
299Information Technology and Control 2019/2/48

Information Flow Analysis of
Combined Simulink/Stateflow Models

ITC 2/48
Journal of Information Technology
and Control
Vol. 48 / No. 2 / 2019
pp. 299-315
DOI 10.5755/j01.itc.48.2.21759

Information Flow Analysis of Combined
Simulink/Stateflow Models

Received 2018/10/06 Accepted after revision 2019/03/27

 http://dx.doi.org/10.5755/j01.itc.48.2.21759

Corresponding author: marcus.mikulcak@tu-berlin.de

Marcus Mikulcak, Thomas Göthel, Sabine Glesner
Technische Universität Berlin, Software and Embedded Systems Engineering Group Ernst-Reuter-Platz 7, 10587
Berlin, Germany, e-mail: {marcus.mikulcak, thomas.goethel, sabine.glesner}@tu-berlin.de

Paula Herber
University of Münster, AG Embedded Systems Einsteinstraße 62, 48149 Münster,
Germany e-mail: paula.herber@uni-muenster.de

Simulink and its state machine design toolbox Stateflow are widely-used industrial tools for the development of
complex embedded systems. Due to the strongly differing execution semantics of Simulink and Stateflow, the
analysis of combined models poses a difficult challenge, especially when considering their timing behavior. In this
paper, we present a novel approach to relate the semantics of both the dynamic Simulink components and the
Stateflow controller and use it to perform an information flow analysis on combined models. The key idea of our
approach is that we analyze the information flow in a given model by computing an over-approximation of the
control flow through the Simulink components, and deduce whether all control flow conditions combined per-
mit information to flow on a given path or not. The main contributions of our control flow analysis approach are:
(1) we identify timed path conditions which capture the conditions for time-dependent information flow on paths
of interest for (discrete) Simulink components, and translate them into a UPPAAL timed automata representa-
tion, (2) we translate the Stateflow components to UPPAAL timed automata, and (3) we perform model checking
on the translated set of automata in order to analyze the existence of paths in the combined model. With our ap-
proach, we safely rule out the existence of information flow on specific paths through a model, which enables us
to reason about non-interference between model parts and the compliance with security policies. Furthermore,
our approach presents a starting point to generate feasible, efficient test cases and to perform compositional ver-
ification. We demonstrate the applicability of our approach using two versions of a complex case study from the
automotive domain consisting of multiple safety-critical components communicating over a shared bus system.
For this example, an approach based on timed path conditions alone is sound but highly imprecise compared to
our combined approach.
KEYWORDS: Embedded Systems, Information Flow Analysis, UPPAAL, MATLAB, Simulink, Stateflow, Safety.

mailto:obodovskiy58@gmail.com

Information Technology and Control 2019/2/48300

1. Introduction
In the area of safety-critical embedded software, such
as in the automotive and aerospace domains, pro-
gram- ming errors can lead to disastrous and often
fatal accidents. At the same time, the complexity of
such systems has increased dramatically over recent
years. To cope with the steadily increasing complex-
ity, current design processes rely more and more on
models. One of the most widely-used tools for mod-
el-based design is Simulink [28] by MathWorks,
which supports the graphical design and simulation
of time-continuous as well as time-discrete systems
using block diagrams. To additionally support the de-
sign of state machine-based embedded controllers in
conjunction with these dynamical systems, Stateflow
[30], an extension to Simulink, is widely used in in-
dustrial design processes. Simulink and Stateflow are
very well-suited to grasp the structure of a design on
high abstraction levels and to visualize its behavior by
simulation.
However, due to the complexity and the dynamic,
time-dependent character of the developed models,
the analysis of a given combined model is a difficult
challenge, in particular if timing aspects are consid-
ered. At the same time, combining knowledge about
the existence of paths, the conditions under which
they are executed, and how an embedded Stateflow
controller influences their behavior is a hitherto un-
solved problem. This is due to the strongly heteroge-
neous semantics of Simulink and Stateflow.
In this paper, we present an approach for an informa-
tion flow analysis (IFA) of combined discrete Sim-
ulink/Stateflow models. Our approach is threefold:
First, we extract timed path conditions from dis-
cretely- timed signal-flow components developed in
Simulink and prepare them for analysis by converting
them into timed automata. Second, we generate UP-
PAAL timed automata from the embedded Stateflow
controllers. Third, we use model checking to analyze
whether the timed path conditions that are extract-
ed from Simulink components are satisfiable by the
timed automata representation of Stateflow compo-
nents. If the conditions are satisfiable, the condition-
ally executed paths under analysis potentially exist in
the combined model, i. e., information flow is possible.
If not, they are identified as infeasible and will never
be executed in the model, i. e., the absence of informa-

tion flow is guaranteed. All three steps are performed
fully automatically, including the generation of the
verification goals for model checking.
If our analysis is applied to all possible paths of a giv-
en combined model, we can identify non-interference
between model parts and, thus, reason about compli-
ance with security policies. For example, we can veri-
fy integrity by checking that no information flow is pos-
sible from a non-critical to a critical component. The
relevance of such integrity properties was demon-
strated, for example, by the Jeep hack in [20], where
the attackers gained control over the (safety-critical)
speed control and braking system of a Jeep Cherokee
through a vulnerability of the (non-critical) infotain-
ment system.
We demonstrate the applicability of our approach by,
among others, checking the absence of information
flow from a (non-critical) odometer to a (safety-crit-
ical) braking system in multiple versions of a case
study provided by our industrial partners from the
automotive domain.
Note that this paper is an extended version of our work
published in [17]. In this paper, we provide (1) a more
exhaustive discussion of preliminaries with a spe-
cial focus in information flow analysis and MATLAB
Stateflow in Section 2; (2) a detailed explanation of
our previously published approach to extract timed
path conditions from the Simulink components of a
combined Simulink/Stateflow model in Section 4; (3)
an extended case study in Section 7.
The rest of this paper is structured as follows: In
Section 2, we briefly introduce the necessary pre-
liminaries. In Section 3, we present the main con-
tribution of this paper, namely an approach for the
analysis of information flow through combined Sim-
ulink/Stateflow models. In Sections 4 to 6, we give
a detailed description of each step of our approach.
We present our evaluation and results in Section 7.
Then, we discuss related work in Section 8 and con-
clude in Section 9.

2. Preliminaries
In this section, we describe the basic concepts and
tools employed by our approach.

301Information Technology and Control 2019/2/48

Figure 1
Stateflow example

2.1. Information Flow Analysis
The protection of confidentiality and integrity of in-
formation inside a software system is an increasingly
important problem in the areas of general computing
as well as embedded systems. Protecting not only the
data itself but also the integrity of the functionality
that produces and handles data is a goal of software
non-interference policies [5]. Such policies, based
on the assignment of security levels to data elements,
describe rules between which levels information flow
is allowed or forbidden [26]. When aiming at assuring
confidentiality, data is prohibited to flow to inappro-
priate locations, while in the context of integrity, data
is prohibited to flow from inappropriate sources. As
non-interference refers to the absence of information
flow, it ensures both confidentiality and integrity.

2.2. Path Conditions
In general, path conditions [12] describe sufficient con-
ditions for information paths through code or models
to be executed. In [6, 7], path conditions are used to
capture all paths where information might flow from a
source to a target. In contrast to static analyses, which
consider all syntactically possible dependencies, path
conditions take data and control flow conditions into
account. Thus, they exclude, for example, information
flow that depends on disjoint control flow conditions.
A path condition-based analysis is therefore more
precise than classical static analyses.

2.3. Simulink
Simulink [28] is an add-on to the MATLAB IDE by
MathWorks that enables graphical modeling and sim-
ulation of reactive systems. In its signal-flow orient-
ed notation [13, 23], Simulink employs blocks which
are connected using signals. Additionally, each block
and signal is assigned a set of parameters. Simulation
of Simulink models is performed using solvers which
compute the output of each block according to its se-
mantics. Variable step solvers aim at automatically
finding a simulation step size for each block in the
model to achieve a level of precision set by the mod-
el developer. Fixed step solvers use a fixed simulation
step size at the expense of precision while increasing
performance. The former class of solvers is common-
ly used for hybrid or purely time-continuous systems,
while the latter is used for time-discrete models. In

such models, each block is interpreted as producing
a piecewise-constant signal over the simulation time
scale, which forms the basis for an automatic transla-
tion of the model functionality and timing behavior to
code [31, 14].

2.4. Stateflow
Stateflow [30] is a further add-on to the MATLAB
IDE, specifically to Simulink, and gives the designer
the possibility to integrate decision logic based on
state machines and flow charts into a Simulink mod-
el. Stateflow makes use of complex modeling styles
incorporating multiple states, event and transition
types as well as an execution semantics not only de-
pendent on the structure and annotations of the mod-
el but also on its layout. Internally, the execution of
Stateflow charts is controlled via an event queue into
which all implicit events, such as updates to input sig-
nals and transitions as well as all explicit events are or-
dered and evaluated in a first in, first out (FIFO) fash-
ion, i. e., the execution semantics is purely sequential.
To give an impression of the Stateflow semantics, we
briefly summarize its main building blocks, i. e., states,
events, and transitions. Stateflow additionally sup-
ports junctions as well as temporal logic operators to
model timed conditions.

2.4.1. States
States form the basic building block of the controller
logic implemented in Stateflow. An example is shown
in Figure 1. If the execution enters a state, a set of
actions modeled by the designer takes place, such as
the modification of output signals of the automaton
or the triggering of events. The action type, entry,
during or exit, determines when these actions are
performed. Depending on the type, the timing behav-
ior and the frequency of the modifications and triggers
changes. While the sets of entry and exit actions
occur only once every time the state is active, the
during actions are performed with every simula-

Figure 1. Stateflow example

set by the model developer. Fixed step solvers use a fixed simulation step size at the expense of precision while
increasing performance. The former class of solvers is commonly used for hybrid or purely time-continuous
systems, while the latter is used for time-discrete models. In such models, each block is interpreted as producing a
piecewise-constant signal over the simulation time scale, which forms the basis for an automatic translation of the
model functionality and timing behavior to code [31, 14].

2.4. Stateflow

Stateflow [30] is a further add-on to the MATLAB IDE, specifically to Simulink, and gives the designer the
possibility to integrate decision logic based on state machines and flow charts into a Simulink model. Stateflow
makes use of complex modeling styles incorporating multiple states, event and transition types as well as an
execution semantics not only dependent on the structure and annotations of the model but also on its layout.
Internally, the execution of Stateflow charts is controlled via an event queue into which all implicit events, such as
updates to input signals and transitions as well as all explicit events are ordered and evaluated in a first in, first out
(FIFO) fashion, i. e., the execution semantics is purely sequential. To give an impression of the Stateflow semantics,
we briefly summarize its main building blocks, i. e., states, events, and transitions. Stateflow additionally supports
junctions as well as temporal logic operators to model timed conditions.
2.4.1. States

States form the basic building block of the controller logic implemented in Stateflow. An example is shown
in Figure 1. If the execution enters a state, a set of actions modeled by the designer takes place, such as the
modification of output signals of the automaton or the triggering of events. The action type, entry, during
or exit, determines when these actions are performed. Depending on the type, the timing behavior and the
frequency of the modifications and triggers changes. While the sets of entry and exit actions occur only once
every time the state is active, the during actions are performed with every simulation step and are therefore
dependent on the selected solver of the Simulink and Stateflow model. As shown in Figure 1, actions can
trigger events. To manage the complexity of Stateflow automata, it is possible to model hierarchical states by
using superstates and substates. If a superstate is triggered, its substates are either executed in an exclusive or a
parallel fashion, depending on the modeling style chosen by the developer. While in an exclusive composition, only
one of the mutually exclusive substates can be active at a time, multiple parallel states can be active simultaneously
in a parallel composition. However, as the execution of parallel states is sequential during simulation, an ordering
is imposed either explicitly via annotations made by the designer or implicitly via the relative location of the states.
2.4.2. Events

Events in Stateflow are a form of trigger mechanism for the execution of states and transitions. As seen in Figure 1,
the exit action of state A triggers the explicit event D(). Whenever an event is triggered, it is broadcast to the
parallel states of the current Stateflow chart.
2.4.3. Transitions

To design the state change logic of a controller, Stateflow states are connected via transitions. Similar to states, it
is possible to add guards, trigger events, and actions to transitions. Figure 1 shows an example transition containing
all three mentioned semantical elements. Event E triggers the evaluation of the guard condition a == 1. As soon
as this condition evaluates to true, the corresponding guard action b = 3 is executed. Finally, when the transition
is taken, the transition action c = 2 is executed and state B is marked active.

2.5. UPPAAL Timed Automata

Timed automata (TA) [1] are a timed extension of the classical finite state automata. A notion of time is
introduced by clock variables, which are used in clock constraints to model time-dependent behavior. Systems
comprising multiple concurrent processes are modeled by networks of TA, which are executed with interleaving
semantics and synchronize on channels.

Information Technology and Control 2019/2/48302

tion step and are therefore dependent on the selected
solver of the Simulink and Stateflow model. As shown
in Figure 1, actions can trigger events. To manage the
complexity of Stateflow automata, it is possible to
model hierarchical states by using superstates and
substates. If a superstate is triggered, its substates are
either executed in an exclusive or a parallel fashion,
depending on the modeling style chosen by the devel-
oper. While in an exclusive composition, only one of the
mutually exclusive substates can be active at a time,
multiple parallel states can be active simultaneously
in a parallel composition. However, as the execution
of parallel states is sequential during simulation, an
ordering is imposed either explicitly via annotations
made by the designer or implicitly via the relative loca-
tion of the states.

2.4.2. Events
Events in Stateflow are a form of trigger mechanism
for the execution of states and transitions. As seen in
Figure 1, the exit action of state A triggers the ex-
plicit event D(). Whenever an event is triggered,
it is broadcast to the parallel states of the current
Stateflow chart.

2.4.3. Transitions
To design the state change logic of a controller,
Stateflow states are connected via transitions. Simi-
lar to states, it is possible to add guards, trigger events,
and actions to transitions. Figure 1 shows an example
transition containing all three mentioned semantical
elements. Event E triggers the evaluation of the guard
condition a == 1. As soon as this condition evaluates
to true, the corresponding guard action b = 3 is exe-
cuted. Finally, when the transition is taken, the tran-
sition action c = 2 is executed and state B is marked
active.

2.5. UPPAAL Timed Automata
Timed automata (TA) [1] are a timed extension of the
classical finite state automata. A notion of time is in-
troduced by clock variables, which are used in clock
constraints to model time-dependent behavior. Sys-
tems comprising multiple concurrent processes are
modeled by networks of TA, which are executed with
interleaving semantics and synchronize on channels.
UPPAAL [3, 4] is a tool suite for modeling, simulation,
animation, and verification of networks of timed

automata. The UPPAAL modeling language extends
timed automata by bounded integer variables, binary
and broadcast channels, and urgent and committed
locations. A small example UPPAAL timed automaton
is shown in Figure 2. The initial location is denoted
by . The label request? denotes receiving on the
channel request, while ack! denotes sending on
channel ack. The clock variable x is first set to 0 and
then used in two clock conditions: the invariant x <=
maxtime denotes that the corresponding location
must be left before x becomes greater than maxtime,
and the guard x >= mintime enables the corre-
sponding edge if x is greater or equal mintime. The
symbol depicts an urgent location and the symbol

 a committed location. Urgent and committed loca-
tions are used to model locations where no time may
pass. Leaving a committed location has priority over
leaving non-committed locations.
The UPPAAL model checker enables fully-automatic
verification of (unnested) Computation Tree Logic
(CTL) formulae on a given network of timed automata.

3. Information Flow Analysis of
Simulink/Stateflow Models
The heterogeneous nature of software models con-
taining both Simulink and Stateflow parts makes
their analysis hard. The main challenge is to reconcile
the inherently different semantics of Simulink and
Stateflow, and in particular their timing.
The semantics of Simulink is defined by the simu-
lation semantics of the solver, where the function-
ality and timing depend on the simulation step size.
The semantics of Stateflow is defined by evalua-

Figure 2
UPPAAL example

◦

Figure 2. UPPAAL example

UPPAAL [3, 4] is a tool suite for modeling, simulation, animation, and verification of networks of timed

automata. The UPPAAL modeling language extends timed automata by bounded integer variables, binary and
broadcast channels, and urgent and committed locations. A small example UPPAAL timed automaton is shown
in Figure 2. The initial location is denoted by . The label request? denotes receiving on the
channel request, while ack! denotes sending on channel ack. The clock variable x is first set to 0 and
then used in two clock conditions: the invariant x <= maxtime denotes that the corresponding location must
be left before x becomes greater than maxtime, and the guard x >= mintime enables the corresponding
edge if x is greater or equal mintime. The symbol depicts an urgent location and the symbol a
committed location. Urgent and committed locations are used to model locations where no time may pass.
Leaving a committed location has priority over leaving non-committed locations.

The UPPAAL model checker enables fully-automatic verification of (unnested) Computation Tree Logic (CTL)
formulae on a given network of timed automata.

3. Information Flow Analysis of Simulink/Stateflow Models

The heterogeneous nature of software models containing both Simulink and Stateflow parts makes their
analysis hard. The main challenge is to reconcile the inherently different semantics of Simulink and Stateflow, and
in particular their timing.

The semantics of Simulink is defined by the simulation semantics of the solver, where the functionality and
timing depend on the simulation step size. The semantics of Stateflow is defined by evaluation rules that determine
which transition fires in each step, whereby a step is made whenever one of the input signals is reevaluated,
i. e., every simulation time step ts. The main idea of our approach for the analysis of the information flow in
combined, discrete Simulink/Stateflow models is to relate a Stateflow controller with its surrounding Simulink
model using timed automata in order to enable model checking. For the analysis of information flow in pure
Simulink components, we make use of our approach previously presented in [18]. There, we compute timed path
conditions for a given Simulink model by performing a backwards analysis through the model. The timed path
conditions extracted using our approach describe sufficient conditions for the execution of a given path, i. e.,
they provide a sound over-approximation of the possible information flow. For Stateflow, we utilize an approach
that translates Stateflow components to a system of UPPAAL timed automata [11, 34]. With that, the semantics
of a Stateflow component is precisely defined. We make use of this approach to gain a formally well-defined
representation of the Stateflow components in a combined Simulink/Stateflow model, and to gain access to the
UPPAAL tool suite, including the UPPAAL model checker.

To relate the timed path conditions resulting from [18] for Simulink components with the UPPAAL timed
automata representation of Stateflow components, we assume that a Stateflow controller is embedded into a
Simulink model and has an effect on some of its components by controlling the execution of paths through the
surrounding Simulink components. Our approach to analyze the information flow in combined Simulink/Stateflow
models, shown in Figure 4, is threefold:

(1) We utilize our algorithm shown in [18, 19] to extract timed path conditions for all paths between a set of model
elements of interest from the Simulink model (see step (1.a) in Figure 4). Along these paths, the conditions
for information flow as well as their timing are gathered and expressed as sets of timed path conditions CTP.
To make this representation compatible with the UPPAAL timed automata representation of the Stateflow
semantics presented in [19], we propose a timed automata representation of these timed path conditions
and generate one automaton for each set in CTP (1.b). As we extract timed path conditions for all paths
between model elements of interest and, on these paths, extract all control flow conditions, we achieve a sound
over-approximation of the possible information flow through the Simulink model.

303Information Technology and Control 2019/2/48

tion rules that determine which transition fires in
each step, whereby a step is made whenever one of
the input signals is reevaluated, i. e., every simula-
tion time step ts. The main idea of our approach for
the analysis of the information flow in combined,
discrete Simulink/Stateflow models is to relate a
Stateflow controller with its surrounding Simulink
model using timed automata in order to enable mod-
el checking. For the analysis of information flow
in pure Simulink components, we make use of our
approach previously presented in [18]. There, we
compute timed path conditions for a given Simulink
model by performing a backwards analysis through
the model. The timed path conditions extracted
using our approach describe sufficient conditions
for the execution of a given path, i. e., they provide
a sound over-approximation of the possible infor-
mation flow. For Stateflow, we utilize an approach
that translates Stateflow components to a system of
UPPAAL timed automata [11, 34]. With that, the se-
mantics of a Stateflow component is precisely de-
fined. We make use of this approach to gain a for-
mally well-defined representation of the Stateflow
components in a combined Simulink/Stateflow
model, and to gain access to the UPPAAL tool suite,
including the UPPAAL model checker.
To relate the timed path conditions resulting from [18]
for Simulink components with the UPPAAL timed au-
tomata representation of Stateflow components, we
assume that a Stateflow controller is embedded into a
Simulink model and has an effect on some of its com-
ponents by controlling the execution of paths through
the surrounding Simulink components. Our approach
to analyze the information flow in combined Simulink/
Stateflow models, shown in Figure 4, is threefold:
1 We utilize our algorithm shown in [18, 19] to extract

timed path conditions for all paths between a set of
model elements of interest from the Simulink mod-
el (see step (1.a) in Figure 4). Along these paths, the
conditions for information flow as well as their
timing are gathered and expressed as sets of timed
path conditions CTP. To make this representation
compatible with the UPPAAL timed automata rep-
resentation of the Stateflow semantics presented
in [19], we propose a timed automata representa-
tion of these timed path conditions and generate
one automaton for each set in CTP (1.b). As we ex-
tract timed path conditions for all paths between

model elements of interest and, on these paths, ex-
tract all control flow conditions, we achieve a sound
over-approximation of the possible information
flow through the Simulink model.

2 We adapt the method presented in [11, 34] to trans-
late embedded Stateflow components to a system
of UPPAAL timed automata (2.a). We are confident
that their translation is sound, as it provides a di-
rect mapping of each Stateflow process into a se-
mantically equivalent timed automata representa-
tion, and explicitly models the execution semantics
of Stateflow, including the event queue. We extend
the resulting system with an automaton that pro-
vides arbitrary input signals (2.b). This enables a
sound and comprehensive analysis of the behavior
of the Stateflow controller, as we simulate the com-
plete environment, i. e., all possible combinations
of input signals to the controller.

3 We use the information gathered in the previous
steps to automatically generate reachability prop-
erties for the UPPAAL model checker (3.a) and start
the checking process (3.b). In this final step, we ef-
fectively utilize model checking to analyze wheth-
er the timed path conditions derived from Sim-
ulink can be satisfied by the Stateflow controller,
i. e., if one or multiple of the timed path conditions
expressed in CTP hold on the translated model of the
Stateflow controller SFM . If they do not hold, then
we have safely shown that information flow over
the paths under analysis is impossible as the path is
never executed in the Simulink models and that the
property of non-interference holds.

Note that a Stateflow state machine is connected to
the surrounding model Simulink model via signals
SC that can be used as variables inside guards. Vari-
ables modified in state or transition actions inside
Stateflow state machines form their output signals S
and are routed to the Simulink model. There, they act
as control signals that impose conditions on infor-
mation flow paths from the inputs I to the outputs O.
The evaluation of a Stateflow automaton is performed
whenever one of the input signals to the automaton is
reevaluated by the solver. Then, its state is reevaluat-
ed and a one of the possible transitions is taken. We
can therefore define a minimal time interval between
every change in the output of a Stateflow automa-
ton. Under the assumption of a uniform sample time
throughout the model, it is equal to the simulation step

Information Technology and Control 2019/2/48304

size ts. This relation between the discretely-timed
solver of the Simulink model and the evaluation of the
Stateflow automaton makes it possible to relate both
semantics.
In the remainder of this section, we first introduce a
motivating example for our approach in Section 3.1.
Then, we introduce the assumptions we impose on
the models that our approach is able to analyze in Sec-
tion 3.2. In Section 4, we provide an overview of our
approach to extract timed path conditions from the
signal-flow oriented Simulink components of com-
bined Simulink/Stateflow models. Subsequently, we
present our approach to prepare these extracted sets
of timed path conditions for model checking by con-
verting them into UPPAAL timed automata in Section
4.1. We then present the generation of networks of UP-
PAAL timed automata from the Stateflow components
of the models as well as our generalization to support
arbitrary inputs during the model checking process
in Section 5. Finally, we present our automatic gen-
eration of properties using the previously extracted
information and the initiation of the model checking
process by our algorithm as well as the evaluation of
its results in Section 6.

3.1. Motivating Example

To illustrate our approach, we use a shared communi-
cation infrastructure , such as commonly found in the

design of automotive software, as a running example.
Figure 3 shows the corresponding Simulink model. It
uses a Memory block as internal buffer and switches
to route the incoming and outgoing data according to
their source and target, respectively. Information of
two different security levels (from the public input
ip and confidential input ic) is fed into the shared buf-
fer. According to the current operation mode set by a
controller implemented in Stateflow, confidential or
public information is saved in the buffer and passed to
the corresponding output. Although confidential and
public data share the same memory block as buffer, the
routing conditions are intended to ensure that confi-
dential input data can never flow to the public output.
To this end, the operation mode defines which input
should be routed to the output. The designer did, how-
ever, not take the timing behavior of the Memory block
into account. When examining the timing, we discover
that if the operation mode switches from confidential
to public, the buffer content that is passed to the out-
puts still holds the confidential data for one time unit,
i. e., the confidential contents are sent to the public
output. The timed path conditions for the Simulink
part of this example correctly show that information
flow is indeed possible from ic to op, as shown in [18].
However, as the Stateflow controller is responsible for
the modification of the system state is, an analysis of
its behavior in conjunction with the timed path con-
ditions is necessary to evaluate whether the combined

Figure 3
Running example

Figure 3. Running example

(2) We adapt the method presented in [11, 34] to translate embedded Stateflow components to a system of UPPAAL

timed automata (2.a). We are confident that their translation is sound, as it provides a direct mapping of each
Stateflow process into a semantically equivalent timed automata representation, and explicitly models the
execution semantics of Stateflow, including the event queue. We extend the resulting system with an automaton
that provides arbitrary input signals (2.b). This enables a sound and comprehensive analysis of the behavior of
the Stateflow controller, as we simulate the complete environment, i. e., all possible combinations of input
signals to the controller.

(3) We use the information gathered in the previous steps to automatically generate reachability properties for
the UPPAAL model checker (3.a) and start the checking process (3.b). In this final step, we effectively utilize
model checking to analyze whether the timed path conditions derived from Simulink can be satisfied by the
Stateflow controller, i. e., if one or multiple of the timed path conditions expressed in CTP hold on the translated
model of the Stateflow controller SFM . If they do not hold, then we have safely shown that information flow
over the paths under analysis is impossible as the path is never executed in the Simulink models and that the
property of non-interference holds.

Note that a Stateflow state machine is connected to the surrounding model Simulink model via signals SC
that can be used as variables inside guards. Variables modified in state or transition actions inside Stateflow state
machines form their output signals S and are routed to the Simulink model. There, they act as control signals that
impose conditions on information flow paths from the inputs I to the outputs O. The evaluation of a Stateflow
automaton is performed whenever one of the input signals to the automaton is reevaluated by the solver. Then, its
state is reevaluated and a one of the possible transitions is taken. We can therefore define a minimal time
interval between every change in the output of a Stateflow automaton. Under the assumption of a uniform
sample time throughout the model, it is equal to the simulation step size ts. This relation between the discretely-
timed solver of the Simulink model and the evaluation of the Stateflow automaton makes it possible to relate
both semantics.

In the remainder of this section, we first introduce a motivating example for our approach in Section 3.1.
Then, we introduce the assumptions we impose on the models that our approach is able to analyze in Section 3.2.
In Section 4, we provide an overview of our approach to extract timed path conditions from the signal-flow
oriented Simulink components of combined Simulink/Stateflow models. Subsequently, we present our approach
to prepare these extracted sets of timed path conditions for model checking by converting them into UPPAAL
timed automata in Section 4.1. We then present the generation of networks of UPPAAL timed automata from the
Stateflow components of the models as well as our generalization to support arbitrary inputs during the model
checking process in Section 5. Finally, we present our automatic generation of properties using the previously
extracted information and the initiation of the model checking process by our algorithm as well as the evaluation
of its results in Section 6.

3.1. Motivating Example

To illustrate our approach, we use a shared communication infrastructure , such as commonly found in the
design of automotive software, as a running example. Figure 3 shows the corresponding Simulink model. It uses a

file:///D:/Darbai/Maketavimas/Zurnalas/Informacines%20technologijos/2019%20nr2/DOI/_bookmark7

305Information Technology and Control 2019/2/48

Figure 4
Overall approach

Simulink/Stateflow model suffers from the same se-
curity policy violation.

3.2. Assumptions
Our information flow analysis approach supports dis-
crete Simulink/Stateflow models that satisfy the fol-
lowing assumptions:
1 Only time-discrete, fixed-step solvers are used [18],
2 a uniform sample time is used,
3 no algebraic loops are used,
4 control signals do not depend on any feedback

loops.
All discrete Simulink/Stateflow models that satisfy
these assumptions can be safely analyzed using our
approach. Note that as we analyze the control flow
of Simulink subsystems, we do not impose any re-
strictions on the data paths, i. e., complex modeling
elements like integrators and transfer functions, to-
gether with arbitrary feedback loops, may be used on
the data path. Note also that the existing translation
mechanism for Stateflow described in [11, 34] does
not impose any additional restrictions, as a full trans-
lation of all Stateflow features is provided.
Our restriction to purely discrete models is accept-
able, as we target safety-critical embedded software
systems, which typically do not contain any contin-
uous components. The restriction to a uniform sam-
ple time is mainly for simplicity of presentation and
could be relaxed. Support for algebraic loops would
require to incorporate a fixed-point analysis into our
approach and as they are not present in the case stud-
ies provided by our industrial partners, we left this
open for future work. The restriction on control sig-
nals (4) is the most serious restriction and we hope to
relax it in the near future by providing a more sophis-
ticated analysis of the control flow in a given Simulink
model. However, this assumption was also met by the
case studies provided by our industrial partners.

4. Extracting Timed Path Conditions
from Simulink Components
In this section, we provide an overview of the first
steps (see (1.a) and (1.b) of Figure 4) of our infor-
mation flow analysis approach, in which we use the

algorithm we have previously published in [18] to
generate timed path conditions from the dynamic
signal-flow (i. e., Simulink) components of the mod-
el, and translate them into a UPPAAL timed automa-
ton representation.

Figure 4. Overall approach

Memory block as internal buffer and switches to route the incoming and outgoing data according to their source
and target, respectively. Information of two different security levels (from the public input ip and confidential
input ic) is fed into the shared buffer. According to the current operation mode set by a controller implemented
in Stateflow, confidential or public information is saved in the buffer and passed to the corresponding output.
Although confidential and public data share the same memory block as buffer, the routing conditions are intended
to ensure that confidential input data can never flow to the public output. To this end, the operation mode defines
which input should be routed to the output. The designer did, however, not take the timing behavior of the Memory
block into account. When examining the timing, we discover that if the operation mode switches from confidential
to public, the buffer content that is passed to the outputs still holds the confidential data for one time unit, i. e., the
confidential contents are sent to the public output. The timed path conditions for the Simulink part of this example
correctly show that information flow is indeed possible from ic to op, as shown in [18]. However, as the Stateflow
controller is responsible for the modification of the system state is, an analysis of its behavior in conjunction with
the timed path conditions is necessary to evaluate whether the combined Simulink/Stateflow model suffers from
the same security policy violation.

3.2. Assumptions

Our information flow analysis approach supports discrete Simulink/Stateflow models that satisfy the following
assumptions:

(1) Only time-discrete, fixed-step solvers are used [18],

(2) a uniform sample time is used,

(3) no algebraic loops are used,

(4) control signals do not depend on any feedback loops.

All discrete Simulink/Stateflow models that satisfy these assumptions can be safely analyzed using our approach.
Note that as we analyze the control flow of Simulink subsystems, we do not impose any restrictions on the data

For the computation of timed path conditions from
the Simulink components of a combined system, we
use a two-step approach: (1) Statically identify all
paths in a given Simulink model and collect all path
conditions on each path. (2) For each path, propagate
all local control flow conditions backwards through
the model in order to compute timed path conditions
that solely depend on input variables.
Using this approach, it is possible to express condi-
tions on paths through Simulink models containing
time- dependent elements. In general, for a single
path, these conditions take the following form shown
in Equation (1):

(a) Timed path condition UPPAAL template (b) Initial location UPPAAL template (c) Observer automaton for Equation (2)

Figure 5. Observer automata

paths, i. e., complex modeling elements like integrators and transfer functions, together with arbitrary feedback
loops, may be used on the data path. Note also that the existing translation mechanism for Stateflow described
in [11, 34] does not impose any additional restrictions, as a full translation of all Stateflow features is provided.

Our restriction to purely discrete models is acceptable, as we target safety-critical embedded software systems,
which typically do not contain any continuous components. The restriction to a uniform sample time is mainly
for simplicity of presentation and could be relaxed. Support for algebraic loops would require to incorporate a
fixed-point analysis into our approach and as they are not present in the case studies provided by our industrial
partners, we left this open for future work. The restriction on control signals (4) is the most serious restriction
and we hope to relax it in the near future by providing a more sophisticated analysis of the control flow in a given
Simulink model. However, this assumption was also met by the case studies provided by our industrial partners.

4. Extracting Timed Path Conditions from Simulink Components

In this section, we provide an overview of the first steps (see (1.a) and (1.b) of Figure 4) of our information
flow analysis approach, in which we use the algorithm we have previously published in [18] to generate timed
path conditions from the dynamic signal-flow (i. e., Simulink) components of the model, and translate them into a
UPPAAL timed automaton representation.

For the computation of timed path conditions from the Simulink components of a combined system, we use a
two-step approach: (1) Statically identify all paths in a given Simulink model and collect all path conditions on
each path. (2) For each path, propagate all local control flow conditions backwards through the model in order to
compute timed path conditions that solely depend on input variables.

Using this approach, it is possible to express conditions on paths through Simulink models containing time-
dependent elements. In general, for a single path, these conditions take the following form shown in Equation (1):

TP
=0 =1

() = ()
T n t l ts

j
l j

c i o p s − ⋅→ ∧∧ (1)

 with { , , }ji I o O s S∈ ∈ ∈ .

There, T denotes the depth of the path under analysis in time slices [18], 1,..., ns s denote all control

signals,and st denotes the simulation step size. Each path condition ()jp s corresponds to a conjunction of the

atomic control flow conditions that are collected for each control signal in each time slice st l t− ⋅ on the given

path from i to o during the backward analysis. The timed path condition TP ()c i o→ defines a sufficient
condition for information to flow through the path starting at data input i and leading to the data output o .

From our running example shown in fig:running_example, we are able to extract the following conditions for
information to flow from the confidential data input ci to the public data output po :

TP () = (== 4) (== 1)t tt s
c p s sc i o i i −→ ∧ (2)

(1)

with { , , }ji I o O s S∈ ∈ ∈ .

Information Technology and Control 2019/2/48306

There, T denotes the depth of the path under analy-
sis in time slices [18], 1,..., ns s denote all control sig-
nals,and st denotes the simulation step size. Each
path condition ()jp s corresponds to a conjunction of
the atomic control flow conditions that are collected
for each control signal in each time slice st l t− ⋅ on the
given path from i to o during the backward analysis.
The timed path condition TP ()c i o→ defines a suffi-
cient condition for information to flow through the
path starting at data input i and leading to the data
output o .
From our running example shown in fig:running_ex-
ample, we are able to extract the following conditions
for information to flow from the confidential data in-
put ci to the public data output po :

(a) Timed path condition UPPAAL template (b) Initial location UPPAAL template (c) Observer automaton for Equation (2)

Figure 5. Observer automata

paths, i. e., complex modeling elements like integrators and transfer functions, together with arbitrary feedback
loops, may be used on the data path. Note also that the existing translation mechanism for Stateflow described
in [11, 34] does not impose any additional restrictions, as a full translation of all Stateflow features is provided.

Our restriction to purely discrete models is acceptable, as we target safety-critical embedded software systems,
which typically do not contain any continuous components. The restriction to a uniform sample time is mainly
for simplicity of presentation and could be relaxed. Support for algebraic loops would require to incorporate a
fixed-point analysis into our approach and as they are not present in the case studies provided by our industrial
partners, we left this open for future work. The restriction on control signals (4) is the most serious restriction
and we hope to relax it in the near future by providing a more sophisticated analysis of the control flow in a given
Simulink model. However, this assumption was also met by the case studies provided by our industrial partners.

4. Extracting Timed Path Conditions from Simulink Components

In this section, we provide an overview of the first steps (see (1.a) and (1.b) of Figure 4) of our information
flow analysis approach, in which we use the algorithm we have previously published in [18] to generate timed
path conditions from the dynamic signal-flow (i. e., Simulink) components of the model, and translate them into a
UPPAAL timed automaton representation.

For the computation of timed path conditions from the Simulink components of a combined system, we use a
two-step approach: (1) Statically identify all paths in a given Simulink model and collect all path conditions on
each path. (2) For each path, propagate all local control flow conditions backwards through the model in order to
compute timed path conditions that solely depend on input variables.

Using this approach, it is possible to express conditions on paths through Simulink models containing time-
dependent elements. In general, for a single path, these conditions take the following form shown in Equation (1):

TP
=0 =1

() = ()
T n t l ts

j
l j

c i o p s − ⋅→ ∧∧ (1)

 with { , , }ji I o O s S∈ ∈ ∈ .

There, T denotes the depth of the path under analysis in time slices [18], 1,..., ns s denote all control

signals,and st denotes the simulation step size. Each path condition ()jp s corresponds to a conjunction of the

atomic control flow conditions that are collected for each control signal in each time slice st l t− ⋅ on the given

path from i to o during the backward analysis. The timed path condition TP ()c i o→ defines a sufficient
condition for information to flow through the path starting at data input i and leading to the data output o .

From our running example shown in fig:running_example, we are able to extract the following conditions for
information to flow from the confidential data input ci to the public data output po :

TP () = (== 4) (== 1)t tt s
c p s sc i o i i −→ ∧ (2) . (2)

4.1. From Timed Path Conditions to Timed
Automata
In this step, we present our approach to create com-
patibility between the extracted sets of timed path
conditions and the Stateflow controllers translated
into networks of UPPAAL timed automata. Specifical-
ly, our main contribution in this step is the creation of
observer automata [22] for the information flow paths
under analysis.
The main purpose of our translation from timed path
conditions to timed automata is to make our represen-
tation of the timed paths in a Simulink model com-
patible with the network of UPPAAL timed automata
generated from the Stateflow components. The key
idea of our translation is to encode the timed path
condition into an observer automaton, which ob-
serves a timed automata model of a Stateflow compo-
nent and checks whether the timed path conditions
derived from a Simulink model can be satisfied by the
Stateflow component. Note that the timed path condi-
tion is satisfiable if the final location of this observer
automaton is reachable, which can conveniently be
checked using the UPPAAL model checker.
The translation of Stateflow automata to UPPAAL
presented in [11, 34] does not utilize clocks. We are
therefore forced to rely on a different mechanism to
synchronize the automaton to be created with the
main system of automata created from the Stateflow
model. As shown in the following, we make use of

two variables introduced by the authors of [11, 34]
that emulate the simulation time found in Simulink/
Stateflow, both globally (t_total) and inside states
(t_driven).
The input to our generation algorithm is a list of timed
path conditions, i. e. , the extracted set of timed path
conditions TPc for a path under analysis sorted by
time slices, as shown in Equation (1). The maximum
length of this list is the time slice depth of the current
path T . We perform multiple iterations over the list
of timed path conditions we receive as an input. First,
we add an initial state and one location for every entry
in the list. Second, we create all forward transitions
between the created locations. Every transition is
guarded by the correct valuation of the next entry in
the list. Additionally, whenever the first guard is eval-
uated to true, an internal variable t_start is set to the
current value of the global time variable t_total and
is used in all forward transitions to evaluate whether
the timing requirement between input list conditions
is met. We then add backward transitions from each
state back to the initial state. These transitions are
taken whenever the timing or control signal require-
ment to proceed to the next entry in the set is not met.
Further, we add backward transitions from every
state back to the state corresponding to the first entry
in the list. These transitions are taken whenever the
timing and data requirements are not fulfilled to enter
the next state in the list but match its first entry. In the
next step, we add all required self-loops to the autom-
aton. These self-loops are taken whenever the simu-
lation time has not progressed far enough for the next
forward transition to be taken or whenever the back-
ward transition guard cannot be evaluated to true.
Finally, the automaton will be added to the translated
Stateflow system. We have illustrated our generation
algorithm using UPPAAL timed automata templates
shown in Figures 5a and 5b. There, dashed states
denote placeholders for subsequent iterations of the
algorithm during generation and the functions ()p n
and ()t n extract the n th atomic condition and the n
th timing requirement from the input list. Revisiting
our running example, the automaton created from the
timed path condition TP ()c pc i o→ , shown in Figure
5c. There, we initially wait until == 1si . Whenever
this condition is satisfied, we check whether == 4si
in the next time slice. If this happens, we reach the
final location fl of our observer automaton, which
means that the timed path condition can actually be

307Information Technology and Control 2019/2/48

Figure 5
Observer automata

(a) Timed path condition UPPAAL template (b) Initial location UPPAAL template (c) Observer automaton for Equation (2)

Figure 5. Observer automata

paths, i. e., complex modeling elements like integrators and transfer functions, together with arbitrary feedback
loops, may be used on the data path. Note also that the existing translation mechanism for Stateflow described
in [11, 34] does not impose any additional restrictions, as a full translation of all Stateflow features is provided.

Our restriction to purely discrete models is acceptable, as we target safety-critical embedded software systems,
which typically do not contain any continuous components. The restriction to a uniform sample time is mainly
for simplicity of presentation and could be relaxed. Support for algebraic loops would require to incorporate a
fixed-point analysis into our approach and as they are not present in the case studies provided by our industrial
partners, we left this open for future work. The restriction on control signals (4) is the most serious restriction
and we hope to relax it in the near future by providing a more sophisticated analysis of the control flow in a given
Simulink model. However, this assumption was also met by the case studies provided by our industrial partners.

4. Extracting Timed Path Conditions from Simulink Components

In this section, we provide an overview of the first steps (see (1.a) and (1.b) of Figure 4) of our information
flow analysis approach, in which we use the algorithm we have previously published in [18] to generate timed
path conditions from the dynamic signal-flow (i. e., Simulink) components of the model, and translate them into a
UPPAAL timed automaton representation.

For the computation of timed path conditions from the Simulink components of a combined system, we use a
two-step approach: (1) Statically identify all paths in a given Simulink model and collect all path conditions on
each path. (2) For each path, propagate all local control flow conditions backwards through the model in order to
compute timed path conditions that solely depend on input variables.

Using this approach, it is possible to express conditions on paths through Simulink models containing time-
dependent elements. In general, for a single path, these conditions take the following form shown in Equation (1):

TP
=0 =1

() = ()
T n t l ts

j
l j

c i o p s − ⋅→ ∧∧ (1)

 with { , , }ji I o O s S∈ ∈ ∈ .

There, T denotes the depth of the path under analysis in time slices [18], 1,..., ns s denote all control

signals,and st denotes the simulation step size. Each path condition ()jp s corresponds to a conjunction of the

atomic control flow conditions that are collected for each control signal in each time slice st l t− ⋅ on the given

path from i to o during the backward analysis. The timed path condition TP ()c i o→ defines a sufficient
condition for information to flow through the path starting at data input i and leading to the data output o .

From our running example shown in fig:running_example, we are able to extract the following conditions for
information to flow from the confidential data input ci to the public data output po :

TP () = (== 4) (== 1)t tt s
c p s sc i o i i −→ ∧ (2)

Timed path condition
UPPAAL template

Initial location
UPPAAL template

Observer automaton
for Equation (2)

(a) (b) (c)

satisfied. If == 1si is satisfied but == 4si is not satis-
fied in the next step, we reset the observer automaton.

By checking initially whether the timed path condi-
tion that refers to the earliest time slice is satisfied,
and then subsequently checking whether all timed
path conditions referring to the subsequent time steps
are satisfied, we ensure that we detect all sequences of
outputs of the Stateflow controller which might satis-
fy the overall timed path condition, i. e., our approach
is sound.

5. Stateflow Controllers as Timed
Automata
In this section, we present our adaption of an exist-
ing mechanism to translate Stateflow controllers into
networks of UPPAAL timed automata. The translation
makes it possible to elevate the analysis of the con-
troller behavior into a formally well-defined repre-
sentation and enables the usage of the UPPAAL model
checker to verify properties on the controller behav-
ior. Specifically, we aim at combining the generated
observer automata presented in the previous section

with the networks of automata created from the con-
troller in order to verify whether the extracted timed
path conditions are satisfiable. Our main contribu-
tion in this section is the generalization of the execu-
tion behavior to allow model checking of the controller
for arbitrary inputs. We utilize a technique developed
in [34] that converts Stateflow automata to UPPAAL
timed automata. In the following, we briefly introduce
the concepts behind their work and present our adap-
tations and extensions.

5.1. State Transformation

Every state of the Stateflow automaton is converted
into four separate automata: (1) a Controller Autom-
aton, handling activation and deactivation of child
states and activation of time-dependent events, such
as after(n, sec), (2) a Controller Action Autom-
aton, responsible for performing Entry, During,
Exit actions for the state, (3) a Condition Automa-
ton, evaluating conditions and performing condition
actions of outgoing transitions, and finally (4) a Com-
mon Automaton that reacts on conditions generated
by the Condition Automaton, performs the transition
actions on outgoing transitions and activates the next
state.

Information Technology and Control 2019/2/48308

5.2. Transition Transformation

For each state, all outgoing transitions are saved in
an array sorted by the implicit and explicit transition
priority. From this array, the Condition Automaton
selects the next transition to be evaluated and taken.

5.3. Time

In Stateflow, time can be modeled absolute or event-
based. As an absolute value, time is used by, e.g.
after, before, at and every in conjunction with a
time unit, e. g., after(2, sec). This absolute form
is based on the simulation time of the surrounding
Simulink model and can be used to synchronize the
timing behavior of the Stateflow controller with that
of its environment. The second form utilizes the same
keywords but makes use of events inside the Stateflow
controller, e. g., every(3, e), which executes the
associated action with every third occurrence of the
event e. To emulate this behavior in UPPAAL, the au-
thors have implemented a virtual event stack as a
structured array in UPPAAL. To model the simulation
time of the Stateflow controller, the authors do not
rely on clocks, but implemented two distinct integer
variables: t_total and t_driven. The former im-
plements the simulation time of the overall system,
while the latter implements simulation time passed
inside the current state.

5.4. Generalization to Arbitrary Inputs
The translation from Stateflow to UPPAAL does not
include the possibility to simulate the environment of
the Stateflow controller. This means that if, for exam-
ple, transitions are guarded by signals driven by the
Simulink model the controller is embedded into, their
value will be held as uninitialized and will not be part of
the verification of the controller. This makes it impos-
sible to utilize the translation in its original form, as
the signals driving the Stateflow controller are an in-
tegral part of its functionality. We therefore extended
the translation by a generic tester automaton [25].
A generic tester automaton, in its most basic form, can
be seen in Figure 6a. There, a timed automaton with
a single state and two edges is shown. On each edge, a
Boolean signal, a or b, is set non-deterministically
to true or false by using the select syntax built
into UPPAAL. This makes it possible to simulate every
combination of both signals in every step of the model
checking process as the tester automaton runs con-
currently to all other automata. Our extension to the
original translation analyzes all input signals to the
Stateflow controller as well as their data types. Using
this information, a tester automaton for the control-
ler under analysis is constructed to simulate arbitrary
inputs to the controller, thereby acting as the non-de-
terministic environment of the controller.

(a) Basic version (b) Optimized version

Figure 6
Generic tester automata

(a) Basic version (b) Optimized version

Figure 6. Generic tester automata

Figure 7. Shared communication infrastructure in a car

6.1. Generation of Verification Goals
In order for the UPPAAL verifier to check whether the timed path conditions can be satisfied by the generated

system of timed automata, we create appropriate queries. Due to the design of the timed path condition observer
automata, we only need to create a single CTL query for each automaton to check reachability of its final location.
As seen in Section 4.1, we save information about the final location, therefore, the necessary queries take the form
of exists eventually statements for the existence of a path to the final location lf for every automaton. Hence, the
queries have the form EF (lf) and are generated automatically.
6.2. Model Checking Using UPPAAL

In the final step of our analysis process, the generated queries are verified on the translated UPPAAL timed
automata model which has been extended with one automaton for each set of timed path conditions and a tester
automaton to simulate arbitrary inputs. For each entry in the query file, UPPAAL verifies the stated property on the
complete system, i. e., we check whether the timed path conditions can be satisfied by the Stateflow automaton.
If so, information is potentially able to flow along the path under analysis. If not, the path does not exist and
information flow is therefore shown to be impossible.

7. Evaluation

To evaluate our approach, we have implemented it as an Eclipse plug-in in Java. It utilizes our path
condition extraction algorithm for Simulink [18] and a Stateflow to UPPAAL conversion [11, 34].

7.1. Case Study
To show the practical applicability of our approach, we have used an industrial case study from the automotive

domain. Its core is a communication infrastructure over which two distance warners, supplied by our industrial

309Information Technology and Control 2019/2/48

Additionally, we have optimized the behavior of the
tester automata in combination with the networks
of UPPAAL timed automata. In the basic implementa-
tion, the tester automaton selects a new value at every
point in the model checking process. However, due to
the complex design of the translation from Stateflow
to UPPAAL, only a small number of transitions directly
relate to transitions taken in the Stateflow controller.
We therefore have added a global Boolean variable
tester_step_allowed, seen in Figure 6b. It is
added to the guards of the edges and consumed as
soon as the edge is taken. This flag is raised only when
input values to the controller are allowed to change,
i. e., with every (emulated) simulation step.

6. Information Flow Analysis Using
UPPAAL

In the final step of our algorithm, we combine the
timed automata generated from the sets of timed path
conditions in the first step with the translated net-
works of timed automata in the previous step. Using
information from the first steps, we generate verifica-
tion goals for the UPPAAL model checker in order to
verify whether the sets of timed path conditions are
satisfiable by the translated Stateflow controller.

6.1. Generation of Verification Goals
In order for the UPPAAL verifier to check whether the
timed path conditions can be satisfied by the generat-
ed system of timed automata, we create appropriate
queries. Due to the design of the timed path condition
observer automata, we only need to create a single CTL
query for each automaton to check reachability of its
final location. As seen in Section 4.1, we save informa-
tion about the final location, therefore, the necessary
queries take the form of exists eventually statements
for the existence of a path to the final location lf for ev-
ery automaton. Hence, the queries have the form EF
(lf) and are generated automatically.

6.2. Model Checking Using UPPAAL

In the final step of our analysis process, the generated
queries are verified on the translated UPPAAL timed
automata model which has been extended with one
automaton for each set of timed path conditions and

a tester automaton to simulate arbitrary inputs. For
each entry in the query file, UPPAAL verifies the stat-
ed property on the complete system, i. e., we check
whether the timed path conditions can be satisfied by
the Stateflow automaton. If so, information is poten-
tially able to flow along the path under analysis. If not,
the path does not exist and information flow is there-
fore shown to be impossible.

7. Evaluation
To evaluate our approach, we have implemented it
as an Eclipse plug-in in Java. It utilizes our path
condition extraction algorithm for Simulink [18] and
a Stateflow to UPPAAL conversion [11, 34].

7.1. Case Study
To show the practical applicability of our approach, we
have used an industrial case study from the automotive
domain. Its core is a communication infrastructure
over which two distance warners, supplied by our in-
dustrial partner Assystem GmbH [2], and a non-crit-
ical component, an odometer, supplied by Model
Engineering Solutions GmbH [15], send and receive
data. Figure 7 shows the structure of our case study in
Simulink/Stateflow. The distance warners, situated
at the front and at the back of the car, send their analy-
sis results, i. e., proximity alerts, to the receiving com-
ponent, an automated braking system. The odometer
receives data from sensors on the axes of the car. The
distance warners together with the automated braking
system perform inherently safety-critical functions,
especially under timing aspects, as dropped or delayed
warning signals either to the driver or an automated
braking system while traveling at high speeds could
cause serious accidents. The most important proper-
ty of the design from a security perspective is that the
design has to guarantee that the braking system only
receives messages from the distance warners, i. e.,
that information flow from the non-critical odometer
to the critical braking system is prohibited and, con-
sequently, integrity is ensured. An additional inter-
esting property is that no information flows from the
distance warners to the odometer, as this may indi-
cate that they are not properly received by the braking
system. The overall model consists of 905 blocks and

Information Technology and Control 2019/2/48310

(a) Basic version (b) Optimized version

Figure 6. Generic tester automata

Figure 7. Shared communication infrastructure in a car

6.1. Generation of Verification Goals
In order for the UPPAAL verifier to check whether the timed path conditions can be satisfied by the generated

system of timed automata, we create appropriate queries. Due to the design of the timed path condition observer
automata, we only need to create a single CTL query for each automaton to check reachability of its final location.
As seen in Section 4.1, we save information about the final location, therefore, the necessary queries take the form
of exists eventually statements for the existence of a path to the final location lf for every automaton. Hence, the
queries have the form EF (lf) and are generated automatically.
6.2. Model Checking Using UPPAAL

In the final step of our analysis process, the generated queries are verified on the translated UPPAAL timed
automata model which has been extended with one automaton for each set of timed path conditions and a tester
automaton to simulate arbitrary inputs. For each entry in the query file, UPPAAL verifies the stated property on the
complete system, i. e., we check whether the timed path conditions can be satisfied by the Stateflow automaton.
If so, information is potentially able to flow along the path under analysis. If not, the path does not exist and
information flow is therefore shown to be impossible.

7. Evaluation

To evaluate our approach, we have implemented it as an Eclipse plug-in in Java. It utilizes our path
condition extraction algorithm for Simulink [18] and a Stateflow to UPPAAL conversion [11, 34].

7.1. Case Study
To show the practical applicability of our approach, we have used an industrial case study from the automotive

domain. Its core is a communication infrastructure over which two distance warners, supplied by our industrial

Figure 7
Shared communication infrastructure in a car

multiple layers of subsystems, making it comparable,
in size as well as complexity, to models with similar
functionality used by our industrial partners in the
automotive domain. Our running example, shown in
Section 3.1, shows a simplified version of the routing
mechanism and controller utilized in our case study.
The main challenge for the analysis of this case study
is that the correct routing inherently depends on the
timing of the control flow.
Note that we utilize two versions of the bus and the
arbitration controller: In the original version, the
shared infrastructure can only be used by a single
sending component at a time, while in the extend-
ed second version, which we have implemented for
demonstration reasons, multiple senders can utilize
the shared bus at the same time. In both versions, all
three sending components seen on the left in Figure 7
utilize the bus to send their unique id to the receiving
components on the right. Inside the channel, a system
of switches reacts to the state currently set by the con-
troller and routes the data to and from the communi-
cation channel accordingly. While in the first version
of the case study, the switches that control inputs and
outputs to the bus are controlled by the same control
signal, they are controlled by two control signals in
the second version.
In the following, we present the analysis results for
both versions of our case study, i. e., the timed path
conditions extracted from the Simulink components
of the bus and the controller translated to UPPAAL as
well as analysis results and computation times.

7.2. Results
Using our approach, a designer is able to analyze
arbitrary paths through the model. For this section,
we chose to analyze two paths on which information
flow can lead to critical errors in both versions of
our case study. To this end, we verify the integrity of
the automated braking system by analyzing wheth-
er information from the odometer can ever reach
either input of automated braking system (which
should not happen). Additionally, we check wheth-
er data sent from the front and back distance war-
ners through the bus is able to reach the odometer
display (which also should not happen). Note that
the former property is crucial to verify that there is
no information flow from the non-critical odome-
ter to the safety-critical braking system. The latter
property is important as information flow between
the distance warner to the odometer may lead to a
dropped proximity warning, which in turn may lead
to a failure to brake by the automated braking sys-
tem. In the following, we present the results of the
individual steps taken by our algorithm in order to
prove non-interference on the selected paths.

7.2.1. Paths Under Analysis
As explained above, we aim at analyzing potentially
critical information flow from the odometer sensors
to the braking system as well as from both distance
warners to the odometer display. We denote the paths
as follows, where I refers to the first version of our
case study, and II to the second version

311Information Technology and Control 2019/2/48

1 1= = (odometer_sensor_out bs_dw_front_data_in)I IIP P P

2 2= = (odometer_sensor_out bs_dw_back_data_in)I IIP P P

3 3= = (dw_front_out odometer_wheel_tick_in)I IIP P P

4 4= = (dw_back_out odometer_wheel_tick_in)I IIP P P .

In the next step of our algorithm, the paths are ana-
lyzed and sets of timed path conditions are extracted.

7.2.2. Extracted Timed Path Conditions
The sets of timed path conditions extracted for each
path are shown in the following:

state

7.2.2. Extracted Timed Path Conditions

The sets of timed path conditions extracted for each path are shown in the following:
1

TP 1 state state() = {(== 1) , (== 3) }t d tI t sc P s s

 1
TP 2 state state() = {(== 2) , (== 3) }t d tI t sc P s s

 1
TP 3 state state() = {(== 3) , (== 1) }t d tI t sc P s s

 1
TP 4 state state() = {(== 3) , (== 2) }t d tI t sc P s s

 TP 1 input_state() ={(==1) ,II tc P s

 2
output_state(== 3) }t d tss

 TP 2 input_state() ={(== 2) ,II tc P s

 2
output_state(== 3) }t d tss

 TP 3 input_state() = {(== 3) ,II tc P s

 2
output_state(== 1) }t d tss

 TP 4 input_state() ={(== 3) ,II tc P s

 2
output_state(== 2) }t d tss

In these sets, d1 and d2 denote the timing depths on the communication channels in time slices [18]. For the
first version of our case study, it is calculated as 3. For the second version, it is calculated as 5. At this point in
the analysis, due to their timing behavior, it is impossible to rule out the existence of information flow on these
paths, as st−n·ts has to be considered a distinct signal for each time slice. It is therefore necessary to continue the
analysis, i. e., to generate timed automata from each set of timed path conditions and verify whether these sets of
conditions are satisfiable with the observer automata combined with the translated Stateflow controller.
7.2.3. Generated Observer Automata

From each of these sets of path conditions, our approach generates a single UPPAAL timed automaton. As
explained in Section 4.1, each automaton consists of an initial state as well as one state per entry in the
condition set, i. e., three states.
7.2.4. Generated UPPAAL Timed Automata

In the next step, we translate the controllers of both case studies into networks of UPPAAL timed automata.
The Stateflow controller of the first version of our case study consists of three states and five transitions
managing the current state of the shared bus. The controller for the second version consists of two states and
five transitions, implementing the FIFO-like behavior of the shared bus. The corresponding translated networks
of UPPAAL automata consist of eleven automata, ranging in size between one and four states with a large number
of self loops. Ten automata emulate the functionality and semantics of the Stateflow controller and one, the added
generic tester automaton, acts as the non-deterministic environment.
7.2.5. Verification Results

In the final step, our approach combines the translated Stateflow controller with the generated observer
automata by adding them to the UPPAAL system declaration and generates a single verification goal for each cTP.
The results of the verification process are shown in Table 1. As can be seen there, the first step of our approach,
the extraction of constraints from the combined models and the generation of corresponding UPPAAL automata
takes between approximately 300 and 400 ms1. The translation of the Stateflow controller for the first and
second version of our case study takes 830 ms and 761 ms, respectively, and only has to be performed once per
model as we store the translation result for each model revision. Finally, for cases in which the observer
automaton does not reach its final location lf , namely on P1I and P2I , the verification of the combined
controllers takes approximately 10 s

1Tested on a 2.6 GHz Intel Core i7 with 16 GB main memory.

In these sets, d1 and d2 denote the timing depths on the
communication channels in time slices [18]. For the
first version of our case study, it is calculated as 3. For
the second version, it is calculated as 5. At this point
in the analysis, due to their timing behavior, it is im-
possible to rule out the existence of information flow
on these paths, as st−n·ts has to be considered a distinct
signal for each time slice. It is therefore necessary to
continue the analysis, i. e., to generate timed autom-
ata from each set of timed path conditions and verify
whether these sets of conditions are satisfiable with
the observer automata combined with the translat-
ed Stateflow controller.

7.2.3. Generated Observer Automata
From each of these sets of path conditions, our ap-
proach generates a single UPPAAL timed automaton.
As explained in Section 4.1, each automaton consists

of an initial state as well as one state per entry in the
condition set, i. e., three states.

7.2.4. Generated UPPAAL Timed Automata
In the next step, we translate the controllers of both
case studies into networks of UPPAAL timed automa-
ta. The Stateflow controller of the first version of our
case study consists of three states and five transitions
managing the current state of the shared bus. The con-
troller for the second version consists of two states
and five transitions, implementing the FIFO-like be-
havior of the shared bus. The corresponding trans-
lated networks of UPPAAL automata consist of eleven
automata, ranging in size between one and four states
with a large number of self loops. Ten automata emu-
late the functionality and semantics of the Stateflow
controller and one, the added generic tester automa-
ton, acts as the non-deterministic environment.

7.2.5. Verification Results
In the final step, our approach combines the translat-
ed Stateflow controller with the generated observer
automata by adding them to the UPPAAL system decla-
ration and generates a single verification goal for each
cTP. The results of the verification process are shown
in Table 1. As can be seen there, the first step of our ap-
proach, the extraction of constraints from the com-
bined models and the generation of corresponding
UPPAAL automata takes between approximately 300
and 400 ms1. The translation of the Stateflow control-
ler for the first and second version of our case study
takes 830 ms and 761 ms, respectively, and only has to
be performed once per model as we store the transla-
tion result for each model revision. Finally, for cases
in which the observer automaton does not reach its fi-
nal location lf , namely on P1

I and P2
I , the verification

of the combined controllers takes approximately 10 s
while in all other cases, the property is verified after
5 s. The respective similarities in verification times
are due to the complex structure of the Stateflow con-
troller behavior emulation in comparison to the ob-
server automata.
Unfortunately, the composition of large models does
not generally scale well, as model checking has expo-
nential complexity. However, by only using the timed
path conditions as an over-approximation of the con-
trol flow within the Uppaal model (and not the com-

1 Tested on a 2.6 GHz Intel Core i7 with 16 GB main memory.

.

Information Technology and Control 2019/2/48312

Path
Time

EF (lf)
Extract cTP Build SFM Verification

P1
I 379 ms 830 ms 10.247 s ×

P2
I 327 ms 10.559 s ×

P3
I 354 ms 5.971 s ✓

P4
I 302 ms 5.788 s ✓

P1
II 390 ms 761 ms 5.398 s ✓

P2
II 387 ms 5.279 s ✓

P3
II 349 ms 5.262 s ✓

P4
II 356 ms 5.737 s ✓

plete Simulink model), our approach scales compar-
atively well for the practical examples we have seen
at our partners from the automotive industry, where
the Stateflow controllers are typically comparatively
small. Note that using our optimization described in
Section 5.4, we were able to decrease the necessary
verification times from multiple hours to the signifi-
cantly lower values seen in Table 1.
As our analysis shows, our approach successfully ver-
ified the absence of information flow over the critical
paths P3

I , P4
I , P1

II , P2
II , P3

II , P4
II . For the first version,

our approach showed that there is information flow
possible on the first two paths under analysis, i. e., the
non-critical odometer may have access to the braking
system. This is a severe violation of the property of
integrity, which potentially leads to disastrous con-
sequences. To overcome this, we have corrected and
successfully verified the controller implementation
as presented in the following.

7.2.6. Correcting the Controller Implementations
As Table 1 shows, we were able to identify informa-
tion flow on P1

I and P2
I . At this point, it is up to the

designer to identify the source of the error. In our
case, the original implementation of the controller
contained faulty timed transition guards, which did
not correspond to the time slice depth of the shared
channel. After correcting these guards, the analysis
correctly shows the absence of information flow on
both paths with verification times of 5.381 s and 5.293
s and, with that, the validation of all requirements un-
der analysis.

Table 1
Evaluation results 8. Related Work

Extensive work has been done in the area of translat-
ing subsets of combined Simulink/Stateflow models
into formal languages with well-defined semantics,
especially Lustre and the graphical modeling suite
SCADE, in order to perform model checking on the
translated systems [27, 21, 33]. However, as these ap-
proaches rely on a translation of models into a target
language using functional and timing semantics dif-
ferent to those of Simulink and Stateflow, properties
of the original systems are lost and the timing of mod-
els cannot be analyzed precisely. Further, the transla-
tion process for industrial-sized models poses strong
restrictions on their design and is therefore often not
applicable [32].
Only few authors have addressed the problem of for-
malizing the complete behavior of Stateflow autom-
ata. In [9, 8], the authors have presented operational
and denotational semantics for a subset of Stateflow.
While they succeed in representing a wide range of
the Stateflow functionality, they do not consider the
timing and the connection with surrounding Sim-
ulink models. In contrast, the approach for an auto-
matic translation from Stateflow to UPPAAL present-
ed in [11, 34] has the advantage that it captures both the
functionality and the precise timing of Stateflow and
enables automatic verification via model checking.
We utilize this in our approach.
In [24], the authors present an approach for slicing
Simulink models. Their algorithm identifies model
parts that influence the computation of a given block.
However, as their approach does not have the char-
acteristics of an information flow analysis, i. e., does
neither consider conditions nor timing along model
paths, it only provides a coarse-grained dependency
analysis.
A number of model analysis techniques are integrated
into the Simulink Design Verifier [29]. It offers the de-
signer the possibility to generate test cases and detect
design errors, such as integer overflows or division by
zero by utilizing static analysis methods. Its scalability,
however, is strictly limited as it utilizes a model check-
ing-based approach to analyze the model as a whole.
Further, it is not possible to formulate information
flow properties using the provided verification blocks.
Additionally, the Design Verifier supports the gener-
ation of slices to identify data dependencies through

313Information Technology and Control 2019/2/48

the model. However, it provides only a very strong
over-approximation as it takes neither control nor
timing dependencies into account.
Due to the similarities between Stateflow and Stat-
echarts, it is reasonable to analyze previous formal-
ization efforts for such models, most notably [10].
However, these similarities are merely superficial, as
the underlying solver for Stateflow automata works in
a purely sequential fashion, and their semantic differ-
ences make an elevation of the approach presented in
this work infeasible.

9. Conclusion
In this paper, we have presented a novel informa-
tion flow analysis for combined Simulink/Stateflow
models. By being applicable to combined Simulink/
Stateflow models, our approach can be used to ana-
lyze information flow in embedded software models
that consist of one or more embedded controllers
(modeled in Stateflow), and a number of dynamic
signal-flow components (modeled in Simulink). The
main idea of our approach is to translate timed path
conditions of the dynamic signal-flow, i. e., of the Sim-
ulink components of a given model, into UPPAAL timed
automata, and to combine them with a timed automata
representation of the embedded controllers modeled
in Stateflow. For the combined model, we automati-
cally generate verification goals which in turn enable
us to automatically check the absence of information
flow between arbitrary input and output ports using
the UPPAAL model checker. The result is a fine-grained
analysis of the information flow along paths of interest
through combined Simulink/Stateflow models un-
der both data as well as timing aspects. Note that for
the computation of timed path conditions of dynamic
signal-flow components, we utilize our approach pre-
sented in [18], and for the conversion of Stateflow con-

trollers into UPPAAL, we have adapted and extended
the translation from Stateflow to UPPAAL presented in
[34, 11]. Our extensions include the addition of generic
tester automata and optimizations of their interaction
with the surrounding timed automata.
The verification times necessary to rule out the exis-
tence of safety-threatening paths using our approach
are largely dependent on the size of the Stateflow
controller. As these are usually relatively small com-
pared to the surrounding Simulink components, our
approach scales well for complex Simulink/Stateflow
models.
We have demonstrated the practical applicability of
our approach using two versions of a complex indus-
trial case study that implements a shared communi-
cation infrastructure for a safety-critical automotive
system. There, we have shown that although timed
path conditions alone detect a safety requirement
violation, our approach efficiently recognizes it as
spurious in approximately 6 s.
In the future, we aim at relaxing our assumptions on
the control flow paths, and at supporting additional
design patterns for the integration of Stateflow con-
trollers into Simulink models, such as scheduling of
individual Simulink components using Stateflow or
the integration of Simulink functions into control-
lers. Furthermore, as UPPAAL offers the possibility
to display counterexamples, i. e., paths in the model
checking process that led to a violation of the formu-
la under analysis, we are confident that we are able
to use this information to provide the developer with
more feedback about the precise sources of possible
information flow through a model by, e. g., highlight-
ing them directly in the source model.

Acknowledgments
This work was funded by the German Federal Minis-
try of Education and Research as part of the ECoSMo
project [16].

References
1. Alur, R., Dill, D. L. A Theory of Timed Automata. In:

Theoretical Computer Science, 1994, 126(2), 183-235.
https://doi.org/10.1016/0304-3975(94)90010-8

2. Assystem. Assystem Germany GmbH. Jan. 2019. URL:
https://www.assystem-germany.com/.

3. Behrmann, G., D. A., Larsen, K. G. A Tutorial on UPPA-
AL. In: Formal Methods for the Design of Real-Ti-
me Systems. Springer, 2004, 200-236. https://doi.
org/10.1007/978-3-540-30080-9_7

4. Bengtsson, J., Yi, W. Timed Automata: Semantics,

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-3-540-30080-9_7

Information Technology and Control 2019/2/48314

Algorithms and Tools. In: Lectures on Concurren-
cy and Petri Nets. Springer, 2004, 87-124. https://doi.
org/10.1007/978-3-540-27755-2_3

5. Goguen, J. A., Meseguer, J. Security Policies and Securi-
ty Models. In: IEEE Symposium on Security and Priva-
cy, 1982, 11-20. https://doi.org/10.1109/SP.1982.10014

6. Hammer, C., Krinke, J., Snelting, G. Information Flow
Control for Java Based on Path Conditions in Depen-
dence Graphs. In: IEEE International Symposium on
Secure Software Engineering, 2006, 87-96.

7. Hammer, C., Schaade, R., Snelting, G. Static Path Con-
ditions for Java. In: ACM SIGPLAN Workshop on Pro-
gramming Languages and Analysis for Security, ACM,
2008, 57-66. https://doi.org/10.1145/1375696.1375704

8. Hamon, G. A Denotational Semantics for Sta-
teflow. In: ACM International Conference on Em-
bedded Software, ACM, 2005, 164-172. https://doi.
org/10.1145/1086228.1086260

9. Hamon, G., Rushby, J. An Operational Semantics for
Stateflow. In: Fundamental Approaches to Software
Engineering. Springer, 2004, 229-243. https://doi.
org/10.1007/978-3-540-24721-0_17

10. Harel, D. Statecharts: A Visual Formalism for Complex
Systems. In: Science of Computer Programming, 8(3),
Elsevier, 1987, 231-274. https://doi.org/10.1016/0167-
6423(87)90035-9

11. Jiang, Y., Yang, Y., Liu, H., Kong, H., Gu, M., Sun, J., Sha,
L. From Stateflow Simulation to Verified Implementa-
tion: A Verification Approach and a Real-Time Train
Controller Design. In: 2016 IEEE Real-Time and Embe-
dded Technology and Applications Symposium (RTAS),
2016, 1-11. https://doi.org/10.1109/RTAS.2016.7461337

12. King, J. C. Symbolic Execution and Program Testing.
In: Communications of the ACM, 1976, 19(7), 385-394.
https://doi.org/10.1145/360248.360252

13. Kuo, B., Golnaraghi, F. Automatic Control Sys-
tems, 9th ed. Hoboken, N. J: Wiley, 2009. ISBN: 978-
0470048962.

14. Lee, E. A., Neuendorffer, S. Concurrent Models of Com-
putation for Embedded Software. In: IEE Proceedings
- Computers and Digital Techniques, 2005, 152(2),
239-250. ISSN: 1350-2387. https://doi.org/10.1049/ip-
cdt:20045065

15. MES. Model Engineering Solutions GmbH. June 2016.
URL: model-engineers.com.

16. [16] Mikulcak, M., Glesner, S., and Herber, P. The ECoS-
Mo Project, 2019.

17. Mikulcak, M., Herber, P., Göthel, T., Glesner, S. Informa-
tion Flow Analysis of Combined Simulink/Stateflow
Models. In: 2018 IEEE 27th International Conference
on Enabling Technologies: Infrastructure for Collabo-
rative Enterprises (WETICE), 2018, 223-228. https://
doi.org/10.1109/WETICE.2018.00050

18. Mikulcak, M., Herber, P., Göthel, T., Glesner, S. Timed
Path Conditions in MATLAB/Simulink. In: Götz, M.,
Schirner, G., Wehrmeister, M. A., Al Faruque, M. A., Rett-
berg, A. (Eds.), System Level Design from HW/SW to Me-
mory for Embedded Systems. Cham: Springer Internati-
onal Publishing, 2017, 64-76. ISBN: 978-3-319-90023-0.
https://doi.org/10.1007/978-3-319-90023-0_6

19. Mikulcak, M., Herber, P., Göthel, T., Glesner, S. Towards
Identifying Spurious Paths in Combined Simulink/
Stateflow Models. In: Heinrich, C. M., Martin, P. (Ed.),
INFORMATIK 2016, P-259, Lecture Notes in Informa-
tics (LNI). Gesellschaft für Informatik, GI Bonn, 2016,
1495-1508. URL: https://dl.gi.de/20.500.12116/1037.

20. Miller, C., Valasek, C. Remote Exploitation of an Unalte-
red Passenger Vehicle. In: Black Hat USA, 2015.

21. Miller, S., Anderson, E., Wagner, L., Whalen, M., Heim-
dahl, M. Formal Verification of Flight Critical Software.
In: Proceedings of the AIAA Guidance, Navigation and
Control Conference and Exhibit, 2005, 15-18. https://
doi.org/10.2514/6.2005-6431

22. Mokadem, H. B., Berard, B., Gourcuff, V., De Smet, O.,
Roussel, J.-M. Verification of a Timed Multitask Sys-
tem with UPPAAL. In: IEEE Transactions on Auto-
mation Science and Engineering, 2010, 7(4), 921-932.
https://doi.org/10.1109/ETFA.2005.1612699

23. Parhi, K. K., Chen, Y. Signal Flow Graphs and Data Flow
Graphs. In: Bhattacharyya, S. S., Deprettere, E. F., Leupers,
R., Takala, J. (Eds.), Handbook of Signal Processing Sys-
tems. MA: Springer US, 2010, 791-816. ISBN: 978-1-4419-
6345-1. https://doi.org/10.1007/978-1-4419-6345-1_28

24. Reicherdt, R., Glesner, S. Slicing MATLAB/Simulink
Models. In: 34th International Conference on Software
Engineering (ICSE), IEEE, 2012, 551-561. https://doi.
org/10.1109/ICSE.2012.6227161

25. Robinson-Mallett, C., Hierons, R. M., Liggesmeyer, P.
Achieving Communication Coverage in Testing. In:
ACM SIGSOFT Software Engineering Notes, 2006,
31(6), 1-10. https://doi.org/10.1145/1218776.1218786

26. Sabelfeld, A., Myers, A. Language-Based Informati-
on-Flow Security. In: IEEE Journal on Selected Are-
as in Communications, 2003, 21(1), 5-19. https://doi.
org/10.1109/JSAC.2002.806121

https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1145/1375696.1375704
https://doi.org/10.1145/1086228.1086260
https://doi.org/10.1145/1086228.1086260
https://doi.org/10.1007/978-3-540-24721-0_17
https://doi.org/10.1007/978-3-540-24721-0_17
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1145/360248.360252
https://doi.org/10.1049/ip-cdt:20045065
https://doi.org/10.1049/ip-cdt:20045065
https://doi.org/10.1109/WETICE.2018.00050
https://doi.org/10.1109/WETICE.2018.00050
https://doi.org/10.1007/978-3-319-90023-0_6
https://doi.org/10.2514/6.2005-6431
https://doi.org/10.2514/6.2005-6431
https://doi.org/10.1109/ETFA.2005.1612699
https://doi.org/10.1007/978-1-4419-6345-1_28
https://doi.org/10.1109/ICSE.2012.6227161
https://doi.org/10.1109/ICSE.2012.6227161
https://doi.org/10.1145/1218776.1218786
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/JSAC.2002.806121

315Information Technology and Control 2019/2/48

27. Scaife, N., Sofronis, C., Caspi, P., Tripakis, S., Mara-
ninchi, F. Defining and Translating a Safe Subset of
Simulink/Stateflow into Lustre. In: International Con-
ference on Embedded Software, ACM, 2004, 259-268.
https://doi.org/10.1145/1017753.1017795

28. The MathWorks. MATLAB Simulink. r2017b. 1 Apple
Hill Drive, Natick, MA, Sept. 2017. URL: www. math-
works.com/products/simulink.

29. The MathWorks. Simulink Design Verifier. r2017b. 1
Apple Hill Drive, Natick, MA, Sept. 2017. URL:www.
mathworks.com/products/sldesignverifier.

30. The MathWorks. Stateflow. r2017b. 1 Apple Hill Drive,
Natick, MA, Sept. 2017. URL: www.mathworks. com/
products/stateflow/.

31. Tripakis, S., Sofronis, C., Caspi, P., Curic, A. Translating
Discrete-Time Simulink to Lustre. In: ACM Transacti-

ons on Embedded Computing Systems (TECS), 2005,
4(4), 779-818. https://doi.org/10.1145/1113830.1113834

32. Walde, G., Luckner, R. Automatic Translation of Com-
plex Flight Control Systems from Simu- link/Stateflow
to SCADE - An Experience Report. Tech. rep. Deutsches
Zentrum für Luft- und Raumfahrt, 2015.

33. Whalen, M. W., Hardin, D., Wagner, L. G. Model Chec-
king Information Flow. In: Design and Verification of
Microprocessor Systems for High-Assurance Appli-
cations. Springer, 2010, 381-428. ISBN: 978-1-4419-
1538-2. https://doi.org/10.1007/978-1-4419-1539-9_13

34. Yang, Y., Jiang, Y., Gu, M., Sun, J. Verifying Simulink
Stateflow Model: Timed Automata Approach. In: 31st
IEEE/ACM International Conference on Automated
Software Engineering, ASE 2016, Singapore, Singapore:
ACM, 2016, 852-857. ISBN: 978-1-4503-3845-5. http://
doi.acm.org/10.1145/2970276.2970293.

https://doi.org/10.1145/1017753.1017795
https://doi.org/10.1145/1113830.1113834
https://doi.org/10.1007/978-1-4419-1539-9_13

