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The wheel slip control is the basis of active safety control systems and intelligent driver assistance  systems. 
This paper presents a new robust backstepping sliding mode controller for reference input wheel slip tracking 
based on the single-corner model combined with the actuator dynamics. The proposed controller is realized 
by combining backstepping method, which has the merits of simplified and flexible design procedure, with 
sliding mode control, which has robustness against system uncertainty and external disturbance. Moreover, 
the closed-loop wheel dynamic system is L2-gain stable by Lyapunov-based method, and the simulation results 
show that the proposed controller has better performance.
KEYWORDS: Wheel slip control, Backstepping method, Sliding mode control, L2-gain stable, Robustness.
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1. Introduction
Active safety control systems and intelligent driver 
assistance systems can effectively enhance driving 

safety and maneuvering stability, and greatly lighten 
the physical and psychological burden of the driver, 
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especially in traffic jams or long-distance driving cir-
cumstances. However, the wheel slip control is the 
basis of active safety control systems and intelligent 
driver assistance systems. For instance, the anti-lock 
brake system (ABS) regulates the slip of each wheel 
at its optimum value to prevent it from locking during 
braking, such that the shortest stopping distance is 
achieved and the capability of directional stability 
and steer-handling is maintained [4]. The electronic 
stability program (ESP) may produce additional yaw 
moment by commanding the target slip of one or two 
wheels to prevent vehicle from spinning and drifting 
out of lane [29]. Finally, the adaptive cruise control 
system (ACC) can follow target speed or forward ve-
hicle at the desired safety headway distance by com-
manding the target slip of the wheels and the target 
torque of the power system [16]. As a consequence, de-
signing the wheel slip controller has important theo-
retical and practical significance for active safety con-
trol systems and intelligent driver assistance systems.
In recent years, many control approaches which are 
robust against system uncertainty and external dis-
turbance have been proposed for the wheel slip con-
trol due to the modeling errors, the measurement or 
estimation errors, and the changing of external en-
vironment conditions of the wheel dynamic system, 
such as sliding mode control [23], hybrid control 
[25] and fuzzy control [13], etc. Johansen et al. [9] 
established the speed-dependent nominal linearized 
slip model with a perturbation term as a basis for the 
wheel slip control, and utilized gain-scheduled LQR 
approach to design the gain matrices of the control-
ler. Pasillas-Lépine [19] adopted wheel deceleration 
logic-based switching and wheel dynamic model to 
design the five-phase anti-lock brake algorithm, and 
proved the existence and stability of limit cycles by 
the Poincaré map. Hsu [7] proposed an intelligent 
exponential sliding-mode control strategy for ABS, 
and a functional recurrent fuzzy neural network 
uncertainty estimator was designed to reduce the 
chattering of the exponential sliding-mode control 
strategy by approximating and compensating the 
unknown nolinear term of ABS dynamics on-line. 
Jing et al. [8] presented a switched control strategy 
for the anti-lock brake system and then analyzed 
the stability condition of the closed-loop system 
by Lyapunov-based method in the Filippov frame-
work. The proposed control strategy in [7-9, 19] may 

only regulate the wheel slip at its optimum point to 
generate the maximum braking force. However, the 
continuous wheel slip tracking control is the basis 
of active safety control systems and intelligent driv-
er assistance  systems. Tanelli et al. [24] proposed 
a nonlinear output feedback controller with input 
constraints for active braking control systems by 
Lyapunov-based method. The proposed algorithm 
could produce the limit cycles when the desired 
slip is in the unstable region of the friction curve, 
thereby enhance braking safety and performance by 
detecting the existence of limit cycles. Mirzaei and 
Mirzaeinejad [14] adopted an optimal predictive ap-
proach to design a nonlinear wheel slip controller 
based on a single-corner vehicle model, and proved 
the proposed approach was robust against system 
uncertainties via Lyapunov-based method. Park and 
Lim [18] established the quarter car model with the 
time delay on the brake torque as nominal model 
and adopted adaptive sliding mode control with the 
reduction method and the nonlinear vehicle speed 
observer to design the output feedback controller 
of the wheel slip, which could drive the wheel slip to 
track the desired value. Harifi et al. [6] utilized the 
double-corner vehicle model with the Burckhardt 
tire friction model as nominal model and proposed a 
sliding mode control with integral switching surface 
to design the robust wheel slip controllers for front 
and rear wheels separately. In [6, 18], the traditional 
sliding mode control can effectively suppress the un-
certainty of the system, but cause the chattering of 
the system. Amodeo et al. [2] proposed a novel wheel 
slip controller based on second-order sliding-mode 
approach, which has higher accuracy and robust-
ness feature with respect to parameter uncertain-
ties and disturbances and then adopted first-order 
sliding-mode observer to estimate the peak tire-road 
friction coefficient. Lin and Hsu [12] proposed a hy-
brid control system composed of an ideal control-
ler and a compensation controller for the anti-lock 
brake system. The ideal controller with a neural 
network observer which was used to estimate the 
system uncertainties was designed to maintain the 
wheel slip at the desired slip, and the compensation 
controller was designed to have robustness against 
the approximation error of the neural network ob-
server. Mirzaeinejad [15] presented a new robust 
prediction-based nonlinear wheel slip controller in 
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conjunction with radial basis function neural net-
work (RBFNN), which was used to improve the ro-
bustness of the system by estimating the unknown 
uncertainties of the system on-line. Sardarmehni et 
al. [20] proposed two model-free wheel slip control-
ler on the basis of fuzzy logic control approach and 
neural predictive control aproach, and simulation 
results showed that the neural predictive control 
approach had more robustness against exogenous 
disturbances and modeling uncertainties. In [2, 12, 
15, 20], the uncertainty observer improves the ro-
bustness of the system, but increases the complexity 
of the system. Therefore, it is absolutely essential to 
design the wheel slip controller which has both ro-
bustness against system uncertainty and external 
disturbance and simple system structure.
The standard backstepping method introduced in 
[5, 17] provides a recursive Lyapunov-based frame-
work for the controller design of the lower-triangu-
lar nonlinear system and has the merits of simplified 
and flexible design procedure. However, the stan-
dard backstepping method is not robust against the 
system uncertainty and external disturbance. This 
paper surmounts the demerit of the standard back-
stepping method by combining the standard back-
stepping method with sliding mode control which is 
insensitive to system uncertainty and external dis-
turbance, and a backstepping sliding mode design 
framework is proposed. Compared with the nonlin-
ear L2-gain control method [28], the backstepping 
sliding mode design framework can avoid solving 
the complex Hamilton-Jacobi-Issacs inequality to 
attain the same control objective that the ratio of the 
L2 norm of the system output to the L2 norm of the 
lumped disturbance is less than the given threshold 
value. Then, a new robust backstepping sliding mode 
controller (RBSMC) with L2-gain performance for 
reference input wheel slip tracking is derived based 
on a single-corner vehicle model with actuator dy-
namics and the backstepping sliding mode design 
framework. Moreover, the effectiveness of the pro-
posed controller is verified based on vehicle dynam-
ics simulation software.
This paper is organized as follows. Section 2 provides 
the dynamic model. Section 3 shows the nonlinear ro-
bust controller. Section 4 introduces our simulations 
and results. Finally, Section 5 draws the main conclu-
sion of our work.

Figure 1 
The single-corner model

 

2. System Modelling
The proposed RBSMC for reference input wheel slip 
tracking is based on a single-corner model, as it pro-
vides a simple yet sufficiently rich description of the 
braking dynamics. As shown in Figure 1, the degrees 
of freedom for the model consists of the vehicle speed 
and the angular speed of the wheel. 

In order to simplify the nonlinear controller design, 
the following modeling assumptions are made:
1 the vehicle is moving on a flat horizontal plane;
2 the suspension dynamics are neglected;
3 the wheel radius is assumed to be constant; 
4 the tire camber and the tire sideslip angle are as-

sumed to be zero;
5 the tire relaxation dynamics are neglected.
The single-corner model is given by [21]

x bJ rF Tω = − (1)

xmv F= − , (2)

where ω is the angular speed of the wheel; v is the ve-
hicle speed; Tb is the braking torque;  Fx is the longitu-
dinal tire-road contact force; J, m and r are the wheel 
inertia, the single-corner mass and the effective roll-
ing wheel radius, respectively. 
The wheel slip λ is defined by 

v r
v
ωλ −

= . (3)

Notice that, during braking , as r vω ≤ , [0,1]λ ∈ .
In this paper, the tire model introduced by Burckhardt 
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[3] has been used to describe the nonlinear relation-
ship of the tire-road friction coefficient and the wheel 
slip, as it is simple and has a good degree of accuracy:

( ) ( )2
1 31 r

r re λϑµ λ ϑ λϑ−= − − , (4)

where 1rϑ  is the maximum value of friction curve; 2rϑ
is the friction curve shape; 3rϑ  is the friction curve dif-
ference between the maximum value and the value at

1λ = . By changing the values of these three parame-
ters, many different tire-road friction conditions can 
be modeled. The parameters of Burckhardt model for 
different road surfaces are listed in Table 1 [10].

The longitudinal tire-road contact force is expressed as

( )x zF F µ λ= , (5)

where Fz is the vertical force at the tire-road contact 
point.
The derivative of Eq. (3) with respect to time yields

( )1 1 v r
v

λ λ ω= − −  
  . (6)

Substituting Eqs. (1), (2) and (5) into Eq. (6) yields

21 1 ( )z b
r rF T

v m J Jv
λλ µ λ

 −
= − + + 

 
 . (7)

Time delays may cause instability and performance 
deterioration of system [30]. Taking brake lag into ac-
count, the actuator dynamics [27] is given by

1
1b

b

T u
sτ

=
+

, (8)

where bτ  is dimensionless time constant; u is the ac-
tual control input.
The derivate of Eq. (8) with respect to time yields

1 1
b b

b b

T T u
τ τ

= − + . (9)

Since the vehicle speed dynamics are much slower 
than the wheel slip dynamics due to large differenc-
es in inertia, the vehicle speed v can be regarded as 
a slowly-varying parameter. Hence, the Eq. (2) can 
be neglected, and we consider only the wheel slip 
dynamics with the actuator dynamics. Furthermore, 
we define the state variables 1= dx λ λ− , 2 = bx T , where

dλ  is the reference input wheel slip. Eqs.(7) and (9) 
are merged together into the state-space form of the 
nominal model as follows

( )

2
1

1 1 2

2 2

11 ( )

1

d
z d

b

x r rx F x x
v m J Jv

x x u

λ
µ λ

τ

  − −
= − + + +  

  

 = − −





. (10)

Consider the nominal model with the lumped uncer-
tainty, Eq.(10) can be rewritten as

( )

( )
1 1 2 1

1
2 2 2

: 1

b

x f x Gx d

x x u d
ψ

τ

= + +

 = − − +




, (11)

where 

( )
2

1
1 1

11 ( )d
z d

x rf x F x
v m J

λ µ λ
 − −

= − + + 
 

, rG
Jv

=  and 

[ ]T
1 2d d d=  is the lumped uncertainty that contains 

system uncertainty and external disturbance.

3. Robust Backstepping Sliding 
Mode Controller Design
In this section, sliding mode control combined with 
backstepping method is used to derive the RBSMC for 
reference input wheel slip tracking, which integrates 

Table 1 
Parameters of Burckhardt model for different road surfaces

Surface conditions ϑr1 ϑr2 ϑr3

Dry asphalt 1.2801 23.99 0.52

Wet asphalt 0.857 33.822 0.347

Dry concrete 1.1973 25.168 0.5373

Dry cobblestones 1.3713 6.4565 0.6691

Wet cobblestones 0.4004 33.708 0.1204

Snow 0.1946 94.129 0.0646

Ice 0.05 306.39 0
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both the merits of sliding mode control and backs-
tepping method. Based on the standard backstepping 
method, we employ the change of coordinates

1 1

2 2 1

z x
z x α

=
 = −

, (12)

where 1α  is virtual controller.
Define the output of the system 1ψ  [ ]T

1 1 2 2z z zκ κ= , 
where 1κ  and 2κ  are nonnegative weight coefficients, 
and the system 1ψ  is rewritten

( )

( )

[ ]

1 1 2 1

2 2 2 2

T
1 1 2 2

1:
b

x f x Gx d

x x u d

z z z

ψ
τ

κ κ

 = + +


= − − +

 =



 . (13)

The aim of this paper is to design a RBSMC for the 
system 2ψ  such that the closed-loop wheel dynamic 
system is asymptotically stable when the disturbance

0d = , and is L2-gain stable when the disturbance 0d ≠ , 
which means that the relationship of the output of the 
system 2ψ  and the disturbance satisfies the following 
inequality

T T2 22

0 0
z dt d dtγ≤∫ ∫ (14)

for all 0T ≥  and all ( )2 0,d L T∈ , where γ  is positive 
constant.
The design procedure is elaborated in the following 
steps.
Step 1: Define the first storage function 2

1 1
1
2

V z= . Note 
that

( )
( ) ( )

1 1 1 2 1

1 2 1 1

z x f x Gx d

f x G z dα

= = + +

= + + +



( )
( ) ( )

1 1 1 2 1

1 2 1 1

z x f x Gx d

f x G z dα

= = + +

= + + +



.

(15)

Differentiating the first storage function 1V  along the 
trajectories of the system 2ψ  and substituting Eq. (15) 
into it, it is easy to have

( ) ( )( )1 1 1 1 1 2 1 1V z z z f x G z dα= = + + +  . (16)

By viewing 2x  as a virtual control input, let us choose 
virtual controller 1α  as follows

( )( )1
1 1 1 1G c z f xα −= − + , (17)

where 1c  is positive constant, and then

( )1 1 1 1 2 1V z c z Gz d= − + + . (18)

Define the function

( )
( )

( )

2 22
1 1 1

1 1 1 2 1

2 2 2 2 2 2
1 1 2 2 1

1
2

1
2

H V z d

z c z Gz d

z z d

γ

κ κ γ

= + −

= − + +

+ + −



. (19)

Step 2: Define the sliding surface 0 1 2c z zσ = + , where 
0c  is the design parameter. Note that

( )2 2 1 2 2 1
1

b

z x x u dα α
τ

= − = − − + −  , (20)

where

( )

( ) ( )

11
1 1 1 1

1

11
1 1 1 2 1

1

f x
G c z x

x

f x
G c c z Gz d

x

α −

−

∂ 
= − + ∂ 

∂ 
= − + − + + ∂ 

 

(21)

( )
2

1 1

1 1

1
1

1 ( )
1

1 ( )

d d
z

z d

x xr Ff x m J x
x v

F x
m

λ µ λ

µ λ

  − − ∂ +
+  ∂ ∂  = −

 ∂
− + 

 

. (22)

Differentiating the sliding surface σ  and substituting 
Eqs. (15) and (20) into it, it is easy to have

 
 

0 1 2 0 1 1 2 1

2 2 1
1
b

c z z c c z Gz d

x u d






     

   

  

 . (23)

Augment the storage function of Step 1, and thus the 
new storage function is given by

2
2 1

1
2

V V σ= + . (24)

Define the function 
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( )2 22
2 2

1
2

H V z dγ= + − . (25)

Substituting Eq. (19) into Eq. (25) yields 

 
   

 

 

   

   

2 22
2 1

2 2
1 2

1 1 1 2 1
2 2 2 2 2 2

2 2

1 1 2 2 1

2 1 1 1 2 1

2 2 2 2 2 2 2 2
1 1 2 2 1 2

0 1 1 2 1 2 2

11
1 1 1 2 1

1

1
2

1
2

1

1
2

2
1
2

1

b

H V z d H d

z c z Gz d z z d

d z c z Gz d

z z d d

c c z Gz d x u d

f x
G c c z Gz d

x

   

  

 

   






      

      

     

   

       
    
         

  



(26)

Choose the actual controller as

  

   

   

   

1 2
1 0 1 1 1

0 0 1 0
2

0

1 11
1 1 2

1 1
2

1
1 1 22 2

1

sgn ,

b
b b

b b

b

u c c G c z c c G c G c
z

c
f x f x

c G z z
x x

f x
c h h

x G

   

 

  






  
  



 
 

 

 
    

 

(27)

where 1h  and 2h  are positive constants, and ( )sgn σ   de-
notes signum function.
Substituting the actual controller expressed by Eq. 
(27) into Eq. (26), we can obtain

 

 
 

   

 

2
2 1 1 1 2 1 1

2 2 2 2 2 2 2 2
1 1 2 2 1 2

11
2 0 1 2 1 1

0 1

2
1 1 2

1 2 2
1

2 2 2
1 1 2 0 1 1 0 1 2

0

2 2 2 2 2

0 2 1

2 2 1 1 2 2

1
2

sgn

1

1
2

b b

H c z Gz z z d z z d d

f xG z c d d G c d
c x

f x h hc
x G

Gc z z c z d c z d
c

c z d

z d z z

   


  

 

  



       

  
      

  
  

         

      

    
 

 

2 2 2
1 2

2

2

1

2

21

1

1 1
1

2

4

2
sgn .

b b

d d

f x h

d

d c
x G

h

 

  
 

 




  



        


       

(28)

By using Young’s inequality [1], we can obtain

( ) ( )22
02 2 2 2

0 1 1 1 12

2 1 11
8

c
c z d z dγ

γ

+
+ ≤ + (29)

2
2 2 20

0 1 2 1 22

1
4

cc z d z dγ
γ

≤ + (30)

2
2 2 20

0 2 1 2 12

2 1
8

cc z d z dγ
γ

≤ + (31)

2 2 2
2 2 2 22

1 1
4

z d z dγ
γ

≤ + . (32)

Substituting the inequalities (29), (30), (31) and (32) 
into Eq. (28) yields

( )

( )

( )

22 2 2
0 20 1

2 1 12 2

2 2
20 2
22 2

0

2

1
1 1

1

21 2

2 1
2

2 1
2

 
2

sgn
b b

c cH c z

cG z
c

f x
d c

x G

h h

κ
γ γ

κ
γ γ

γ σ
γ

σ σ σ
τ τ

 + ≤ − − − −
 
 
 

− − − − 
 

 ∂ 
− − +   ∂  

− −

. (33)

Choose the parameters 0c  and 1c  that satisfying the 
following inequalities

( )22 2 2
0 0 1

1 2 2

2 1
0

2
c cc κ
γ γ

+
− − − > (34)

2 2
0 2

2 2
0

2 1 0
2

cG
c

κ
γ γ

− − − > . (35)

Substituting the inequalities (34) and (35) into in-
equality (33), we can obtain

2 0H ≤ . (36)

Defining ( ) ( )2V x V x= , and on the basis of Eq. (25) 
and inequality (36), we can obtain

( )2 221
2

V d zγ≤ − . (37)
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By the inequality (37), we can obtain the following in-
equality when the disturbance 0d =

21
2

V z≤ − . (38)

Integrating both sides of the inequality (38), we can 
obtain

( )( ) ( )( )( )2

0
2 0z dt V x V x

∞
≤ − ∞∫ . (39)

Since ( )( )0V x  is bounded and ( )( )V x t  is a positive, 
non-increasing function, we can obtain 2z L∈ . In ad-
dition, z, 1α , 1α , ( )1f x , 1d , 2d L∞∈ , and we can get z L∞∈  
using Eqs. (15) and (20). With 2z L L∞∈   and z L∞∈ , 
we can get ( )

0
0lim

t
z t

→
=  based on Barbalat’s lemma 

[26]. That implies that the closed-loop wheel dynamic 
system is asymptotically stable when the disturbance 

0d = .
Integrating both sides of the inequality (37), we can 
obtain the following dissipative inequality when the 
disturbance 0d ≠

( )( ) ( )( ) ( )T 2 22

0

10
2

V x T V x d z dtγ− ≤ −∫ . (40)

Therefore, the closed-loop wheel dynamic system with 

respect to the supply rate ( ) ( )2 221,
2

w d z d zγ= −  is 
dissipative, and according to the relationship be-
tween the dissipativity of the system and the L2-gain 
stability of the system [22], the closed-loop wheel dy-
namic system is also L2-gain stable.
Remark 1: It is easy to choose the parameters 0c  and

1c  to satisfy the inequalities (34) and (35), due to the 
relationship of the parameters 0c  and 1c  is decoupled.
Remark 2: To eliminate the chattering phenomenon 
due to the actual control input containing the discon-
tinuous signum function, the subsequent continuous 
saturation function is employed to replace the dis-
continuous term [11]

( )
( )

sat ,
sgn

if

if

σ σ ε
σ ε ε

σ σ ε

 <= 
 ≥

, (41)

where >0ε  is the width of the boundary layer. Thus, 
the actual controller in Eq. (27) is rewritten

( )
( )

( ) ( )

( ) ( )

1 2
1 0 1 1 1

0 0 1 0
2

0

1 11
1 1 2

1 1
2

1
1 1 22 2

1

sat , .

b

b b

b b

b

u c c G c z

c c G c G c
z

c
f x f x

c G z z
x x

f x
c h h

x G

α τ

τ τ

τ τ

στ σ σ ε
γ

−

−

= + +

+ + −
−

∂ ∂
+ −

∂ ∂

∂ 
− + − − 

∂ 

(42)

3. Simulation Results
The performance of the proposed RBSMC for reference 
input wheel slip tracking has been verified by a full-ve-
hicle dynamics simulation model (MSC CarSim®) with 
the actuator dynamics. MSC CarSim® is a comprehen-
sive model for the efficient simulation of the whole 
vehicle dynamics, and it includes powertrain model, 
suspension model, aerodynamic model, and tire model 
with dynamic rolling resistance and relaxation length, 
etc. Therefore, the following simulation results can 
be considered very close to real-vehicle experiments. 
Straight line braking manoeuvres on a flat dry asphalt 
road ( 1)µ =  and a flat wet asphalt road ( 0.6)µ =  are 
performed for testing the performance of the proposed 
RBSMC. All parameters of the proposed RBSMC are 
set by 1 10κ = , 2 0.01κ = , 0 1c = , 1 350c = , 50γ = , 1 3.2h = , 

2 6h =  and 1ε = . The main parameters of the full-vehi-
cle dynamics simulation model are set by 354kgm = , 

20.9kg mJ = ⋅  and 0.31mr = .
First, straight line braking manoeuvre on a flat dry 
asphalt road is implemented under the conditions 
that the initial vehicle speed is set to 27.78m/s (equiv-
alently 100km/h) and the reference input wheel slip 
is set to 0.1, 0.06, and 0.03, respectively, and Figures 
2-4 show the simulation results for comparing the 
performance of the proposed RBSMC with those 
of the sliding mode controller (SMC) for reference 
input wheel slip tracking. As shown in Figure 2(a), 
Figure 3(a) and Figure 4(a), both RBSMC and SMC 
exit when the vehicle speed is less than 4m/s (equiv-
alently 14.4km/h), and the mechanism can avoid 
RBSMC and SMC singularity and satisfy the engi-
neering demands. Meanwhile, the vehicle speeds and 
wheel speeds of RBSMC are smaller than those of 
SMC at the same time respectively. As shown in Fig-
ure 2(b), Figure 3(b) and Figure 4(b), the wheel slips 
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Figure 2 
The simulation results of straight line braking manoeuvre 
on dry asphalt road surface with λd = 0.1: (a) vehicle speed 
and wheel speed, (b) reference input wheel slip and actual 
wheel slip, (c) tire-road friction coefficient versus wheel 
slip, and (d) braking torque

(d) (d)

(c) (c)

(b) (b)

(a)
(a)

Figure 3 
The simulation results of straight line braking manoeuvre 
on dry asphalt road surface with λd = 0.06: (a) vehicle speed 
and wheel speed, (b) reference input wheel slip and actual 
wheel slip, (c) tire-road friction coefficient versus wheel 
slip, and (d) braking torque
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Figure 4 
The simulation results of straight line braking 
manoeuvre on dry asphalt road surface with λd = 0.03: 
(a) vehicle speed and wheel speed, (b) reference input 
wheel slip and actual wheel slip, (c) tire-road friction 
coefficient versus wheel slip, and (d) braking torque

Figure 5 
The simulation results of straight line braking manoeuvre 
on wet asphalt road surface with λd = 0.1: (a) vehicle speed 
and wheel speed, (b) reference input wheel slip and actual 
wheel slip, (c) tire-road friction coefficient versus wheel 
slip, and (d) braking torque
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Figure 6 
The simulation results of straight line braking manoeuvre 
on wet asphalt road surface with λd = 0.06: (a) vehicle speed 
and wheel speed, (b) reference input wheel slip and actual 
wheel slip, (c) tire-road friction coefficient versus wheel 
slip, and (d) braking torque

Figure 7 
The simulation results of straight line braking manoeuvre 
on wet asphalt road surface with λd = 0.03: (a) vehicle speed 
and wheel speed, (b) reference input wheel slip and actual 
wheel slip, (c) tire-road friction coefficient versus wheel 
slip, and (d) braking torque
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of RBSMC have faster dynamic response and better 
tracking precision than those of SMC in the transient 
state. That explains why the vehicle speeds and wheel 
speeds of RBSMC are smaller than those of SMC at 
the same time respectively. Figure 2(c), Figure 3(c) 
and Figure 4(c) show that the wheel slips of RBSMC 
have similar performance with those of SMC in the 
steady state. As shown in Figure 2(d), Figure 3(d) and 
Figure 4(d), the braking torques of RBSMC are more 
smoother than those of SMC. Moreover, in order to 
quantitatively evaluate the performance of the RB-
SMC, the root mean-squared error (RMSE) between 
the reference input wheel slip and the actual value is 
computed. According to the statistical results shown 
as Table 2, the maximum RMSE of the proposed RB-
SMC in the straight line braking manoeuvre on a flat 
dry asphalt road is 0.0059, while the maximum RMSE 
of SMC is 0.0219.

Table 2 
Root mean-square error between the reference input wheel 
slip and actual value 

Manoeuvre Reference
RMSE

RBSMC SMC

Straight line 
braking on dry 
asphalt road

0.1 0.0059 0.0219

0.06 0.0025 0.0118

0.03 0.0011 0.0047

Straight line 
braking on wet 
asphalt road

0.1 0.0064 0.0176

0.06 0.0025 0.0099

0.03 0.0010 0.0043

compared with straight line braking manoeuvre on 
a flat dry asphalt road. Both RBSMC and SMC have 
great robustness against the system uncertainty and 
external disturbance, but the proposed RBSMC has 
better performance in the transient state. According 
to the statistical results shown as Table 2, the maxi-
mum RMSE of the proposed RBSMC in the straight 
line braking manoeuvre on a flat wet asphalt road is 
0.0064, while the maximum RMSE of SMC is 0.0176. 

4. Simulation Results
This paper has presented a new robust backstepping 
sliding mode controller (RBSMC) for reference input 
wheel slip tracking based on the single-corner model 
with the actuator dynamics. The proposed RBSMC 
combines the merit of backstepping method that has 
simplified and flexible design procedure with the mer-
it of sliding mode control that is insensitive to system 
uncertainty and external disturbance, and the Lya-
punov-based method is used to derive that the closed-
loop wheel dynamic system is L2-gain stable. Then, 
the simulation based on the full-vehicle dynamics 
simulation model is implemented to validate the per-
formance of the proposed RBSMC. The simulation 
results indicate that it can guarantee that the wheel 
slip follow the trend of the reference input quickly and 
accurately compared with the traditional sliding mode 
controller for reference input wheel slip tracking.
In future works, the proposed RBSMC will be further 
tested and fine tuned on a real test vehicle equipped 
with by-wire electro-mechanical-brakes. Moreover, 
active safety control systems and intelligent driver 
assistance systems based on the proposed RBSMC 
should be researched.
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Second, straight line braking manoeuvre on a flat wet 
asphalt road is implemented with setting the initial 
vehicle speed 27.78m/s (equivalently 100km/h) and 
the desired wheel slip 0.1, 0.06, and 0.03, respectively, 
and Figures 5-7 show the simulation results for com-
paring the performance of the proposed RBSMC with 
those of SMC. The similar results can be obtained 
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