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One of the ultimate goals of studying network dynamics and its properties is to control it. In the past 20 years, 
with the joint efforts of many scientists, the theory of controlling a whole network through a small set of nodes, 
which are called driver nodes (DN) has been greatly developed. However, in some situations, it is very difficult 
and not necessary to control a whole network, which motivates scientists to explore target control theory, i.e., 
the efficient control for a subset of nodes in a network through a small node set. In a real network, there is 
another common situation, which is that not each node can be easily accessed. Therefore, it is meaningful to 
explore the target control strategy under the condition in which the driver nodes are constrained. In this paper, 
an effective method is proposed to make more DN be included in the constrained node set (CNs). We adopt the 
strategy of greedy algorithm to gradually constrain DN into CNs in the iterative process of target control. In 
each iteration, we adjust the strategy of how to choose driver nodes according to some network properties. A 
few experiments were presented to prove that the proposed method can make DN into CNs effectively in both 
Scale-free networks (SF) and Erdös-Rényi (ER) networks. Then, we explored the performance of this method 
in the case of local and random selection of target nodes, respectively. In addition, some factors that will affect 
the effects of this method were also explored in this paper. In the end, this method is proved valid through the 
verification of the real network data sets. 
KEYWORDS: complex network; constrained nodes; target control.
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1. Introduction

1.1. Network Science Introduction in Recent 
Years
In the past few decades, network science has been 
widely applied in various fields: human brain intelli-
gence [17, 23], economy [9, 21], society [15, 21], phys-
ics [3, 26], biology [27, 29], etc. Through nearly 20 
years of unremitting efforts, great progress has been 
made in the understanding of network topology and 
its dynamical properties. In recent years, link pre-
diction [14, 25], community discovery [1, 22], struc-
ture and dynamics of network [4, 13] have received 
extensive attention. These research achievements 
create the knowledge foundation based on which the 
controllability issues of network can be investigated 
effectively. Among these issues, topological [30] and 
dynamical [6] properties of network are the two most 
important aspects, which can determine the number 
of the external inputs and the energy of control, etc. 
However, the dynamics of real-world networks are so 
complex that we can not capture them easily. Thus, in 
this paper, we explore the control process in a com-
plex network with linear dynamics. 

1.2. Literature Review on Network 
Controllability
In the field of network controllability, controlling one 
complex network means steering the state variables 
associated with its nodes to arbitrary states of them 
using some suitable control inputs in finite time. In 
2011, Liu et al. [16] developed an analytical framework 
to solve the issue of complex networks’ controllabili-
ty, which is based on Lin’s classical structure control 
theory (SCT) [2]. In that paper, Liu et al. answered 
the following question: how to find the minimal num-
ber of DN. Subsequently, Yuan et al. [28] proposed a 
method called exact control of complex network that 
can calculate the minimum number of DN in an un-
directed network based on PBH rank criterion [10]. 
The target control theory [7] raised by Gao et al. is ap-
plicable to a situation that the complex network does 
not need to be fully controlled, i.e., only a part nodes of 
this network need to be controlled. 
In recent years, some scientists have done some works 
in nonlinear control and closed loop control. Sun et al. 

[24] developed a framework to solve the problem of fi-
nite-time, closed-loop control. They also explored the 
mathematics and physical foundations of the trade-
off between the control time and energies. Kim et al. 
[12] revealed the relationship between the connectiv-
ity of a subset of structural connections and the min-
imum energy required to control the system through 
linear network control theory. A method called the 
minimum-cost fixed-flow [20] was proposed by Sha-
na et al. to solve the minimum cost constrained in-
put selection for controlling state-space structured 
systems. Ning et al. [5] explored the controllability of 
weighted complex networks with noises in the sense 
of Kalman controllability. Tommaso et al. [18] raised a 
theory for structural controllability of networks with 
symmetric, constrained weights. The problem of how 
to choose the minimum cost constrained inputs, out-
puts and feedback pattern structured  systems [19] 
was solved by Shana et al. through an order optimal 
approximation algorithm. These works deal with 
many problems in the area of linear controllability of 
complex network. 

1.3. Motivation of Our Work
The theoretical framework of structural control and 
target control provide solutions for fully controlling 
network and partially controlling network, respec-
tively. For a common complex network, target con-
trol strategy uses a greedy algorithm to find a min-
imum DN based on the K-walk theory. However, in 
a networked system of the real world, many social 
networks, biological networks, and technological 
networks have various constraints, so control signals 
cannot be applied at any node in the networks like 
these. For example, in a genetic network, we cannot 
control the gene which we need to change from any 
part of it, and we also cannot build epidemic preven-
tion station anywhere in an infectious disease net-
work. Therefore, it is of great practical significance to 
propose a method of converging the DN into a CN. 
However, there are very few works related to the issue 
that the DN are constrained. Guo et al. [8] has raised a 
framework to solve this problem  based on the nodes 
which point to the target nodes. They solved this 
problem based on integer linear programming (ILP) 
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and random Markov chain (MC) sampling.  Guo’s 
method has two main problems, presented as follows:
1 The ILP they need to solve is an NP-hard problem. 

If the size of a network is relatively large, it will be 
very difficult to obtain the solution of the ILP in-
equation.

2 They get some possible maximum matchings for 
the target nodes of a network through random Mar-
kov chain sampling. The sampling results will di-
rectly affect the selection of the final driver nodes. 
Hence, the method will bring greater randomness, 
especially for a large size network. That is because 
for a network with large size, random MC sampling 
can obtain only a small part of all the different max-
imum matchings.

Compared with Guo’s method, our method can be 
applied to a large size network easily. However, for 
that our method does not need to sample maximum 
matchings, it shows great robustness in both large and 
small size networks. The comparison of our method 
and Guo’s method in time complexity are presented 
as follows:

od on some real network data sets. In the end, we con-
clude the applicable scenarios of the method and find 
some future research points. 

2. Structural Control Theory
2.1. Linear Model

In this section, we will describe the linear model, i.e., 
linear time invariant complex system (LTI):

,x Ax Bu= + , (1)

where x  means the rate of change for x ; N NA R ×∈  de-
scribes the system’s wiring diagram among nodes in 
a network; In this equation, ija  which means the el-
ement of ith row intersecting with jth column in A, 
which represents the strength of influence that the 
component jx  put on ix  ( =0ija  means have no influ-
ence); 1 2( , ,... )T

Nx x x x=  characterizes the state of a 
system of N nodes; N MB R ×∈  denotes the input matrix 
of control signals, and u represents M dimensions in-
put signals. 

2.2. Control of Complex Network

The controllability of a network can be defined as that 
for any initial state 0( )x t , the state of the system can 
reach any state in time 1t  through some appropriate 
inputs. Here, the mathematic condition is given as 
follows: the system is controllable if and only if the
N NM×  controllability matrix:

2 1( , , ,..., )NC B AB A B A B−= (2)

is full rank, that is to say

( )rank C N= ，, (3)

which is called Kalman’s Controllability Rank Condi-
tion [11]. Meanwhile, there is another rank condition: 
if the matrix

[ , ]NI A Bλ − (4)

is full rank with λ  can be any value, the network can 
be controlled fully. This is named PBH Rank Condi-
tion [10]. Where NI  is an N-dim identity matrix; And 
other symbols have the same meanings as the above.

Table 1
Comparison of time complexity

Name Guo’s Method DC Method

Time 
complexity o(m*r* V * )E o(r* V * )E

where m represents the times of MC sampling, r, ||V||, 
||E|| represents the iteration times in target control 
process, the number of nodes and the number of edg-
es, separately. For our method, we only need sort the 
matching sequence before the first iteration (more 
details will be shown in section 4), and then in each 
iteration, we only need to make some small changes. 
Hence, the main time complexity comes from the tar-
get control process, i.e. o(r* V * )E . From this ta-
ble, we can see that our method has a great advantage 
in time complexity.
The paper is organized as follows. First, we introduce 
some concepts and models of network control. Sec-
ond, we propose a method for finding DN constrained 
under target control of network. Third, some factors 
which may influence the effects of this method are 
presented in different target nodes selected strate-
gies. Fourth, we verified the effectiveness of the meth-
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In the area of controlling complex network, the most 
important task is to find m driver nodes, which di-
rectly determine the control energy. By applying ap-
propriate input signals to the driver nodes, the entire 
network will reach the target state in the case of linear 
dynamics in a finite time interval. The control process 
is presented as (Figure 1(a)).
Since the number of driver nodes in a network has 
great influence on control energy, how to determine 
the minimum set of DN is a critical thing. The algo-
rithm of maximum matching in graph theory is in-
troduced to solve this problem by Liu et al., and a set 
of driver nodes can be obtained through an iterative 
process. They proposed a framework in light of the 
fact that if a network is controllable, the driver nodes 
is the unmatched nodes in the maximum matching 
of it (the white nodes in Figure 1(b)). The maximum 
matching represents that all the edges in the net-
work that have no common starting nodes and ending 
nodes. Here, we call the source node of a matching 
edge “matching node” (white nodes in Figure 1(b)), 
and the target node “matched node” (corresponding 
to the green nodes in Figure 1(b)). In a network, the 
number of the maximum matching edges is definite, 
however, the matching edges are not constant, i.e., we 
can obtain at least one minimum driver nodes set.

Figure 1
Structure Control Graphs. (a) The small network can be controlled by an input vector which can be captured by u(t) = (u1(t), 
u2(t), u3(t)), allowing us to change it from its initial state to some desired final state in the state space. (b) Maximum matching 
of the small network. Matching edges are shown in purple, matched nodes are green and unmatched nodes are white. The 
maximum matching includes all links, none of which shares a common starting or ending node. Only three links can be part 
of a maximum matching for the network, yielding three unmatched nodes (The number of ND is 3). There are totally three 
different maximum matchings for this network
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3. Target Control Theory
Target control, which can be considered as a special 
case of full control, is a very practical control style in 
the real world. Here, our study is based on the target 
control of LTI dynamical system raised by Gao et al 
[7]. This control model is presented as follows:

x Ax Bu
y Cx
= +

 =


，, (5)

where C represents the output matrix, which is used 
to identify the target nodes we want to control, and y 
means the state of them. The definitions of other sym-
bols are consistent with Equation (1). 
For a network, 1 2{ , ,..., }NNet v v v=  represents all the 
nodes of it, and a set of target nodes 1 2{ , ,... }n nC c c c=  
with size | |nS C fN= =  is what we want to control. 
In the output matrix 1 2[ ( ), ( ),..., ( )]SC I c I c I c= , ( )I i  
denotes the ith row of an N N×  identity matrix. 
The system (A, B, C) is target controllable when 
the set C can be driven to any desired final state 
in finite time by a time-dependent input vector 

1 2( ) ( ( ), ( ),..., ( ))T
Mu t u t u t u t= . Hence, the system (A, B, 

C) is target controllable when the following condition 
is satisfied:
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2 1( , , ) [ , , ,..., ] .Nd A B C rank CB CAB CA B CA B S−≡ = (6)

If a network meets the above conditions, given any ini-
tial state (0)x , the input signal values ( )u t  that change 
over time can be calculated, but how to compute them 
is beyond the scope of this article. 
In order to find the minimum set of driver nodes 
under the premise of target control, Gao et al. used 
a greedy algorithm to approximate the exact set. In 
their paper, the “K-walk” theory is introduced to solve 
this question. This main idea of this theory is that a 
node can control a set of target nodes with the dis-
tances from the driver node to each target node are 
different. Based on this, a set of controllable nodes 
with respect to a given driver node can be identified. 
However, in general, a network requires more than 
one driver node, so is the greedy strategy applied in 
this case. As shown in Figure 2, in the process of iden-
tifying driver nodes, the nodes which point to the giv-
en target node set is first identified. If a node has no 

in-bound edges or the edges pointing to it have not 
been included in maximum matching, then the node 
itself should be put into the final driver nodes set. 
Those matching nodes become a new round of target 
nodes which should be matched in the next iteration. 
Through the iteration process, the minimum driver 
nodes set could be found in finite time, until all the 
matching nodes are not changed any more.
However, under this strategy, the result is an ap-
proximation of the set to minimum driver nodes for 
a network. Because although the minimum number 
of matching nodes can be obtained in each itera-
tion, the choice of matching nodes in the previous 
iteration will affect that in this time. If we want to 
solve this problem thoroughly, we should compute 
all kinds of matching strategies in each iteration, 
which is very complex in time and space. To solve 
this problem, Zhang et al. proposed one method to 
find less driver nodes by changing the iteration 
strategy [31].

Figure 2
Target control process. (a) In the small network (N = 7), 3 4 6 7{ , , , }x x x x  are target nodes (represented by green nodes).  
(b) Use greedy algorithm to solve the target control problem of this network. First, the network is depicted by a bipartite 
graph. Target nodes are 3 4 6 7{ , , , }x x x x . Through the first iteration (red lines), we find the matching nodes 2 3 5 6{ , , , }x x x x . 
Next, these nodes are regarded as target nodes in the second iteration. Repeat the above process, we will get the second round 
matching nodes 1 2 5{ , , }x x x  and an unmatched node 5x , i.e., a driver node; In the last iteration, we find another unmatched 
node 1x . Hence, the minimum set of driver nodes 1 5{ , }x x  is obtained
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4. A Method for Finding Driver 
Nodes Constrained under Target 
Control
In many real networks, the locations of the DN are 
often constrained by some factors. How to control a 
network as efficiently as possible is an important is-
sue when the driver nodes’ positions are constrained. 
Here, we proposed an algorithm to solve the problem 
in this situation under the premise of target control, 
which is named DC. The main ideas of the algorithm 
are summarized as follows:
1 Because the matching nodes produced in each iter-

ation will affect the final result, how to make them 
into the constrained nodes set (CNs) is the key to 
the problem. In one iteration, the unmatched nodes 
of target nodes in this round will be the members of 
the final driver nodes set, and the matching nodes of 
this round will be the target nodes of next iteration. 
Hence, if we can constrain more matching nodes of 
each round into CNs, the rate of driver nodes in CNs 
will be higher. In this step, we will put the CNs in the 
front part of a matching sequence (MS), and the oth-
er nodes of the network should be put behind them 
in MS. Through this step, the CNs can be selected to 
be the matching nodes preferentially.

2 For that we prefer to make DN into the CNs, we sort 
the target nodes by placing the intersection of tar-
get nodes (TN) and the CNs in the latter part of TN. 
Through this way, even if the nodes in the latter part 
of TN become the final driver nodes because they are 
not matched, they have higher probabilities in CNs.

3 Under the premise of guaranteeing the first condi-
tion, the nodes of CNs and the other nodes in MS 
are sorted according to the descending order of 
node in-degree values, separately. Because if the 
in-degree of a node is larger, the more matching 
edges it can select, the easier it is to form a match-
ing. Therefore, the number of DN will be reduced 
as many as possible.

4  In one iteration, if a node has become a driver node, 
the matching priority of this node should be in-
creased, for that, if this node is selected as the driv-
er node of any other node again, it will not increase 
the number of driver nodes. According to this, we 

can change the MS in each iteration to make this 
algorithm more effective.

Here, according to the above thoughts, we designed our 
DC algorithm. The flow chart is presented in Figure 3.

Figure 3
Flow diagram of DC method
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2. For that we prefer to make DN into the 
CNs, we sort the target nodes by placing the 
intersection of target nodes (TN) and the CNs 
in the latter part of TN. Through this way, 
even if the nodes in the latter part of TN 
become the final driver nodes because they 
are not matched, they have higher 
probabilities in CNs. 

3. Under the premise of guaranteeing the first 
condition, the nodes of CNs and the other 
nodes in MS are sorted according to the 
descending order of node in-degree values, 
separately. Because if the in-degree of a node 
is larger, the more matching edges it can 
select, the easier it is to form a matching. 
Therefore, the number of DN will be reduced 
as many as possible. 

The algorithm is presented here: 
Step 1. The set of constrained nodes, target nodes 
and total nodes in a network are represented by the 
symbols CNs, TN and N.
Step 2. Create a nodes sequence TQ of the set TN. 
Put the nodes in the sequence TQ, which belong to 
TN CNs , into the latter part of TQ.
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Figure 4 
Constrained driver method. 
The nodes below the red line 
(Constrain line) indicate a pre-
specified constrained set.  
(a) Common target control 
method. (b) Prefer to the 
nodes which are in CNs. In this 
subgraph, it refers to node 5x . 
(c) Prefer to nodes with large 
in-degree. The matching node of 
node 3x  changes from node 6x  to 
node 9x . (d) Prefer to the nodes 
those have become the driver 
nodes. Node 7x  selects node 11x  
which has been a driver node as 
the matching node

  

4. In one iteration, if a node has become a driver 
node, the matching priority of this node should be 
increased, for that, if this node is selected as the 
driver node of any other node again, it will not 
increase the number of driver nodes. According to 
this, we can change the MS in each iteration to 
make this algorithm more effective. 

Here, according to the above thoughts, we 
designed our DC algorithm. The flow chart is 
presented in Figure 3. 

The algorithm is presented here:  

Step 1. The set of constrained nodes, target nodes 
and total nodes in a network are represented by 
the symbols CNs, TN and N. 

Step 2. Create a nodes sequence TQ of the set TN. 
Put the nodes in the sequence TQ, which belong to 
TN CNs , into the latter part of TQ. 

Step 3. Initialize the matching sequence (MS) by 
placing the nodes of N randomly. Get a new 
sequence MS by placing CNs in the former part of 
MS. Sort the two parts of the queue MS 
(constrained part and the other) according to the 
in-degree of nodes from high to low separately. 

Step 4. In one iteration, the minimum driver node 
set Diter of TQ is found by the maximum matching 
method according to the matching order MS. Next, 
the unmatched nodes of TQ in MS are changed 
position to the former of MS and put into the final 
driver node set Dfinal. 

Step 5. Take Diter as a new TQ, and repeat step 4, 
until TQ do not change in the two adjacent 
iterations. Finally, Dfinal is the approximate 
minimum driver node set. 

Taking Figure 4 as an example, the picture shows 
the results after considering the 3 factors described 
above. Because the effect of step 2 is obvious, we 
will not explain too much here. The TN in the 
figure are 1 3 4 8 11{ , , , , }T x x x x x= . The nodes below 
the red line are CNs, that is, 

5, 6 7 8 9 10 11{ , , , , , }C x x x x x x x= . Figure 3(a) shows that 
the driver node set is 2 6 8 10 11{ , , , , }D x x x x x=  without 
taking any strategy. After using step 1 above, the 
driver nodes become set 5 6 8 10 11{ , , , , }D x x x x x= , as 
shown in Figure 4(b). It can be seen that DN are in 
CNs. After adopting the third strategy, the result is 
shown in Figure 4(c) as a collection 

5 8 10 11{ , , , }D x x x x= . When taking step 4, the final 
result is a set of nodes 5 8 11{ , , }D x x x= . By step 3 
and 4, we can see that the number of the driver 
nodes decreases obviously. Therefore, from theory 
aspect, this method is effective for solving this 
problem. 
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Step 3. Initialize the matching sequence (MS) by 
placing the nodes of N randomly. Get a new sequence 
MS by placing CNs in the former part of MS. Sort the 
two parts of the queue MS (constrained part and the 
other) according to the in-degree of nodes from high 
to low separately.
Step 4. In one iteration, the minimum driver node set 
Diter of TQ is found by the maximum matching method 
according to the matching order MS. Next, the un-
matched nodes of TQ in MS are changed position to 
the former of MS and put into the final driver node set 
Dfinal.
Step 5. Take Diter as a new TQ, and repeat step 4, until 
TQ do not change in the two adjacent iterations. Final-
ly, Dfinal is the approximate minimum driver node set.
Taking Figure 4 as an example, the picture shows 
the results after considering the 3 factors described 
above. Because the effect of step 2 is obvious, we will 
not explain too much here. The TN in the figure are 

1 3 4 8 11{ , , , , }T x x x x x= . The nodes below the red line are 
CNs, that is, 5, 6 7 8 9 10 11{ , , , , , }C x x x x x x x= . Figure 3(a) 
shows that the driver node set is 2 6 8 10 11{ , , , , }D x x x x x=  
without taking any strategy. After using step 1 above, 
the driver nodes become set 5 6 8 10 11{ , , , , }D x x x x x= , 
as shown in Figure 4(b). It can be seen that DN are 
in CNs. After adopting the third strategy, the result is 
shown in Figure 4(c) as a collection 5 8 10 11{ , , , }D x x x x= . 
When taking step 4, the final result is a set of nodes 

5 8 11{ , , }D x x x= . By step 3 and 4, we can see that the 
number of the driver nodes decreases obviously. 
Therefore, from theory aspect, this method is effec-
tive for solving this problem.

5. Results and Analysis

5.1. N_con Index of DC method

In this section, we will give some results and analysis 
of our DC method. In common cases, the DN can not 
totally be the nodes in CNs, so we define the following 
index to evaluate the performance of this algorithm:

_
( )

dc

D

N
N con

CN
N

=
×

，
(7)

where dcN  denotes the number of driver nodes in the 
constrained set. DN  represents that in the whole net-
work. C  means the number of the constrained nodes 
and N means the number of the total nodes. Obvious-
ly, the larger the value, the better the performance of 
this method.
Because the choice of target nodes has an influence on 
the number of driver nodes, for the selection of target 
nodes in the experiment, we take the following two 
ways:
1 Random choice strategy: random choose target 

nodes until the rate of the target nodes reaches the 
appropriate rate;

2 Local choice strategy: choose the nodes which have 
higher degrees as the target nodes, then use the 
Breadth-First Search method to find all the target 
nodes until the rate of target nodes reaches the ap-
propriate rate.

5.2. N_con Over Target Nodes Selection Ratio
Here, we verified our method on two classical simula-
tion networks, i.e., SF and ER. Figure 4 shows the re-
sults of them as functions of the target nodes selection 
ratio under different average degree conditions. It can 
be seen that the strategy has a good effect as expected 
in these 4 cases. From the overview of these 4 subplots, 

_N con  of this method is gradually decreased with the 
selection ratio increasing. This phenomenon can be 
explained theoretically, because with the increase of 
the selection ratio, target control will degenerate into 
complete structural control gradually. The pre-given 
CNs in the entire network will be vied by the gradu-
ally increasing target nodes. From the comparison of 
Figure 5(a) and Figure 5(c) (or Figure 5(b) and Figure 
5(d)), we can see that the result of the local strategy is 
better than that of the random strategy. Because when 
the degree of a target node is larger, it will have more 
choices when selecting the driver nodes.

5.3. N_con Over Average Degree of Network
From Figure 5, we can initially see that the average 
degree of network has a certain impact on the meth-
od. Hence, the next step is to explore the influence of 
network average degree. Figure 6 shows the relation-
ship between them. From the overall picture of the four 
images, the growth in average degree will indeed bring 
about an improvement in the control effect _N con . 
In Figure 6(a) and 6(b), the increase in ER network is 
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slightly higher than that in SF network. However, in 
Figure 6(b), the curve is nearly no rising with the aver-
age degree increasing. When the average degree of the 
SF network increases, a small part of nodes with high 
degrees will have more chances of driver nodes selec-
tion, and most nodes have no obvious changes. Figure 
6(c) and 6(d) also show the same phenomenon. Howev-
er, in ER networks, the increase in the average degree of 
a network leads to higher returns for that it leads to an 
increase in the chance of selection for each node.

5.4. Network Designation Suggestions
At the beginning of the design of a network, we can 
reserve a part of the nodes as possible driver nodes to 

Figure 5
Algorithm efficiency of different scale target nodes. The metric of the driver node N_con is a function of the target nodes 
selection ratio in the graph. The blue and green lines represent our DC method and common target control method, 
respectively. (a) taking the random strategy under the average degree of 5, (c) taking the local strategy under the average 
degree of 5. And (b) and (d) show the cases with an average of 7 degree. The size of SF networks is N = 3000. All the 
simulation results are obtained by averaging over 20 independent networks realizations
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control the target nodes as efficient as possible. Thus, 
how to choose this part of the nodes is a very import-
ant issue. It can be seen that the nodes with larger 
degrees have higher possibility to control more nodes 
from the process of selecting the driver nodes of tar-
get control. Therefore, we use the nodes with larger 
degrees as the pre-designated CNs. Because this in-
stance shows the difference in the effects of the two 
strategies (one is CNs with higher degrees, the other 
is CNs chosen randomly), the size of the networks is 
only 1000N = . As shown in Figure 7, under either lo-
cal or random strategy, nodes with higher degrees of 
selection will have better results. As the network av-
erage degree increases, the pre-selected constrained 
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Figure 6 
Driver efficiency under different network average degrees. This figure captures the functional relationship between the N_con 
and the network average (k). The blue and green lines represent our method and target control method, respectively. The 
selection ratio of target nodes in the networks is 20%, the constrained node of the network is Cp = 30%, and the scale of the 
network is N = 3000. All the simulation results are obtained by averaging over 20 independent networks realizations. (a) ER 
network, random strategy; (b) SF network, random strategy; (c) SF network, local strategy; (d) ER network local strategy

Figure 7 
Algorithm efficiency under constrained nodes with higher out-degrees. X axis is the average of networks, and Y axis is 
N_con index. The size of the network becomes N = 1000. The percent of target nodes is 20%. The green lines represent the 
result of constrained nodes with higher out-degree, and the blue lines represent that with random out-degree. (a) Random 
strategy; (b)Local strategy

  

At the beginning of the design of a network, we 
can reserve a part of the nodes as possible driver 
nodes to control the target nodes as efficient as 
possible. Thus, how to choose this part of the 
nodes is a very important issue. It can be seen that 
the nodes with larger degrees have higher 
possibility to control more nodes from the process 
of selecting the driver nodes of target control. 
Therefore, we use the nodes with larger degrees as 
the pre-designated CNs. Because this instance 
shows the difference in the effects of the two 
strategies (one is CNs with higher degrees, the 
other is CNs chosen randomly), the size of the 
networks is only 1000N = . As shown in Figure 7, 
under either local or random strategy, nodes with 
higher degrees of selection will have better results. 
As the network average degree increases, the pre-
selected constrained nodes with larger degrees will 
no longer have advantages, and the two curves 
will gradually approach. This can be clearly 
observed from the picture. 
Figure 6  

Driver efficiency under different network average 
degrees. This figure captures the functional relationship 
between the N_con and the network average (k). The 
blue and green lines represent our method and target 
control method, respectively. The selection ratio of target 
nodes in the networks is 20%, the constrained node of 
the network is Cp = 30%, and the scale of the network is 
N = 3000. All the simulation results are obtained by 
averaging over 20 independent networks realizations. 
(a) ER network, random strategy; (b) SF network, 
random strategy; (c) SF network, local strategy; (d) ER 
network local strategy 

 
Finally, we verified the effectiveness of the method 
through 16 real networks containing: foodweb, 
transcription, citation and Internet networks, etc. 
The results are shown in Table 2. Our approach 
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nodes with larger degrees will no longer have advan-
tages, and the two curves will gradually approach. 
This can be clearly observed from the picture.

6. Conclusion
In real networks, the input signals may not be applied 
to some nodes for many different reasons. This paper 
explored a target control framework which is used in 
complex network under the condition that the DN are 
constrained. We raise this method through changing 
the matching strategy in the iteration process. Our 
method is proved effective in the experiments on SF 
and ER networks. We also verified our method on real 
data sets. Through this method, we solve the target 
control under constrained driver nodes situation prob-

Table 2
Real data sets results. N means the number of nodes in a network; L means that of edges; <K> represents the average 
degree; NTCL, NDCL, NTCR, NDCR represent N_con in the following 4 situations: common target control method under local 
strategy, DC method under local strategy, common target control method under random strategy, DC method under local 
strategy. The selection ratio of the target nodes in the networks is 20%, the rate of constrained nodes of the network is Cp = 
30%. Each data item is the average value of 10 times repeated experiments

lems in some degree. This can be used to constrain the 
driver nodes in real networks to save costs. Or through 
this method, we can control some networks which we 
consider are not target controllable originally. In addi-
tion, we also explored the factors that have influence on 
our DC method. We found that the rate of target nodes 
selection and average degree of network have great in-
fluence on the effect of our DC method.
However, the problem still have many points to study, 
for example: how to make more driver nodes into the 
constrained nodes set; how to change the structure 
of a complex network to make the driver nodes all in 
CNs; the factors that influence the effectiveness of 
constrain DN to the nodes set and the most important 
factor of these kind of problems, etc. These questions 
can bring more and more deep insights to the control 
mechanism of complex networks.

Dataset N L < k > NTCL NDCL NTCR NDCR

s208 122 189 3.10 1.14683 1.65079 1.02579 1.28889

s420 252 399 3.17 0.964866 1.46818 0.964103 1.16429

s838 512 819 3.20 0.922009 1.60465 0.833248 1.23499

Grasslands 88 137 3.11 0.97535 1.37458 0.986148 1.52381

Littlerock 183 2494 27.26 1.05007 1.27903 1.02967 1.22355

Seagrass 49 226 9.22 1.00317 1.3254 1.59444 2.44444

ythan 135 601 8.90 1.03962 1.17897 1.16862 1.618

celegans-metabolic 453 2040 9.01 1.00722 1.07502 0.961172 1.10581

Metabolic-CE 1173 2864 4.88 1.07957 1.72941 1.04025 1.48642

Metabolic-EC 2275 5763 5.07 0.996128 1.66706 0.991521 1.66804

Metabolic-SC 1511 3833 5.07 0.949767 1.62123 1.02787 1.63297

TRN-EC-Alon 481 519 2.16 1.00146 1.24606 0.946631 1.14837

prison 67 182 5.43 0.905556 1.33333 1.92222 2.65556

polblogs 1490 19025 25.54 1.04765 1.13332 1.11063 1.22623

Tr1 4440 12873 5.80 0.944061 1.11228 1.02702 1.1925

Tr2 688 1079 3.14 1.04979 1.14423 0.993555 1.21228
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