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One extension of mel-frequency cepstral feature vector for automatic speaker recognition is considered in this 
paper. The starting feature vector consisted of 18 mel-frequency cepstral coefficients (MFCCs). The extension 
was done with two additional features derived from the appropriate spectral maximums of the speech signal. 
The main idea behind this research is that it is possible to increase the accuracy of automatic speaker recogni-
tion which uses only MFCCs by adding additional features based on the energy maximums in the appropriate 
frequency ranges of observed speech frames. In the experiments, accuracy and equal error rate (EER) are com-
pared in the case when feature vectors contain only MFCCs and in cases when additional features are used. 
For the case of maximum recognition accuracy achieved (92.94%), recognition accuracy increased by around 
2.43%. EER values have smaller differentiation, but the results show that adding proposed additional features 
produced a lower decision threshold. These results indicate that tracking of proposed spectral maxima in the 
spectrum of the speech signal leads to more accurate automatic speaker recognizer. Determining features 
which track real maxima in the speech spectrum will improve the procedure of automatic speaker recognition 
and enable avoiding complex models.
KEYWORDS: Speaker recognition, spectrum, mel-frequency cepstral coefficients, energy, maximum.

1. Introduction
Mel-frequency cepstral coefficients (MFCCs) are 
introduced as features that can track the spectral 
envelope of the speech signal. These features are 
widely used as short-term speaker features [3, 21, 35, 
10]. Spectral subband centroids (SSCs) are also used 
as features for speaker recognition [33, 24, 30, 22]. 
These features give the locations of local maxima of 
the power spectrum, the centroid frequencies of sub-
bands. The concatenation of these features and MF-
CCs brings about better results in speaker recogni-
tion with respect to the case when only MFCCs used. 
To allow better adaptation to dynamic phenomena 
in speech, adaptive SSCs were proposed in [22]. The 
Normalized Dynamic Spectral Features (NDSF), pro-
posed in [7], are found to be more robust than cepstral 
features. In addition, speaker verification combining 
MFCCs with the Spectral Dimension (SD) features, 
proposed in [5], enhances performance more than the 
method that is based only on MFCCs. 
Speech data from the freely available CHAINS corpus 
[8] were used for the experiments in this paper. The 
speech parametrization algorithm [12], based on the 
AM-FM representation of the speech signal, was test-
ed using speech data provided by the CHAINS corpus. 
Paper [13] presents an experimental evaluation of the 
effect of different speech styles on speaker identifica-
tion and test of applicability of speech parameteriza-
tion based on the pyknogram frequency estimate coef-
ficients – pykfec, also by using CHAINS corpus.

Additional research on MFCCs features or some fea-
tures derived from the spectrum is important because 
MFCCs are widely used features in voice applications 
or sound recognition, in general; MFCCs are used in 
application for speech recognition [14, 9, 1], emotion 
recognition from speech [28, 29, 2], but also for recog-
nition of some other sounds [6, 4, 25, 27]. In addition, 
the exact determination of features based on the spec-
trum analysis can contribute to better speech synthe-
sis or sound synthesis, in general, based on the  har-
monic generation [23]. The quality of this synthesizer 
or performance of any automatic recognizer of speech, 
speaker, emotion or sound depends on the quality of 
the input circuit of these devices; in fact, it depends on 
the quality of the quantizer used. Therefore, it is signif-
icant to examine the performance of the quantizer [32]. 
Research on the determination of speech features, or 
sound features, in general, based on the spectrum anal-
ysis, can also contribute to the construction of quantiz-
ers for sub-band coding of audio [36].
The determination of MFCCs is based on the applica-
tion of discrete cosine transform on logarithm ener-
gies in the appropriate sub-bands of a signal, as repre-
sented in the following equation [37]:
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This is a formula for the determination of M 
MFCCs and Ek is the energy inside 
appropriate k-th filter section, i.e. k-th sub-
band. These sections are fixed in the mel 
scale. They are 300 mel wide and mutually 
shifted by 150 mel. By using equality 
between the mel and hertz scale: 
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boundaries of the appropriate sub-band in 
the mel scale can be recalculated in the hertz 
scale. For a known sampling frequency sf  
and the number of points N of the discrete 
Fourier transform (DFT), the discrete 
frequency m of the component on the 
continuous frequency f can be determined 

from the equality 
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where ( )mX  is the amplitude of DFT of the 
observed signal ( )nx . These filter sections are 
introduced to simulate filtering inside 
auditory critical bands and masking 
phenomena. Masking phenomena depend on 
masking and masked spectral components. 
The experiments in [17] have shown that the 
recognizer which uses an exponential shape 
of the amplitude square of applied filter 
sections outperforms cases when triangular 
or rectangular shapes are used. This can be 
explained by the fact that an exponential 
function has a higher slope with respect to a 
linear function, which is why the exponential 
critical bands better describe masking than 
the triangular ones. At the same time, we can 
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experiments in [17] have shown that the recognizer 
which uses an  exponential shape of the amplitude 
square of applied filter sections outperforms cas-
es when triangular or rectangular shapes are used. 
This can be explained by the fact that an exponential 
function has a higher slope with respect to a linear 
function, which is why the exponential critical bands 
better describe masking than the triangular ones. At 
the same time, we can mention that, since the spectral 
bands are fixed, real masking was not taken into ac-
count in Equation (1). Therefore, the  determination 
of MFCCs in Equation  (1) in fact does not take into 
consideration the real perceived spectrum of signal 
[19], since the maximums of applied frequency selec-
tive filters in Equation (1) are not strictly positioned 
at the frequencies of real maximums in the spectrum. 
This fact justifies research on the features which 
would be the picture of the real perceived spectrum in 

the signal, i.e. which track the real spectral maxima in 
the signal.
Automatic speaker recognition based on the use of 
short-term features, such as MFCCs, implies the de-
termination of a model for the appropriate speaker. 
This model should represent a compact picture of the 
speaker. Covariance matrix is a compact representa-
tion of energies in the  appropriate components, i.e. 
dimensions and between dimensions. For the set of n 
feature vectors grouped in the matrix X, whose vector 
of mean values is μ, the appropriate covariance matrix 
is calculated by the equation:
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In reality, a model depends on the sample 
analyzed; it is the matrix of feature vectors X in 
Equation (4). It would be ideal if the model had 
the property of wholeness. Wholeness implies that 
for any sample of the same speaker, i.e. the matrix 
X, the calculated model is the same. In fact, this is 
a very hard request for the model. Covariance 
matrix as the model of speaker, as well as most 
other models, depends on the statistics of the 
source which is modeled. Application of principal 
component analysis (PCA) increases compactness 
and wholeness of the model [15]. PCA and other 
transformations, which are based on the 
additional matrix calculation, require additional 
calculation. In that manner, as the number of 
samples increases, the execution time increases as 
well [38], which additionally slows down the 
application for automatic speaker recognition. 
Weighting of the elements of a model can also 
increase compactness and wholeness of the model 
[16]. The algorithm of weighting of the elements of 
a model is simpler than PCA, but, in fact, both 
PCA and weighting of the elements of a model 
depend on the observed sample (on the training 
set, to be more precise). As is evident from the 
previous mention of PCA and weighting of the 
elements of a model and also from the literature 
[34, 31, 20, 11], it is possible to use more complex 
models and in such a way tend to the most perfect 

decision making. However, the real reason 
why the model is not whole is in the features 
used. This is the basic idea of this paper: to 
find features with which similar efficiency of 
recognition will be achieved as in the case 
when MFCCs and more complex procedures 
of modeling and decision making are used. 
These features, MFCCs, are oriented to 
tracking statistics of the speaker voice and 
not tracking real and accurate reasons why 
the observed voice has certain properties. 
Real spectral maximums can be attenuated 
because of the descending amplitude 
characteristic of the filters used for MFCCs 
determination. Therefore, the model based 
on the use of usually determined MFCCs, as 
in Equation (1), does not represent the whole 
picture of the observed speaker. If we can 
achieve compactness and wholeness of 
a model, then our model will be more 
efficient. Application of PCA or some similar 
transformations, for example, can increase 
the efficiency of an algorithm for automatic 
speaker recognition. Efficiency of PCA or 
pondering of elements of the covariance 
matrix show that these transformations result 
in a more compact model. Such models are 
more desirable since they better catch the 
essential property of the object of modeling, 
i.e. they provide a better differentiation 
between models of different speakers. In this 
way, their property of wholeness can be 
increased as well. The fact that models 
derived from MFCCs can be more compact 
indicates that the used features can also be 
more compact; in fact, there is a free space for 
achieving more compact features. From the 
perspective of information theory, our 
models also contain a certain amount of 
irrelevant information. If we can suppress 
this irrelevant information, then the resultant 
model will be a more suitable representation 
of the appropriate speaker. The model is a 
direct consequence of the features 
determined. Therefore, the existence of 
algorithms which, applied on the model, 
contribute to better performance of the 
automatic speaker recognizer indicates that 
we do not determine essential features of the 
speaker of interest. Assume that we have a 
voice recording of a speaker. For this 
recording we can determine vectors of square 
of amplitude of the discrete Fourier 
transform. It is obvious that if we have two 
different recordings of the same speaker, the 
spectrums will also be different although the 
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ing are used. These features, MFCCs, are oriented to 
tracking statistics of the speaker voice and not track-
ing real and accurate reasons why the observed voice 
has certain properties. Real spectral maximums can 
be attenuated because of the descending amplitude 
characteristic of the filters used for MFCCs determi-
nation. Therefore, the model based on the use of usu-
ally determined MFCCs, as in Equation (1), does not 
represent the whole picture of the observed speak-
er. If we can achieve compactness and wholeness of 
a model, then our model will be more efficient. Appli-
cation of PCA or some similar transformations, for ex-
ample, can increase the efficiency of an algorithm for 
automatic speaker recognition. Efficiency of PCA or 
pondering of elements of the covariance matrix show 
that these transformations result in a more compact 
model. Such models are more desirable since they 
better catch the essential property of the object of 
modeling, i.e. they provide a better differentiation be-
tween models of different speakers. In this way, their 
property of wholeness can be increased as well. The 
fact that models derived from MFCCs can be more 
compact indicates that the used features can also be 
more compact; in fact, there is a free space for achiev-
ing more compact features. From the perspective of 
information theory, our models also contain a certain 
amount of irrelevant information. If we can suppress 
this irrelevant information, then the resultant model 
will be a more suitable representation of the appro-
priate speaker. The model is a direct consequence of 
the features determined. Therefore, the existence of 
algorithms which, applied on the model, contribute 
to better performance of the automatic speaker rec-
ognizer indicates that we do not determine essential 
features of the speaker of interest. Assume that we 
have a voice recording of a speaker. For this record-
ing we can determine vectors of square of amplitude 
of the discrete Fourier transform. It is obvious that if 
we have two different recordings of the same speak-
er, the spectrums will also be different although the 
speaker is the same. Hearing, i.e. perceiving the same 
timbre is the consequence of some essential features 
that remained unchanged. Therefore, our target is to 
track real voice features, through proposed spectral 
maxima in this paper and find its essential features in 
this way. Recordings of the same speaker are similar 
from his or her own point of view. This similarity is a 
feature of the speaker. If we can accurately determine 

this feature, we can expect a more effective perfor-
mance of the automatic speaker recognizer.
In the next chapter we will describe the speaker rec-
ognizer used and the way in which additional features 
are determined. After that results are represented, it 
is compared the case when only MFCCs are used as 
features and the case when proposed additional fea-
tures are used.

2. Automatic Speaker Recognizer 
Used and Experimental Setup
The used automatic speaker recognizer was organized 
with the aim of achieving more efficient features than 
in the case when only MFCCs as features were used. 
The feature vector of 18 MFCCs was used as a basic 
feature vector. MFCCs were calculated by using Equa-
tion (1). It was used 20 filter sections (Figure 1), 300 
mel wide and mutually shifted by 150 mel. This ar-
rangement of filters was taken from [37]. The arrange-
ment covers the spectral range from 0 to 3150 mel, i.e. 
from 0 to 11453 Hz. The square of the amplitude of ap-
plied filter sections is of exponential shape [17]:
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Figure 1 

Arrangement of 20 applied filter sections. 
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The speaker recognizer with these 
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square characteristic, proved to be efficient in 
our previous experiments [17, 18]. Therefore, 
this recognizer was the starting point for 
further experiments, described in this paper, 
towards achieving more efficient feature 
vector by adding additional features. The 
model used is determined by Equation (4). 
The matrix X in Equation (4) for the set of n 
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the first feature vector is located in the first 
column of the matrix X, and so on. For 
example, the i-th feature vector is located in 
the i-th column of the matrix X. The measure 
of the difference between models, Equation 
(6), and decision making were not changed 
compared to our earlier experiments. The 
difference between the two models was 
determined with the equation: 

( ) ( ) ( )∑∑
= =

Σ−Σ⋅=ΣΣ
f fn

m

n

n
refi

f
refi nmnm

n
d

1 1
2 ,,1, ,     (6) 

where nf represents the number of features 
used. Two tests were performed, the test of 
identification and the test of verification. 
Testing of the algorithm was conducted on 
the Solo part of the publicly available speech 
database CHAracterizing INdividual 
Speakers (CHAINS) [8]. The Solo part is 
characterized by speaking style: subjects 
simply read a prepared text at a comfortable 
rate. The used part of the CHAINS speaker 
database contains recordings of 36 speakers. 
28 speakers speak the same dialect - 12 
females and 16 males from the Eastern part of 
Ireland. 1 female and 2 males are from the 
United Kingdom, whereas 3 females and 2 
males are from the USA.  Each of the speakers 
has 37 recordings. Four of these 37 recordings 
for each speaker represent longer recordings 
of short fables, whose duration is between 
around half a minute to approximately one 
minute. The titles of these recordings contain 
labels: f01, f02, f03, f04. The remaining 33 
recordings of 33 individual sentences, whose 
names contain labels s01, s02, ...., s33, are 
shorter in duration, around two to three 
seconds. These 33 recordings were used in the 
speaker recognition experiments described in 
this paper. The recordings are in wav format, 
their sampling rate is 44100 Hz and the 
quantization is 16 bit PCM. 

(5)

  

speaker is the same. Hearing, i.e. perceiving the 
same timbre is the consequence of some essential 
features that remained unchanged. Therefore, our 
target is to track real voice features, through 
proposed spectral maxima in this paper and find 
its essential features in this way. Recordings of the 
same speaker are similar from his or her own 
point of view. This similarity is a feature of the 
speaker. If we can accurately determine this 
feature, we can expect a more effective 
performance of the automatic speaker recognizer. 

In the next chapter we will describe the speaker 
recognizer used and the way in which additional 
features are determined. After that results are 
represented, it is compared the case when only 
MFCCs are used as features and the case when 
proposed additional features are used. 

 

2. Automatic Speaker Recognizer 
Used and Experimental Setup 

The used automatic speaker recognizer was 
organized with the aim of achieving more efficient 
features than in the case when only MFCCs as 
features were used. The feature vector of 18 
MFCCs was used as a basic feature vector. MFCCs 
were calculated by using Equation (1). It was used 
20 filter sections (Figure 1), 300 mel wide and 
mutually shifted by 150 mel. This arrangement of 
filters was taken from [37]. The arrangement 
covers the spectral range from 0 to 3150 mel, i.e. 
from 0 to 11453 Hz. The square of the amplitude of 
applied filter sections is of exponential shape [17]: 

( )
( )

( )






≤<
≤≤

= ⋅−−

⋅−

.,
,,

,2,
2

,,1
2

2
,

,

nnc
kk

ncn
kk

kkke
kkke

kA
nc

nc

                          (5) 

2
,2,1

,
nn

nc

kk
k

+
=  is the central discrete frequency 

of n-th filter section, nk ,1  is the lower and nk ,2  is the 
higher discrete frequency of n-th filter section. 

 
Figure 1 

Arrangement of 20 applied filter sections. 

 
            2A                                                                                                              
             1                                              . . .                                                                 
      
 
 
                 0      150       300     450  . . .  2850           3150  [ ]melf                                                                         
                1,1f    2,1f        1,2f     2,2f  . . .  20,1f            20,2f    [ ]Hzf  

 

The speaker recognizer with these 
characteristics, 18 MFCCs and 20 filter 
sections with the exponential amplitude 
square characteristic, proved to be efficient in 
our previous experiments [17, 18]. Therefore, 
this recognizer was the starting point for 
further experiments, described in this paper, 
towards achieving more efficient feature 
vector by adding additional features. The 
model used is determined by Equation (4). 
The matrix X in Equation (4) for the set of n 
feature vectors is formed in such a way that 
the first feature vector is located in the first 
column of the matrix X, and so on. For 
example, the i-th feature vector is located in 
the i-th column of the matrix X. The measure 
of the difference between models, Equation 
(6), and decision making were not changed 
compared to our earlier experiments. The 
difference between the two models was 
determined with the equation: 

( ) ( ) ( )∑∑
= =

Σ−Σ⋅=ΣΣ
f fn

m

n

n
refi

f
refi nmnm

n
d

1 1
2 ,,1, ,     (6) 

where nf represents the number of features 
used. Two tests were performed, the test of 
identification and the test of verification. 
Testing of the algorithm was conducted on 
the Solo part of the publicly available speech 
database CHAracterizing INdividual 
Speakers (CHAINS) [8]. The Solo part is 
characterized by speaking style: subjects 
simply read a prepared text at a comfortable 
rate. The used part of the CHAINS speaker 
database contains recordings of 36 speakers. 
28 speakers speak the same dialect - 12 
females and 16 males from the Eastern part of 
Ireland. 1 female and 2 males are from the 
United Kingdom, whereas 3 females and 2 
males are from the USA.  Each of the speakers 
has 37 recordings. Four of these 37 recordings 
for each speaker represent longer recordings 
of short fables, whose duration is between 
around half a minute to approximately one 
minute. The titles of these recordings contain 
labels: f01, f02, f03, f04. The remaining 33 
recordings of 33 individual sentences, whose 
names contain labels s01, s02, ...., s33, are 
shorter in duration, around two to three 
seconds. These 33 recordings were used in the 
speaker recognition experiments described in 
this paper. The recordings are in wav format, 
their sampling rate is 44100 Hz and the 
quantization is 16 bit PCM. 
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decision making were not changed compared to our 
earlier experiments. The difference between the two 
models was determined with the equation:

  

speaker is the same. Hearing, i.e. perceiving the 
same timbre is the consequence of some essential 
features that remained unchanged. Therefore, our 
target is to track real voice features, through 
proposed spectral maxima in this paper and find 
its essential features in this way. Recordings of the 
same speaker are similar from his or her own 
point of view. This similarity is a feature of the 
speaker. If we can accurately determine this 
feature, we can expect a more effective 
performance of the automatic speaker recognizer. 

In the next chapter we will describe the speaker 
recognizer used and the way in which additional 
features are determined. After that results are 
represented, it is compared the case when only 
MFCCs are used as features and the case when 
proposed additional features are used. 

 

2. Automatic Speaker Recognizer 
Used and Experimental Setup 

The used automatic speaker recognizer was 
organized with the aim of achieving more efficient 
features than in the case when only MFCCs as 
features were used. The feature vector of 18 
MFCCs was used as a basic feature vector. MFCCs 
were calculated by using Equation (1). It was used 
20 filter sections (Figure 1), 300 mel wide and 
mutually shifted by 150 mel. This arrangement of 
filters was taken from [37]. The arrangement 
covers the spectral range from 0 to 3150 mel, i.e. 
from 0 to 11453 Hz. The square of the amplitude of 
applied filter sections is of exponential shape [17]: 
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where nf represents the number of features 
used. Two tests were performed, the test of 
identification and the test of verification. 
Testing of the algorithm was conducted on 
the Solo part of the publicly available speech 
database CHAracterizing INdividual 
Speakers (CHAINS) [8]. The Solo part is 
characterized by speaking style: subjects 
simply read a prepared text at a comfortable 
rate. The used part of the CHAINS speaker 
database contains recordings of 36 speakers. 
28 speakers speak the same dialect - 12 
females and 16 males from the Eastern part of 
Ireland. 1 female and 2 males are from the 
United Kingdom, whereas 3 females and 2 
males are from the USA.  Each of the speakers 
has 37 recordings. Four of these 37 recordings 
for each speaker represent longer recordings 
of short fables, whose duration is between 
around half a minute to approximately one 
minute. The titles of these recordings contain 
labels: f01, f02, f03, f04. The remaining 33 
recordings of 33 individual sentences, whose 
names contain labels s01, s02, ...., s33, are 
shorter in duration, around two to three 
seconds. These 33 recordings were used in the 
speaker recognition experiments described in 
this paper. The recordings are in wav format, 
their sampling rate is 44100 Hz and the 
quantization is 16 bit PCM. 
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where nf represents the number of features used. Two 
tests were performed, the test of identification and 
the test of verification. Testing of the algorithm was 
conducted on the Solo part of the publicly available 
speech database CHAracterizing INdividual Speak-
ers (CHAINS) [8]. The Solo part is characterized by 
speaking style: subjects simply read a prepared text 
at a comfortable rate. The used part of the CHAINS 
speaker database contains recordings of 36 speakers. 
28 speakers speak the same dialect - 12 females and 
16 males from the Eastern part of Ireland. 1 female 
and 2 males are from the United Kingdom, where-
as 3 females and 2 males are from the USA.  Each 
of the  speakers has 37 recordings. Four of these 37 
recordings for each speaker represent longer re-
cordings of short fables, whose duration is between 
around half a minute to approximately one minute. 
The titles of these recordings contain labels: f01, f02, 
f03, f04. The remaining 33 recordings of 33 individu-
al sentences, whose names contain labels s01, s02, ...., 
s33, are shorter in duration, around two to three sec-
onds. These 33 recordings were used in the speaker 
recognition experiments described in this paper. The 
recordings are in wav format, their sampling rate is 
44100 Hz and the quantization is 16 bit PCM.
In the initial test of identification for each of the 36 
speakers, one of the recordings, marked with s15, was 
used for training. Each of the 33 recordings of each 
speaker represents the speaker’s voice through the 
pronunciation of one predefined sentence. Speak-

er’s voice gives information about identity of speak-
er, therefore in all of 33 recordings of one speaker is 
hidden information about identity of that speaker. 
Speaker’s identity is a constant which is searched in 
the process of automatic speaker recognition. Since 
all of 33 recordings of one speaker contain this con-
stant, it is sufficient and necessary to do training by 
using one of these 33 recordings. In the practical im-
plementation of the automatic speaker recognizer, ef-
ficiency depends on the features used and the model 
determined. MFCCs based on a short-term spectral 
analysis depend on the sample, i.e. the recording being 
analyzed, which is why they do not directly point to the 
searched constant in the speaker’s voice. MFCCs de-
pend on the text pronounced in recording. Therefore, 
the efficiency of the recognizer depends on balance, 
i.e. congruence between test and training recordings. 
Having in mind this property of MFCCs, it is neces-
sary to use phonetically richer training recordings. In 
accordance with this, our tendency is to develop an al-
gorithm which will be able to recognize the constant 
in the speaker’s voice. Being aware that our recognizer 
is based on the use of MFCCs, which depend on the 
spoken text, we used the recording s15 for training 
since the sentence pronounced in this recording is one 
of the longest. Thus, it can be expected that training 
based on s15 recording will result in better accuracy 
of the recognizer in comparison with most of the cas-
es when one of the other 32 recordings was used for 
training. The sentence pronounced in the recordings 
marked with s15 is: “Each untimely income loss coin-
cided with the breakdown of a  heating system part”. 
During testing, the models of other recordings that are 
not used in training were observed and compared with 
36 reference models. Identity of the most similar ref-
erence model in terms of Equation (6) was attributed 
to the analyzed test recording. In the initial test of ver-
ification, one of the short recordings of every speaker, 
marked with s15, was chosen as a training recording 
for creating one reference model. Other recordings 
were employed for the appropriate value of the deci-
sion threshold during determinations of the proba-
bility of false rejection and false acceptance. Decision 
threshold was varied to get equal error rate (EER), the 
case when the probability of false rejection is equal to 
the probability of false acceptance.
It is possible to derive features for an efficient auto-
matic speaker recognition from the speech spectrum. 
Therefore, the impact of two additional features 
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characteristics, 18 MFCCs and 20 filter 
sections with the exponential amplitude 
square characteristic, proved to be efficient in 
our previous experiments [17, 18]. Therefore, 
this recognizer was the starting point for 
further experiments, described in this paper, 
towards achieving more efficient feature 
vector by adding additional features. The 
model used is determined by Equation (4). 
The matrix X in Equation (4) for the set of n 
feature vectors is formed in such a way that 
the first feature vector is located in the first 
column of the matrix X, and so on. For 
example, the i-th feature vector is located in 
the i-th column of the matrix X. The measure 
of the difference between models, Equation 
(6), and decision making were not changed 
compared to our earlier experiments. The 
difference between the two models was 
determined with the equation: 
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where nf represents the number of features 
used. Two tests were performed, the test of 
identification and the test of verification. 
Testing of the algorithm was conducted on 
the Solo part of the publicly available speech 
database CHAracterizing INdividual 
Speakers (CHAINS) [8]. The Solo part is 
characterized by speaking style: subjects 
simply read a prepared text at a comfortable 
rate. The used part of the CHAINS speaker 
database contains recordings of 36 speakers. 
28 speakers speak the same dialect - 12 
females and 16 males from the Eastern part of 
Ireland. 1 female and 2 males are from the 
United Kingdom, whereas 3 females and 2 
males are from the USA.  Each of the speakers 
has 37 recordings. Four of these 37 recordings 
for each speaker represent longer recordings 
of short fables, whose duration is between 
around half a minute to approximately one 
minute. The titles of these recordings contain 
labels: f01, f02, f03, f04. The remaining 33 
recordings of 33 individual sentences, whose 
names contain labels s01, s02, ...., s33, are 
shorter in duration, around two to three 
seconds. These 33 recordings were used in the 
speaker recognition experiments described in 
this paper. The recordings are in wav format, 
their sampling rate is 44100 Hz and the 
quantization is 16 bit PCM. 
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whose calculation is based on the energy spectrum of 
the signal analyzed is examined in this paper. Since 
the sampling frequency in the CHAINS database is 
44100 Hz, speech frames of N=1024 samples were 
analyzed, the duration of which was around 23.2 ms. 
They were mutually shifted by 368 samples, whose 
duration was around 8.3 ms. Experimental setup was 
oriented to examining how additional features based 
on the signal energy influence the accuracy of the pre-
viously adopted recognizer [17, 18] which is based on 
the use of first 18 MFCCs as features. Feature vectors 
were extended by two additional features. We tracked 
the impact of these features on recognition accura-
cy in the test of identification and the impact on the 
equal error rate in the test of verification. In what fol-
lows, the first additional feature is denoted by 1e  and 
the second additional feature by 2e . 
The additional features were determined based on 
observing maximum spectral values in the appropri-
ate spectral ranges. Since the amplitude spectrum is 
a symmetric function of frequency, only the first N/2 
coefficients of the  discrete Fourier transform (DFT) 
were analyzed. The DFT was analyzed in N=1024 
points. For reasons of symmetry, the amplitude spec-
trum ranging from 0 to 511 was analyzed. In the ini-
tial experiments, all DFT coefficients in the range of 
normalized frequencies from k=0 to k=511 were ob-
served in order to calculate the additional feature 1e
. The spectral maximum was searched in that range, 
but this gave poor recognition accuracy. The infor-
mation about the speaker identity is contained in 
higher spectral components, i.e. in higher harmonics 
[26]. Therefore, the lower boundary for calculation 
of the additional feature 1e  was raised. After sev-
eral repeated experiments of recognition, based on 
the best achieved recognition accuracy, the range of 
normalized frequencies from k=25 to k=511 was ob-
served for 1e  feature. The amplitude maximum of 
DFT was searched in this range. The natural loga-
rithm of square of the module of the discrete Fourier 
transform coefficient (KMDFT) was considered and 
its maximum value was searched. Since fullness in 
the perception of a sound is the consequence of DFT 
components which are in the nearest neighborhood 
of the maximum DFT coefficient, natural logarithms 
of energies of two DFT coefficients in immediate sur-
roundings of the maximum were also considered for 
determining the 1e  feature. The calculation of the ad-

ditional feature 1e  was done in two steps. In the first 
step, the summation of the natural logarithm of the 
maximal value of KMDFT in the range of normalized 
frequencies from k=25 to k=511, max1, and the natu-
ral logarithm values of KMDFT of two coefficients 
in immediate surroundings was determined. If the 
maximal value max1 is determined for the normalized 
frequency k1, then this part of the algorithm can be de-
scribed by the equation:

  

which are in the nearest neighborhood of the 
maximum DFT coefficient, natural logarithms of 
energies of two DFT coefficients in immediate 
surroundings of the maximum were also 
considered for determining the 1e  feature. The 
calculation of the additional feature 1e  was done in 
two steps. In the first step, the summation of the 
natural logarithm of the maximal value of KMDFT 
in the range of normalized frequencies from k=25 
to k=511, max1, and the natural logarithm values of 
KMDFT of two coefficients in immediate 
surroundings was determined. If the maximal 
value max1 is determined for the normalized 
frequency k1, then this part of the algorithm can be 
described by the equation: 

( ) ( )( ),lnmaxln
2

0
2

11ln1 ∑
≠
−=

++=

i
i

ikkmdftE                          (7) 

where max1 is the square of the module of maximal 
DFT coefficient in the range from k=25 to k=511 in 
the observed frame. Finally, the additional feature 

1e  was calculated by weighting of its value 
calculated in the previous step with respect to a 
maximal component of KMDFT in all frames, in 
the range 51125 ≤≤ k , and by normalization with 
the discrete frequency of max1: 
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where E1ln is the value determined in the first step, 
maxKMDFTall corresponds to maximal KMDFT in 
the range 51125 ≤≤ k  in all frames of the observed 
signal and k1 is the discrete frequency of max1. 
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relation to a position, i.e. the discrete frequency k1 
of the first additional feature. The additional 
feature 2e  is determined in a similar way to the 
first additional feature 1e , Figure 2. First, the 
maximum of KMDFT, max2, in the previously 
defined spectral range was determined and the 
following summation was calculated: 
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where max2=kmdft(k2). After that, the final value of 
the second additional feature 2e  was calculated by 
weighting with respect to the natural logarithm of 
maximal KMDFT in all frames, in the range 

51125 ≤≤ k , of the observed recording, 
ln(maxKMDFFTall), and normalized by the discrete 

frequency of max2, k2: 
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Figure 2 

Illustration of typical form of the KMDFT from k=0 
to k=511 with marked k1=62 of max1 and k2=102 of 
max2 corresponding to one speech frame, 
additional features good follow spectral 
maximums in signal. Illustration is given for the 
eighth frame of the signal frf01_s15_solo.wav.  
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Focusing on features which will be used 
increases efficiency of the system which uses 
these features. If we observe the equation for 
calculating MFCCs (Equation (1) from the 
introduction chapter) then we can mention 
that, from a geometrical point of view, the 
transformation used in this equation can be 
considered as some kind of a template with 
parameters. Speech signal is a dynamic 
signal. Spectral components are variable in 
time. The problem lies in the fact that the 
template is static. The discrete cosine 
transformation used in Equation (1) for 
the calculation of MFCCs has the appropriate 
parameters, indexes n and k and 
the parameters which describe selective filters 
used. However, bearing in mind possible 
properties of the speech spectrum, this 
equation acts as a template. Since the selective 
filters used in Equation (1) have fixed central 
frequencies and the fixed width, they cannot 
simulate real masking that really occurs in the 
signal. The width of selective filters is 
constant in the mel scale, but its changeability 
in frequency hertz domain and non-accurate 
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time. The problem lies in the fact that the 
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25 51125 ≤≤ k , of the observed recording, ln(maxK-
MDFFTall), and normalized by the discrete frequency 
of max2, k2:
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Focusing on features which will be used increases 
efficiency of the  system which uses these features. 

they cannot simulate real masking that really occurs 
in the signal. The width of selective filters is constant 
in the mel scale, but its changeability in frequency 
hertz domain and non-accurate position can lead to 
the wrong interpretation of spectral components. 
Their descending shape can lead to attenuation of 
wrong components which are not masked in reality. 
In fact, this is the consequence of the fact that we do 
not observe real masking and masked components in 
the spectrum of the observed speech. The approach in 
this paper, which uses a maximal component and two 
components in the nearest maximum environment, 
actually takes into account masking phenomena.
Twenty filters wide 300 mel, mutually shifted by 150 
mel, cover the spectral range of 3150 mel. Using equal-
ity between the mel scale and the hertz scale stated in 
the introductory part of this paper (Equation (2)), the 
range is around 11453 Hz. Recordings in the CHAINS 
speech database were recorded with the sampling fre-
quency of 44100 Hz, therefore their spectral range is 
from 0 to 22050 Hz, i.e. 3923 mel. Thus, before pre-
senting the results when the additional features were 
added to a basic feature vector, we will report the re-
sults of recognition in the case when just one record-
ing (s15) was used for training of each speaker and 
when the number of MFCCs and frequency selective 
filters (300 mel wide and mutually shifted by 150 mel) 
was varied in the available range, the number of filters 
can be increased to 25. We will compare more com-
binations by varying the number of MFCCs and the 
number of filters used. The best recognition accuracy 
of 87.41% was achieved in the configuration of 22 MF-
CCs and 22 filters used. Table 1 provides an overview 
of the best recognition results.

Table 1
Overview of comparisons of recognizer configurations in 
speaker identification for higher values of accuracy with 
respect to configuration 18 MFCCs, 20 filters

Number of MFCCs, number of filters Accuracy [%] 

18 MFCCs, 20 filters 84.03

18 MFCCs, 21 filters 85.33

20 MFCCs, 24 filters 86.28

21 MFCCs, 21 filters

21 MFCCs, 22 filters 

87.33

87.33

22 MFCCs, 22 filters 87.41

Figure 2
Illustration of typical form of the KMDFT from k=0 to 
k=511 with marked k1=62 of max1 and k2=102 of max2 
corresponding to one speech frame, additional features 
good follow spectral maximums in signal. Illustration is 
given for the eighth frame of the signal frf01_s15_solo.wav
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If we observe the equation for calculating MFCCs 
(Equation (1) from the introduction chapter) then we 
can mention that, from a geometrical point of view, 
the transformation used in this equation can be con-
sidered as some kind of a template with parameters. 
Speech signal is a dynamic signal. Spectral compo-
nents are variable in time. The problem lies in the fact 
that the template is static. The discrete cosine trans-
formation used in Equation (1) for the calculation of 
MFCCs has the appropriate parameters, indexes n 
and k and the  parameters which describe selective 
filters used. However, bearing in mind possible prop-
erties of the speech spectrum, this equation acts as a 
template. Since the selective filters used in Equation 
(1) have fixed central frequencies and the fixed width, 
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It is evident that in this case a broader spectral range 
gives better results. For this reason, in the next chap-
ter we will also examine the influence of additional 
features with respect to the configuration with the 
best accuracy.

3. Results
The purpose of the experiments in this paper is to ex-
amine if it is possible to achieve better performance 
of a speaker recognizer by using some additional 
features derived from energy in the signal. The  per-
formance was compared in two different situations: 
when the MFCCs feature vectors were used (18 MF-
CCs, i.e. 22 MFCCs) and when additional features, e1 
from Equation (8) and e2 from Equation (10), were 
used. Two tests were conducted, the test of speak-
er identification and the test of speaker verification. 
The speaker identification test included 1152 tests in 
which only the recording s15 was used for training. 
Therefore, the results of identification accuracy were 
given also relative to this summary number of tests. In 
the speaker identification, when only 18 MFCCs were 
used, accuracy was 968/1152 (84.03%), Table 2. When 
18 MFCCs + e1 were used, accuracy was 999/1152 
(86.72%). Accuracy for a twenty-dimensional feature 
vector consisting of 18 MFCCs + e1 + e2 was 1007/1152 
(87.41%). The same accuracy was achieved by 22 MF-
CCs. The best accuracy in the case when only s15 was 
used for training was achieved for the feature vector 
22 MFCCs + e1 + e2 – 1018/1152 (88.37%).
The probability of false rejection (PFR) and the prob-
ability of false acceptance (PFA) were tested in the 
test of verification. For determining both of these 
probabilities for predefined training set, appropriate 
recordings were observed in the test. During deter-
mining PFR for each speaker, testing was done on 
his or her recordings which were not used for train-
ing. On the other hand, in order to determine PFA 
for each speaker, testing was done on the recordings 
from other speakers. If nt is the number of recordings 
for each of the 36 speakers used for training, then we 
have (33-nt)*36 tests of false rejection and 35*33*36 
tests of false acceptance. PFR is determined as the 
ratio: number of false rejected/((33-nt)*36). PFA 
is determined as the ratio: number of false accept-
ed/(35*33*36). These probabilities depend on the 

threshold. The threshold value was varied to give 
curves of false rejection and false acceptance. The in-
tersection point of these curves represents EER. In a 
practical estimate of EER, when PFR and PFA were 
close in value, for EER we adopted the higher of these 
probabilities. For example, as can be seen in Table 2, 
when for the feature vector 18MFCCs+e1 and thresh-
old τ=0.995, PFR≅14.41% and PFA≅14.17%, the higher 
value is taken for EER, EER≅14.41%. In this way we 
do not make a big error, with respect to the ideal case 
when PFR=PFA=EER, but the algorithm gives the 
result faster. When the feature vector contains only 
18 MFCCs, equal error rate is around 14.42% for the 
threshold value τ=1.025. For the feature vector which 
contains 18 MFCCs and the first additional feature 
(18 MFCCs+e1), EER is around 14.41% for τ=0.995 
and when the feature vector is 18 MFCCs+e1+e2, EER 
is around 15.54% for τ=0.965. Equal error rate shows 
small oscillations around 15%, but the threshold val-
ues show a descending tendency. As we can see in Ta-
ble 2, when the feature vector is based on 22 MFCCs, 
EER is somewhat lower and the threshold values also 
have a descending tendency.
Based on this, it follows that compactness of models 
was increased by adding additional features. These 
results prove that efficiency of an automatic speaker 
recognizer that uses MFCCs as features can be in-
creased only by enhancing features which are used, 
by using additional features derived from the energy 
spectrum of speech.

Table 2
Results of speaker recognition, only s15 used in training

Identification Verification

Feature vector Accuracy[%] EER[%] τ

18 MFCCs 84.03 14.42 1.025

18 MFCCs+e1 86.72 14.41 0.995

18 MFCCs+e2 86.81 14.48 0.983

18 MFCCs+e1+e2 87.41 15.54 0.965

22 MFCCs 87.41 12.93 1.183

22 MFCCs+e1 88.02 13.37 1.1545

22 MFCCs+e2 88.19 13.23 1.1415

22 MFCCs+e1+e2 88.37 13.95 1.1195
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Training only on one recording is too rigorous a con-
dition for the speaker recognizer based on short-term 
features such as MFCCs, therefore, the accuracy is 
relatively low, lower than 90% (and also lower com-
pared to our previous publications [17, 18]). In or-
der to confirm the applicability of the procedure, to 
achieve results of speaker identification higher than 
90%, we used an increased number of recordings for 
training each speaker. Due to the nature of short-term 
features, training must be done on a larger number 
of recordings. The experiments were repeated for 9 
chosen recordings for each speaker used for training. 
This group of recordings is denoted by Г9. Г9 contains 
the following recordings: s15, s33, s01, s07, s05, s31, 
s18, s20, s25. In this case the number of speaker iden-
tification tests is 36*(33-9) = 864.

Table 3
Results of speaker recognition, Г9 used in training

Identification Verification

Feature vector Accuracy[%] EER [%] τ

18 MFCCs 89.58 17.36 0.9526

18 MFCCs + e1 90.51 16.78 0.9326

18 MFCCs + e2 90.28 16.32 0.9155

18 MFCCs + e1+e2 92.36 16.2 0.9

22 MFCCs 90.51 13.426 1.083

22 MFCCs+e1 91.67 12.96 1.0625

22 MFCCs+e2 91.55 12.55 1.0445

22 MFCCs+e1+e2 92.94 12.96 1.0295

An increase in the training set from only s15 record-
ing to Г9 set of nine recordings results in increased 
accuracy. Depending on the feature set used, recog-
nition accuracy varies from 774/864 (89.58%) for the 
feature vector of 18 MFFCs to 803/864 (92.94%) for 
the feature vector 22 MFCCs+e1+e2. The data in Ta-
ble 2 and Table 3 show an obvious increase in recog-
nition accuracy in the case when additional features 
are added. In the case when recognition accuracy is 
the greatest, 92.94% (Table 3), accuracy growth is 
2.43%, between the case when 22 MFCCs are used 
as features and the case when the feature vector is 

extended as 22 MFCCs+e1+e2. As is evident from Ta-
ble 3, the extension of the feature vector from 18 MF-
CCs to 18 MFCCs+e1+e2 increases recognition accu-
racy by 2.78%. The additional features e1 and e2 also 
contribute in approaching each other accuracies of 
speaker recognizers when the feature vectors of 18 
MFCCs+e1+e2 and 22 MFCCs+e1+e2 are used. Also, by 
comparing accuracy values for the feature vector of 18 
MFCCs (89.58%) and the feature vector of 22 MFCCs 
(90.51%), it can be mentioned that the benefit from 
the additional features e1 and e2, 2.43% for 22 MFCCs 
feature vector, i.e. 2.78% for 18 MFCCs feature vector, 
is higher than the benefit from 19th, 20th, 21st and 22nd 
MFCC (90.51% - 89.58% = 0.93%).
Variation of features within one speaker is the reason 
for incorrect speaker recognition. The constant in the 
speaker’s voice cannot be determined because of this 
variation. Therefore, we will present examples which 
demonstrate how the vectors MFCCs+e1+e2 vary with-
in and between speakers. The determination of these 
variations is done for two signals of the same speaker 
and different speakers as well. Since for each of the 
speakers we have one recording of one text, we chose 
recordings of the same textual content for within and 
between speaker variability determination. These 
are the recordings denoted by s20 and s21. The cho-
sen speakers are irm01 and irm16, Figure 3. Summary 
variation for each feature was determined as the sum-
mation of absolute values of difference for each of the 
adjacent frames normalized by the number of frames:
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 ,__.,__. 21 framesofnumframesofnumN =  
num._of_frames1 and num._of_frames2 represent the 
number of frames in the first and second observed 
signal. 

The example of variation within speakers, Figure 3 
(w.sp.), is determined for signals belonging to the 
speaker irm01. These are the recordings marked 
with s20: “The frightened child was gently 
subdued by his big brother” and s21: “The tooth 
fairy forgot to come when Roger’s tooth fell out”. 
The example of variations between speakers 
showed in Figure 3 (b.sp.) is determined for the 
speakers irm01 and irm16, also for the signals s20 
and s21. Except for variation for MFCC22, 
variations for the additional features e1 and e2 are 

the smallest. Variations of MFCC6, MFCC12, 
MFCC18 and MFCC19 have the biggest values. 
Variations of the additional features e1 and e2 
are very similar for within speaker and 
between speaker variations. 

 
Figure 3  

Examples how the vector MFCCs+e1+e2 varies 
within (w.sp. – observed signals: 
irm01_s20_solo.wav and irm01_s21_solo.wav)  and 
between (b.sp. – observed signals: 
irm01_s20_solo.wav and irm16_s21_solo.wav) 
speakers.  
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EER for the recognizer which uses 22 
MFCCs+e1+e2 is below 13%, Table 3. It is also 
evident that when training is done with Г9, 
an extension of feature vectors with the 
additional features e1 and e2 contributes to 
both reduction of EER and reduction of the 
decision threshold. Graphical examples of the 
curves of false rejection and false acceptance 
depending on the threshold value are 
presented in Figure 4. 

A higher spectral band contains 

 num._
of_frames1 and num._of_frames2 represent the num-
ber of frames in the first and second observed signal.
The example of variation within speakers, Figure  3 
(w.sp.), is determined for signals belonging to the 
speaker irm01. These are the recordings marked with 
s20: “The frightened child was gently subdued by his 
big brother” and s21: “The tooth fairy forgot to come 
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when Roger’s tooth fell out”. The example of variations 
between speakers showed in Figure 3 (b.sp.) is deter-
mined for the speakers irm01 and irm16, also for the 
signals s20 and s21. Except for variation for MFCC22, 
variations for the additional features e1 and e2 are the 
smallest. Variations of MFCC6, MFCC12, MFCC18 and 
MFCC19 have the biggest values. Variations of the ad-
ditional features e1 and e2 are very similar for within 
speaker and between speaker variations.

Figure 3 
Examples how the vector MFCCs+e1+e2 varies within 
(w.sp. – observed signals: irm01_s20_solo.wav and irm01_
s21_solo.wav)  and between (b.sp. – observed signals: 
irm01_s20_solo.wav and irm16_s21_solo.wav) speakers

(a) 18MFCCs+е1+е2, 20 filters

(b) 22MFCCs+e1+e2, 22 filters
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EER for the recognizer which uses 22 
MFCCs+e1+e2 is below 13%, Table 3. It is also 
evident that when training is done with Г9, 
an extension of feature vectors with the 
additional features e1 and e2 contributes to 
both reduction of EER and reduction of the 
decision threshold. Graphical examples of the 
curves of false rejection and false acceptance 
depending on the threshold value are 
presented in Figure 4. 
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MFCCs+e1+e2 is below 13%, Table 3. It is also 
evident that when training is done with Г9, 
an extension of feature vectors with the 
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both reduction of EER and reduction of the 
decision threshold. Graphical examples of the 
curves of false rejection and false acceptance 
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presented in Figure 4. 
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EER for the recognizer which uses 22 MFCCs+e1+e2 
is below 13%, Table 3. It is also evident that when 
training is done with Г9, an extension of feature vec-
tors with the additional features e1 and e2 contributes 
to both reduction of EER and reduction of the deci-
sion threshold. Graphical examples of the curves of 
false rejection and false acceptance depending on the 
threshold value are presented in Figure 4.

A higher spectral band contains the  information 
about the speaker [26]. This information is import-
ant for distinguishing between different speakers. By 
using the  template in Equation (1) we do not appro-
priately consider higher spectral components. Thus, 
we lose accurate and precise information about the 
speaker. This problem can be viewed as analogue to 
the problem of uniform quantization and the reason 
why we use non-uniform quantization. In quantiza-
tion, if we want to catch a lot of information we must 
introduce a larger number of quantization levels with 
respect to the case when we have smaller pieces of in-
formation of interest. A similar effect can be achieved 
by finding spectral maximums and calculating the ad-
ditional features e1 and e2. These additional features 
enable us to accurately and precisely target the appro-
priate maximums of energy concentrations, which 
are in fact properties of the observed speaker’s voice 
responsible for the timbre of his or her voice.

Figure 4 
Examples of the curves of false rejection and false 
acceptance depending on the threshold value, Г9 used for 
training 
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the information about the speaker [26]. This 
information is important for distinguishing 
between different speakers. By using the template 
in Equation (1) we do not appropriately consider 
higher spectral components. Thus, we lose 
accurate and precise information about the 
speaker. This problem can be viewed as analogue 
to the problem of uniform quantization and the 
reason why we use non-uniform quantization. In 
quantization, if we want to catch a lot of 
information we must introduce a larger number of 
quantization levels with respect to the case when 
we have smaller pieces of information of interest. 
A similar effect can be achieved by finding spectral 
maximums and calculating the additional features 
e1 and e2. These additional features enable us to 
accurately and precisely target the appropriate 
maximums of energy concentrations, which are in 
fact properties of the observed speaker’s voice 
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that it is possible to develop speech features 
from the spectrum which will be more 
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In addition, the previously mentioned research stud-
ies [12-13], in which the experiments were also per-
formed over the CHAINS speech database, justify 
the view that it is possible to develop speech features 
from the spectrum which will be more efficient than 
commonly used MFCCs. Therefore, the results of 
these studies, as well as the findings presented in this 
paper, show that there is a space where we can find 
more efficient features derived from the spectrum. 

4. Conclusion
The results of this paper prove the fact: As the object 
becomes clearer, i.e. described with more characteris-
tic details, its recognition becomes greater. Introduc-
ing the additional features e1 and e2, the characteristic 
details in energy spectrum which describe local en-
ergy maximums in higher spectral components, it is 
increased clearness of the used models and thus im-
proved accuracy of the used speaker recognizer. MF-
CCs contain information about the  speaker, but the 
results presented in this paper show that this infor-
mation about the speaker identity can be clearer if we 
add the additional features e1 and e2. The calculation 
of MFCCs does not take into account real masking in 
speech signal. Therefore, we lose the clarity of the used 
features. Based on the results of this study, it can be 
concluded that tracking of local maximums in spec-
trum can additionally improve accuracy of the  used 

speaker recognizer. The explanation for this lies in the 
fact that local maximums in the spectrum are real plac-
es of masking in the spectrum. In that manner we can 
only keep on determining as accurate features as possi-
ble and the model can stay covariance matrix.
To achieve clearness of the features and consequently 
of the applied model we must track real characteristic 
properties in the observed speech signal. Each of the 
features in the appropriate feature vector should be 
determined depending on property i.e. characteristic 
of the speaker we want to catch. Since the information 
about speaker identity is contained in the spectrum 
of his or her voice, it is necessary to calculate features 
based on a  detailed analysis of the energy spectrum. 
One solution for the features can be tracking spectral 
maximums and concentration of energy around these 
maximums in the appropriate spectral ranges. In this 
way we can be sure that we will catch real features 
from speech. The first step would be determination of 
the global spectral maximum in the observed speech 
recording. In the next step we would determine oth-
er local spectral maximums. Apart from tracking real 
masking in surroundings of the appropriate local max-
imum, we can also track the real spectral envelope and 
timbre as well.
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