacobian matrix of 𝑓(x)  in Θ , 
respectively, 𝛽𝑟,𝑠 and 𝛽𝑟,𝑠 are the lower and the upper 
bounds of elements of the Jacobian matrix of ℎ(𝑥) 
in Θ. 

Under the assumptions, the parameter vectors 𝜕𝑓𝑖
𝜕𝑥

 
evolve in a hyper-rectangle called the parameter box 
𝒱ℋ𝑓 ⊂ 𝑅𝑛2  with 2𝑛2 vertices defined by 

ℋ𝑓 = �𝛼 = �𝛼1,1,⋯𝛼𝑖,𝑗 ,⋯ ,𝛼𝑛,𝑛��𝛼𝑖,𝑗 ∈ �𝛼𝑖,𝑗 ,𝛼𝑖,𝑗��. (3) 

Similarly, the other parameter vectors 𝜕ℎ𝑟
𝜕𝑥

 belong 
to the hyper-rectangle 𝒱ℋℎ ⊂ 𝑅𝑛⋅𝑚  defined by the 
following set of 2𝑛⋅𝑚 vertices 

ℋℎ = �𝛽 = �𝛽1,1,⋯𝛽𝑟,𝑠,⋯ ,𝛽𝑚,𝑛��𝛽𝑟,𝑠 ∈ �𝛽𝑟,𝑠 ,𝛽𝑟,𝑠��. (4) 

The assumptions imply that the differentiable 
functions 𝑓(𝑥), ℎ(𝑥) are locally Lipschitz continuous 
with Lips- chitz constants 

𝛾𝑓 = �� max(𝛼𝑖,𝑗2 ,𝛼𝑖,𝑗
2 )

𝑛,𝑛

𝑖,𝑗
, 𝛾ℎ =

�� max(𝛽𝑟,𝑠
2 ,𝛽𝑟,𝑠

2
)

𝑚,𝑛

𝑟,𝑠
. (5) 

It should be noted that the class of systems 
satisfying the assumptions includes a large variety of 
systems already studied in the past literatures, namely 
the class of differentiable Lipschitz nonlinear systems. 

The following lemma will play a key role, which 
due to A. Zemouche et al in [10] extends the well-
known differential mean value theorem to the vector 
function case. 
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Lemma 1. Let 𝑔:𝑅𝑛 → 𝑅𝑝  and 𝑎, 𝑏 ∈ 𝑅𝑛 . We 
assume that 𝑔 is differential on 𝐶𝐶(𝑎, 𝑏). 
Then, there are constant vectors 𝑐1,⋯ , 
𝑐𝑞 ,⋯ ,  𝑐𝑝 ∈ 𝐶𝐶(𝑎, 𝑏) , 𝑐𝑞 ≠ 𝑎 , 𝑐𝑞 ≠ 𝑏  for 
𝑞 = 1,⋯ , 𝑝, such that 

𝑔(𝑎) − 𝑔(𝑏) = �� 𝑙𝑝𝑇(𝑞)𝑙𝑛(𝑖) 𝜕𝑔𝑞
𝜕𝑥𝑖

(𝑐𝑖)
𝑝,𝑛

𝑞,𝑖=1
� (𝑎 − 𝑏), (6) 

where 𝐶𝐶(𝑎, 𝑏) = {𝜛𝑎 + (1 −𝜛)𝑏, 0 < 𝜛 < 1}  is 
the convex combination of 𝑎  and 𝑏 ,  
𝑙𝑝(𝑞) = �0⋯ 0 𝑞𝑡ℎ

1 0⋯ 0� ∈ 𝑅𝑝 , and 𝑙𝑛(𝑖) =
[0⋯ 0 𝑞𝑡ℎ

1 0⋯ 0] ∈ 𝑅𝑛 are the canonical bases of 
the vectorial space 𝑅𝑝 and 𝑅𝑛 respectively. 

Note that the lemma 1 provides an alternative to 
the usual Lipschitz property, which is directly used in 
most of the literatures. The reformulation can 
obviously lead to less restrictive results than the 
Lipschitz condition. 

3. Main results 

Theorem 1. Let us denote the index (𝑖, 𝑗, 𝑟, 𝑠) as 
ℓ , where 1 < 𝑖, 𝑗, 𝑠 < 𝑛 , 1 < 𝑟 < 𝑚 . Given a 
sampling period 𝑇 > 0, a constant 𝜆 > 0, and a scalar 
𝜀 > 0, if there exist matrices 𝑃 = 𝑃𝑇 > 0, 𝑄 = 𝑄𝑇 >

0 , 𝑅 = 𝑅𝑇 > 0 , 𝑊ℓ = �
𝑊ℓ

11 𝑊ℓ
12

∗ 𝑊ℓ
22� ≥ 0 , and any 

matrices 𝑁ℓ = �
𝑁ℓ1

𝑁ℓ2
� , 𝑀ℓ = �

𝑀ℓ
1

𝑀ℓ
2�  with appropriate 

dimensions such that the following matrix inequalities 
hold for any 𝛼 ∈ ℋ𝑓 and 𝛽 ∈ ℋℎ 

Ξℓ1 =

⎣
⎢
⎢
⎡Φℓ

11(𝛼)
∗
∗
∗

Φℓ
12(𝛽)
Φℓ
22

∗
∗

−𝑀ℓ
1

−𝑀ℓ
2

−𝑒−𝜆𝑇𝑄
∗

𝜀𝑇𝐹𝑇(𝛼)𝑃
𝜀𝑇𝐻𝑇(𝛽)𝑅𝑇

0
−𝜀𝑃 ⎦

⎥
⎥
⎤

Ξℓ2 = �𝑊ℓ Nℓ

∗ 𝜀𝑒−𝜆𝑇𝑃
� ≥ 0,1 ≤ ℓ ≤ 2𝑛2+𝑛𝑚

Ξℓ3 = �𝑊ℓ Mℓ

∗ 𝜀𝑒−𝜆𝑇𝑃
� ≥ 0,1 ≤ ℓ ≤ 2𝑛2+𝑛𝑚,

 (7) 

where 

Φℓ
11(𝛼) = 𝑃𝐹(𝛼) + 𝐹𝑇(𝛼)𝑃 + 𝜆𝑃 + (𝑁ℓ1)𝑇 +  

(𝑁ℓ1) + 𝑄 + 𝑇𝑊ℓ
11  

Φℓ
12(𝛽) = 𝑅𝐻(𝛽) + (𝑁ℓ2)𝑇 − 𝑁ℓ1 + 𝑀ℓ

1 + 𝑇𝑊ℓ
12  

Φℓ
22 = −𝑁ℓ2 − (𝑁ℓ2)T + 𝑀ℓ

2 + (𝑀ℓ
2)𝑇 + 𝑇𝑊ℓ

22, (8) 

and 

𝐹(𝛼) = � 𝑙𝑛𝑇
𝑛,𝑛
𝑖,𝑗=1

(𝑖)𝑙𝑛(𝑗) 𝜕𝑓𝑖
𝜕𝑥𝑗

(𝛼)

𝐻(𝛽) = � 𝑙𝑚𝑇
𝑚,𝑛
𝑟,𝑠=1

(𝑟)𝑙𝑛(𝑠) 𝜕ℎ𝑟
𝜕𝑥𝑠

(𝛽),
 (9) 

then, the synchronization error �̃�(𝑡)  is exponentially 
convergent to zero, and the sampled-data output 
feedback controller gain is given by 𝐾 = 𝑃−1𝑅. 

▼Proof. From (1), the synchronization error 
dynamics can be represented as follows 

�̇̃�(𝑡) = 𝑓�𝑥(𝑡)� − 𝑓�𝑥�(𝑡)� + 𝐾(𝑦(𝑡𝑘) − 𝑦�(𝑡𝑘)). (10) 

By applying Lemma 1, it follows that 

�̇̃�(𝑡) = 𝐹�𝜃(𝑡)��̃�(𝑡) + 𝐾𝐻�𝜗(𝑡)��̃�(𝑡𝑘), (11) 

where 

𝐹�𝜃(𝑡)� = � 𝑙𝑛𝑇
𝑛,𝑛
𝑖,𝑗=1

(𝑖)𝑙𝑛(𝑗) 𝜕𝑓𝑖
𝜕𝑥𝑗

(𝜃𝑖(𝑡))

𝐻�𝜗(𝑡)� = � 𝑙𝑚𝑇
𝑚,𝑛
𝑟,𝑠=1

(𝑟)𝑙𝑛(𝑠) 𝜕ℎ𝑟
𝜕𝑥𝑠

(𝜗𝑟(𝑡))
 (12) 

and 

𝜃𝑖(𝑡) ∈ {𝜅𝑓𝑥(𝑡) + �1 − 𝜅𝑓�𝑥�(𝑡), 𝜅𝑓 ∈ [0,1]}
𝜗𝑟(𝑡) ∈ {𝜅ℎ𝑥(𝑡) + (1 − 𝜅ℎ)𝑥�(𝑡), 𝜅ℎ ∈ [0,1]}
𝜃(𝑡) = �𝜃1(𝑡),⋯ ,𝜃𝑛(𝑡)�,
𝜗(𝑡) = �𝜗1(𝑡),⋯ ,𝜗𝑚(𝑡)�.

(13) 

Next, we represent the sampling instant 𝑡𝑘 as 

𝑡𝑘 = 𝑡 − (𝑡 − 𝑡𝑘) = 𝑡 − 𝑑(𝑡), (14) 

where 𝑑(𝑡) = 𝑡 − 𝑡𝑘. It is obvious that 𝑑(𝑡) is a non-
differentiable time-varying delay with bound 𝑇. As a 
result, the sampled-data output feedback controller 𝒸 
in (1) can be written as a continuous-time controller 
with a time-varying piecewise-continuous delay 
𝑢(𝑡) = −𝐾𝐻�𝜗(𝑡)��̃��𝑡 − 𝑑(𝑡)�. Then, it allows us to 
represent the error dynamics (10) as 

�̇̃�(𝑡) = 𝐹�𝜃(𝑡)��̃�(𝑡) + 𝐾𝐻�𝜗(𝑡)��̃�(𝑡 − 𝑑(𝑡)).(15) 

Choose a piecewise Lyapunov-Krasovskii 
functional to be 

𝑉(𝑡) = �̃�𝑇(𝑡)𝑃�̃�(𝑡) + ∫ �̃�𝑇(𝛿)𝑒𝜆(𝛿−𝑡)𝑄�̃�(𝛿)𝑑𝛿𝑡
𝑡−𝑇 +

∫ ∫ 𝜀�̇̃�𝑇𝑡
𝑡+𝜏

0
−𝑇 (𝑣)𝑒𝜆(𝑣−𝑡)𝑃�̇̃�(𝑣)𝑑𝑣𝑑𝑑, (16) 

which is positive definite, since 𝑃 and 𝑄 are positive 
definite matrices. 

From the Leibniz-Newton formula, we have 

2𝜉𝑇𝑁ℓ ��̃�(𝑡) − �̃��𝑡 − 𝑑(𝑡)� − ∫ �̇̃�(𝜂)𝑑𝜂𝑡
𝑡−𝑑(𝑡) � = 0

2𝜉𝑇𝑀ℓ ��̃��𝑡 − 𝑑(𝑡)� − �̃�(𝑡 − 𝑇) − ∫ �̇̃�(𝜂)𝑑𝜂𝑡−𝑑(𝑡)
𝑡−𝑇 � = 0,

 (17) 

where 𝜉(𝑡) = ��̃�𝑇(𝑡)�̃�𝑇�𝑡 − 𝑑(𝑡)��. 
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In addition, for any matrix Wℓ = �
Wℓ

11 Wℓ
12

∗ Wℓ
22� ≥ 0, 

the following equation is also true 

𝑇𝜉𝑇(𝑡)𝑊ℓ𝜉(𝑡) − ∫ 𝜉𝑇𝑊ℓ𝜉(𝑡)𝑑𝑑𝑡
𝑡−𝑑(𝑡) −

∫ 𝜉𝑇𝑊ℓ𝜉(𝑡)𝑑𝑑𝑡−𝑑(𝑡)
𝑡−𝑇 = 0. (18) 

When 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1) , differentiating (16) along 
trajectory of (15) and adding (17) and (18), it follows 
that 

�̇�(𝑡) + 𝜆𝑉(𝑡) ≤
𝜁𝑇Ξ�ℓ1𝜁 − ∫ 𝜍𝑇𝑡

𝑡−𝑑(𝑡) (𝜂)Ξℓ2𝜍(𝜂)𝑑𝜂 −

∫ 𝜍𝑇𝑡−𝑑(𝑡)
𝑡−𝑇 (𝜂)Ξℓ3𝜍(𝜂)𝑑𝜂 (19) 

holds, where 

Ξ�ℓ1 = �
Λ11 Λ12 −𝑀ℓ

1

∗ Λ22 −𝑀ℓ
2

∗ ∗ −𝑒−𝜆𝑇𝑄
� (20) 

and 

Λ11 = Φℓ
11�𝜃(𝑡)� + 𝑇𝐹𝑇�𝜃(𝑡)�𝑃𝐹(𝜃(𝑡))

Λ12 = Φℓ
12�𝜗(𝑡)� + 𝜀𝑇𝐹𝑇�𝜃(𝑡)�𝑃𝐾𝐻(𝜗(𝑡))

Λ22 = Φℓ
22 + 𝜀𝑇𝐻𝑇�𝜗(𝑡)�𝐾𝑇𝑃𝐾𝐻�𝜗(𝑡)�.

 (21) 

Denoting 𝑃𝐾 = 𝑅 , then, by using Schur 
complements, Ξ�ℓ1 is equivalent to 

Ξ�ℓ1 =

⎣
⎢
⎢
⎡Φℓ

11(𝜃(𝑡))
∗
∗
∗

Φℓ
12(𝜗(𝑡))
Φℓ
22

∗
∗

−𝑀ℓ
1

−𝑀ℓ
1

−𝑒−𝜆𝑇𝑄
∗

𝜀𝑇𝐹𝑇(𝜃(𝑡))𝑃
𝜀𝑇𝐻𝑇(𝜗(𝑡))𝑅𝑇

0
−𝜀𝑃 ⎦

⎥
⎥
⎤
. (22) 

When 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1), integrating (19) from 𝑡𝑘  to 𝑡 
gives 

𝑉(𝑡) ≤ 𝑒−𝜆(𝑡−𝑡𝑘)𝑉(𝑡𝑘), (23) 

which leads to 

𝑉(𝑡) ≤ 𝑒−𝜆𝑡𝑉(𝑡0). (24) 

In view of (16) again, it holds that 

𝜆min(𝑃)‖�̃�(𝑡)‖2 ≤ 𝑉(𝑡), 𝑉(𝑡0) ≤ ℏ‖�̃�(𝑡0)‖𝑐2, (25) 

where 

ℏ = 𝜆max(𝑃) + 𝑇𝜆max(𝑄) + 𝜀𝑇2

2
𝜆max(𝑃)  

‖�̃�(𝑡)‖𝑐 = sup0≤𝜙≤𝑇(�̃�(𝑡 + 𝜙), �̇̃�(𝑡 + 𝜙). (26) 

Therefore, combining (23)-(25) yields 

‖�̃�(𝑡)‖2 ≤ 𝑉(𝑡)
𝜆min(𝑃)

≤ 𝜆
𝜆min(𝑃)

𝑒−𝜆(𝑡−𝑡0)‖�̃�(𝑡0)‖𝑐2, (27) 

which means that the error dynamics is exponentially 
convergent to zero. 

As previously stated, the time-varying parameters 
𝜃𝑖(𝑡)  and 𝜗𝑟(𝑡)  belong to the parameter boxes 𝒱ℋ𝑓  
and 𝒱ℋℎ  respectively. On the other hand, the 
parameter-dependent matrices given in (22) are 
affinely dependent on the elements 𝜃𝑖(𝑡)  and 𝜗𝑟(𝑡) . 
Then, it follows that �̇� + 𝜆𝑉  in (19) attains its 
maximum value at one or more vertices of 𝒱ℋ𝑓  and 
𝒱ℋℎ . Thus, if the inequalities in (7) are satisfied, 
�̇� + 𝜆𝑉 is negative and the theorem follows.▲ 

Remark 3. The constant scalar 𝜀  in (7) can be 
viewed as a tuning parameter. When solving the LMIs 
(7), one can search for a feasible solution by setting 
the value of 𝜀 in advance. The parameter 𝜀 can also be 
searched by the following algorithm. That is, setting 
an initial value of 𝜀 and solving Eq.(7), if there is a 
feasible solution, then stops. Otherwise, reducing it by 
half and solving Eq.(7) again until 𝜀 is smaller than 
some pre-specified threshold. If there is no feasible 
solution to the LMIs (7), the desired controller cannot 
be obtained via Theorem 1. However, it should be 
noted that there might still exist some controllers that 
can exponentially synchronize the master and slave 
systems since the result in Theorem 1 is only a 
sufficient condition. 

Remark 4. 𝐹�𝜃(𝑡)� can be further represented by 
𝐴 + 𝐹1�𝜃(𝑡)� , where 𝐴  is a constant matrix and 
𝐹1�𝜃(𝑡)�  is a parameter varying matrix. Denote 
𝜌 �𝐹1�𝜃(𝑡)��  as the amount of nonzero elements in 
𝐹1�𝜃(𝑡)� . Similarly, let 𝐻�𝜗(𝑡)� = 𝐶 + 𝐻1�𝜗(𝑡)� , 
where 𝐶 is also a constant matrix, and 𝜌 �𝐻1�𝜗(𝑡)�� is 
defined as the amount of nonzero elements in 
𝐻1�𝜗(𝑡)�. Then, for finding a sampled-data controller, 

it is necessary to solve 2𝜌�𝐹1�𝜃(𝑡)��+𝜌�𝐻1�𝜗(𝑡)�� sets of 
LMIs, each set consisting of three LMIs in the form 
of (7). The proposed method may require a relatively 
large computation amount, if the value of 
𝜌 �𝐹1�𝜃(𝑡)�� + 𝜌 �𝐻1�𝜗(𝑡)��  is high. However, the 
controller gain computed by our approach depends on 
the bounds of 𝛼𝑖,𝑗 and 𝛽𝑟,𝑠, which can provide a less 
conservative result than using a Lipschitz constant of 
the system and avoid a high gain 𝐾. 

Remark 5. It should be noted that the above result 
is based on the two assumptions as shown in the 
previous section. Then, the computation of bounds for 
the derivatives of 𝑓𝑖(𝑥)(1 ≤ 𝑖 ≤ 𝑛)  and ℎ𝑟(𝑥)(1 ≤
𝑟 ≤ 𝑚) in Θ plays an important role in the application 
of Theorem 1. Specifically, if the convex hull Θ is a 
subset of the domain defined by a set of inequalities 
𝜓𝜄(𝑥) ≥ 0(𝜄 = 1,⋯ , Γ) , they are easy to be 
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determined using the customized function 
f indbound  provided by SOSTOOLS V2.0 [17] for 
multivariate polynomial nonlinear systems, i.e. 𝑓𝑖(𝑥) 
and ℎ𝑟(𝑥)  are polynomial functions. In the case of 
polynomial nonlinear systems, the bounds of 𝜕𝑓𝑖

𝜕𝑥𝑗
 and 

𝜕ℎ𝑟
𝜕𝑥𝑠

 in Θ can be formulated as a standard constrained 
opti¬mization problem of the following forms 

𝑚𝑖𝑛. �𝜕𝑓𝑖
𝜕𝑥𝑗
� , 𝑎𝑛𝑑 𝑚𝑖𝑛. �𝜕ℎ𝑟

𝜕𝑥𝑠
�

𝑠. 𝑡.𝜓𝜄(𝑥) ≥ 0, 𝜄 = 1,⋯ , Γ,
 (28) 

and 

𝑚𝑖𝑛. �− 𝜕𝑓𝑖
𝜕𝑥𝑗
� , 𝑎𝑛𝑑 𝑚𝑖𝑛. �− 𝜕ℎ𝑟

𝜕𝑥𝑠
�

𝑠. 𝑡.𝜓𝜄(𝑥) ≥ 0, 𝜄 = 1,⋯ , Γ,
 (29) 

which can be directly computed using the function 
f indbound . Clearly, the technique allows the 
following estimation of bounds 

𝛼𝑖,𝑗𝑚𝑖𝑛. �𝜕𝑓𝑖
𝜕𝑥𝑗
� ,𝛼𝑖,𝑗 = −𝑚𝑖𝑛. �− 𝜕𝑓𝑖

𝜕𝑥𝑗
� ,

𝛽𝑟,𝑠𝑚𝑖𝑛. �𝜕ℎ𝑟
𝜕𝑥𝑠
� ,𝛽𝑟,𝑠 = −𝑚𝑖𝑛. �− 𝜕ℎ𝑟

𝜕𝑥𝑠
� .

 (30) 

Furthermore, the previous analysis can be 
summarized by the following design procedure for 
polynomial nonlinear systems. 

Algorithm 1. Given a sampling period 𝑇 > 0 and 
the polynomial nonlinear systems in (1), which are 
defined on a convex subset of the domain {𝑥|𝜓𝜄(𝑥) ≥
0, 𝜄 = 1,⋯ , Γ}. 

Step 1. Select a convergence rate 𝜆  of synchroniza-
tion error. 

Step 2. Compute derivatives of the functions 𝑓𝑖(𝑥) 
and ℎ𝑟(𝑥). 

Step 3. Solve the optimization program formulated in 
(28) and (29) using SOSTOOLS. 

Step 4. Choose a value of the parameter 𝜀, and solve 
the LMI problem in (7). If the set of LMIs are 
feasible, then the controller gain is calculated 
and the sampled-data output feedback 
controller 𝒸 is obtained. Otherwise, reset the 
parameter 𝜀 and resolve the LMIs (7). 

4. Example 
Example. The following example called Duffing 

equation is borrowed from [18], which is illustrated by 

ℳ: �
�̇�1(𝑡) = 𝑥2(𝑡)

�̇�2(𝑡) = 𝑥1(𝑡) − 𝑥13(𝑡) 

𝑦(𝑡) = 𝑥1(𝑡) + 0.5𝑥2(𝑡).
 (31) 

As stated in the reference [18], it has three 
equilibrium points 𝑥1 = (0, 0) , 𝑥2 = (1, 0) , 
𝑥3 = (−1, 0). A compact positively invariant region 
enclosing three typical trajectories for different initial 
states is contained within the region Θ =
{(𝑥1, 𝑥2)||𝑥1| ≤ 2, |𝑥2| < 1}. 

Assume that the output of the plant is available 
only at sampling instants 𝑘𝑇 , 𝑘 = 0, 1, 2,⋯ ,  and 
𝑇 = 0.25𝑠 , which means that the output signal is 
sampled 4 times per second. Let us choose the 
parameters to be 𝜀 = 2  and 𝜆 = 0.2 . Applying our 
approach, we get the slave system driven by sampled-
data output of the master system 

𝑆: �
𝑥�̇1(𝑡) = 𝑥�2(𝑡) + 1.3993 ⋅ �𝑦(𝑡𝑘) − 𝑦�(𝑡𝑘)�

𝑥�̇2(𝑡) = 𝑥�1(𝑡) + 𝑥�13(𝑡) + 6.6295 ⋅ �𝑦(𝑡𝑘) − 𝑦�(𝑡𝑘)�.
(32) 

The simulation result in Fig. 1 shows the dynamics 
of synchronization errors �̃�1(𝑡) = 𝑥1(𝑡)— 𝑥�1(𝑡)  and 
�̃�2(𝑡) = 𝑥2(𝑡)— 𝑥�2(𝑡)  from two different initial 
conditions 𝑥(0) = [−1 2]𝑇  and 𝑥�(0) = [1 −2]𝑇 . 
The sampled-data control inputs 

𝒸: �𝑢1
(𝑡) = 1.3993 ⋅ (𝑦(𝑡𝑘) − 𝑦�(𝑡𝑘))

𝑢2(𝑡) = 6.6295 ⋅ (𝑦(𝑡𝑘) − 𝑦�(𝑡𝑘)) (33) 

are also shown in Fig. 2, which remain constant over 
every sampling period. It can be observed that the re-
sulting control performance is satisfactory. 

 

 
Figure 1. The synchronization errors under the sampled-

data controller (33) 

Remark 6. It should be noted that the output 𝑦(𝑡) 
of the master system can be measured only at 
sampling instants 𝑘𝑇  in the example, which means 
𝑦(𝑘𝑇)  is only available. So far, very few studies 
focused on the problem of synchronization of the 
general class of nonlinear systems under the condition 
that sampled-data output of the master system is only 
available, and it still remains challenging. To better 
illustrate the presented method, we introduce a 
continuous-time controller followed by [18] as a 
comparison with our method. 
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Krener and Kang presented a method for designing 
continuous-time synchronization controllers for a 
class of single-input single-output (SISO) nonlinear 
systems with the triangular structure based on the 

backstepping method, by which the continuous-time 
synchronization controller can be constructed as 
follows 

 

𝒸:

⎩
⎪
⎨

⎪
⎧ 𝑢1(𝑡) =

−�𝑦(𝑡)−𝑦�(𝑡)�

3�1+𝑥�1
2(𝑡)�

3 �−2 − 14𝑥�1
2(𝑡) − 14𝑥�1

4(𝑡) − 8𝑥�1(𝑡)𝑥�2(𝑡) − 8𝑥�1
3(𝑡)𝑥�2(𝑡) − 4𝑥�2

2(𝑡) + 12𝑥�1
2(𝑡)𝑥�2

2(𝑡) − 2𝑥�1
6(𝑡)�

𝑢2(𝑡) =
�𝑦(𝑡)−𝑦�(𝑡)�

3�1+𝑥�1
2(𝑡)�

3 �8 + 8𝑥�1
2(𝑡) + 8𝑥�1

4(𝑡) − 4𝑥�1(𝑡)𝑥�2(𝑡) + 8𝑥�1
3(𝑡)𝑥�2(𝑡) + 8𝑥�1

6(𝑡) + 12𝑥�1
5(𝑡)𝑥�2(𝑡) − 8𝑥�2

2(𝑡)24𝑥�1
2(𝑡)𝑥�2

2(𝑡)�
.(34) 

Unlike the sampled-data controller (33), all 
component signals in the controller (34) must be 
measured in continuous-time. Consequently, the 
numerical simulations are carried out with the same 
initial conditions 𝑥�(0) = [1 −2]𝑇  as the previous 
slave system. Comparing Fig. 1 with Fig. 3 shows that 
the proposed method achieves a better performance. 

 

 
Figure 2. The control signal of sampled-data controller (33) 

(T = 0.25s) 

 

 
Figure 3. The synchronization errors under the continuous-

time controller (34) 

5. Conclusion  
In this note, the problem of sampled-data 

synchronization has been studied for Lipschitz 
nonlinear continuous-time systems. A synchronization 

criterion formulated in terms of LMIs has been 
derived to ensure the exponential stability of the 
resulting error dynamics under sampleddata output 
feedback control. A simulation example has been 
provided to illustrate the effectiveness of the 
developed approach. 
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