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Simulink and its state machine design toolbox Stateflow are widely-used industrial tools for the development of 
complex embedded systems. Due to the strongly differing execution semantics of Simulink and Stateflow, the 
analysis of combined models poses a difficult challenge, especially when considering their timing behavior. In this 
paper, we present a novel approach to relate the semantics of both the dynamic Simulink components and the 
Stateflow controller and use it to perform an information flow analysis on combined models. The key idea of our 
approach is that we analyze the information flow in a given model by computing an over-approximation of the 
control flow through the Simulink components, and deduce whether all control flow conditions combined per-
mit information to flow on a given path or not. The main contributions of our control flow analysis approach are: 
(1) we identify timed path conditions which capture the conditions for time-dependent information flow on paths 
of interest for (discrete) Simulink components, and translate them into a UPPAAL timed automata representa-
tion, (2) we translate the Stateflow components to UPPAAL timed automata, and (3) we perform model checking 
on the translated set of automata in order to analyze the existence of paths in the combined model. With our ap-
proach, we safely rule out the existence of information flow on specific paths through a model, which enables us 
to reason about non-interference between model parts and the compliance with security policies. Furthermore, 
our approach presents a starting point to generate feasible, efficient test cases and to perform compositional ver-
ification. We demonstrate the applicability of our approach using two versions of a complex case study from the 
automotive domain consisting of multiple safety-critical components communicating over a shared bus system. 
For this example, an approach based on timed path conditions alone is sound but highly imprecise compared to 
our combined approach.
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1. Introduction
In the area of safety-critical embedded software, such 
as in the automotive and aerospace domains, pro-
gram- ming errors can lead to disastrous and often 
fatal accidents. At the same time, the complexity of 
such systems has increased dramatically over recent 
years. To cope with the steadily increasing complex-
ity, current design processes rely more and more on 
models. One of the most widely-used tools for mod-
el-based design is Simulink [28] by MathWorks, 
which supports the graphical design and simulation 
of time-continuous as well as time-discrete systems 
using block diagrams. To additionally support the de-
sign of state machine-based embedded controllers in 
conjunction with these dynamical systems, Stateflow 
[30], an extension to Simulink, is widely used in in-
dustrial design processes. Simulink and Stateflow are 
very well-suited to grasp the structure of a design on 
high abstraction levels and to visualize its behavior by 
simulation.
However, due to the complexity and the dynamic, 
time-dependent character of the developed models, 
the analysis of a given combined model is a difficult 
challenge, in particular if timing aspects are consid-
ered. At the same time, combining knowledge about 
the existence of paths, the conditions under which 
they are executed, and how an embedded Stateflow 
controller influences their behavior is a hitherto un-
solved problem. This is due to the strongly heteroge-
neous semantics of Simulink and Stateflow.
In this paper, we present an approach for an informa-
tion flow analysis (IFA) of combined discrete Sim-
ulink/Stateflow models. Our approach is threefold: 
First, we extract timed path conditions from dis-
cretely- timed signal-flow components developed in 
Simulink and prepare them for analysis by converting 
them into timed automata. Second, we generate UP-
PAAL timed automata from the embedded Stateflow 
controllers. Third, we use model checking to analyze 
whether the timed path conditions that are extract-
ed from Simulink components are satisfiable by the 
timed automata representation of Stateflow compo-
nents. If the conditions are satisfiable, the condition-
ally executed paths under analysis potentially exist in 
the combined model, i. e., information flow is possible. 
If not, they are identified as infeasible and will never 
be executed in the model, i. e., the absence of informa-

tion flow is guaranteed. All three steps are performed 
fully automatically, including the generation of the 
verification goals for model checking.
If our analysis is applied to all possible paths of a giv-
en combined model, we can identify non-interference 
between model parts and, thus, reason about compli-
ance with security policies. For example, we can veri-
fy integrity by checking that no information flow is pos-
sible from a non-critical to a critical component. The 
relevance of such integrity properties was demon-
strated, for example, by the Jeep hack in [20], where 
the attackers gained control over the (safety-critical) 
speed control and braking system of a Jeep Cherokee 
through a vulnerability of the (non-critical) infotain-
ment system.
We demonstrate the applicability of our approach by, 
among others, checking the absence of information 
flow from a (non-critical) odometer to a (safety-crit-
ical) braking system in multiple versions of a case 
study provided by our industrial partners from the 
automotive domain.
Note that this paper is an extended version of our work 
published in [17]. In this paper, we provide (1) a more 
exhaustive discussion of preliminaries with a spe-
cial focus in information flow analysis and MATLAB 
Stateflow in Section 2; (2) a detailed explanation of 
our previously published approach to extract timed 
path conditions from the Simulink components of a 
combined Simulink/Stateflow model in Section 4; (3) 
an extended case study in Section 7.
The rest of this paper is structured as follows: In 
Section 2, we briefly introduce the necessary pre-
liminaries. In Section 3, we present the main con-
tribution of this paper, namely an approach for the 
analysis of information flow through combined Sim-
ulink/Stateflow models. In Sections 4 to 6, we give 
a detailed description of each step of our approach. 
We present our evaluation and results in Section 7. 
Then, we discuss related work in Section 8 and con-
clude in Section 9.

2. Preliminaries
In this section, we describe the basic concepts and 
tools employed by our approach.
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Figure 1 
Stateflow example

2.1. Information Flow Analysis
The protection of confidentiality and integrity of in-
formation inside a software system is an increasingly 
important problem in the areas of general computing 
as well as embedded systems. Protecting not only the 
data itself but also the integrity of the functionality 
that produces and handles data is a goal of software 
non-interference policies [5]. Such policies, based 
on the assignment of security levels to data elements, 
describe rules between which levels information flow 
is allowed or forbidden [26]. When aiming at assuring 
confidentiality, data is prohibited to flow to inappro-
priate locations, while in the context of integrity, data 
is prohibited to flow from inappropriate sources. As 
non-interference refers to the absence of information 
flow, it ensures both confidentiality and integrity.

2.2. Path Conditions
In general, path conditions [12] describe sufficient con-
ditions for information paths through code or models 
to be executed. In [6, 7], path conditions are used to 
capture all paths where information might flow from a 
source to a target. In contrast to static analyses, which 
consider all syntactically possible dependencies, path 
conditions take data and control flow conditions into 
account. Thus, they exclude, for example, information 
flow that depends on disjoint control flow conditions. 
A path condition-based analysis is therefore more 
precise than classical static analyses.

2.3. Simulink
Simulink [28] is an add-on to the MATLAB IDE by 
MathWorks that enables graphical modeling and sim-
ulation of reactive systems. In its signal-flow orient-
ed notation [13, 23], Simulink employs blocks which 
are connected using signals. Additionally, each block 
and signal is assigned a set of parameters. Simulation 
of Simulink models is performed using solvers which 
compute the output of each block according to its se-
mantics. Variable step solvers aim at automatically 
finding a simulation step size for each block in the 
model to achieve a level of precision set by the mod-
el developer. Fixed step solvers use a fixed simulation 
step size at the expense of precision while increasing 
performance. The former class of solvers is common-
ly used for hybrid or purely time-continuous systems, 
while the latter is used for time-discrete models. In 

such models, each block is interpreted as producing 
a piecewise-constant signal over the simulation time 
scale, which forms the basis for an automatic transla-
tion of the model functionality and timing behavior to 
code [31, 14].

2.4. Stateflow
Stateflow [30] is a further add-on to the MATLAB 
IDE, specifically to Simulink, and gives the designer 
the possibility to integrate decision logic based on 
state machines and flow charts into a Simulink mod-
el. Stateflow makes use of complex modeling styles 
incorporating multiple states, event and transition 
types as well as an execution semantics not only de-
pendent on the structure and annotations of the mod-
el but also on its layout. Internally, the execution of 
Stateflow charts is controlled via an event queue into 
which all implicit events, such as updates to input sig-
nals and transitions as well as all explicit events are or-
dered and evaluated in a first in, first out (FIFO) fash-
ion, i. e., the execution semantics is purely sequential. 
To give an impression of the Stateflow semantics, we 
briefly summarize its main building blocks, i. e., states, 
events, and transitions. Stateflow additionally sup-
ports junctions as well as temporal logic operators to 
model timed conditions.

2.4.1. States
States form the basic building block of the controller 
logic implemented in Stateflow. An example is shown  
in Figure 1. If the execution enters a state, a set of 
actions modeled by the designer takes place, such as 
the modification of output signals of the automaton 
or the triggering of events. The action type, entry, 
during or exit, determines when these actions are 
performed. Depending on the type, the timing behav-
ior and the frequency of the modifications and triggers 
changes. While the sets of entry and exit actions 
occur only once every time the state is active, the 
during actions are performed with every simula-
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set by the model developer. Fixed step solvers use a fixed simulation step size at the expense of precision while 
increasing performance. The former class of solvers is commonly used for hybrid or purely time-continuous 
systems, while the latter is used for time-discrete models. In such models, each block is interpreted as producing a 
piecewise-constant signal over the simulation time scale, which forms the basis for an automatic translation of the 
model functionality and timing behavior to code [31, 14]. 

2.4. Stateflow 

Stateflow [30] is a further add-on to the MATLAB IDE, specifically to Simulink, and gives the designer the 
possibility to integrate decision logic based on state machines and flow charts into a Simulink model. Stateflow 
makes use of complex modeling styles incorporating multiple states, event and transition types as well as an 
execution semantics not only dependent on the structure and annotations of the model but also on its layout. 
Internally, the execution of Stateflow charts is controlled via an event queue into which all implicit events, such as 
updates to input signals and transitions as well as all explicit events are ordered and evaluated in a first in, first out 
(FIFO) fashion, i. e., the execution semantics is purely sequential. To give an impression of the Stateflow semantics, 
we briefly summarize its main building blocks, i. e., states, events, and transitions. Stateflow additionally supports 
junctions as well as temporal logic operators to model timed conditions. 
2.4.1. States 

States form the basic building block of the controller logic implemented in Stateflow. An example is shown     
in Figure 1. If the execution enters a state, a set of actions modeled by the designer takes place, such as the 
modification of output signals of the automaton or the triggering of events. The action type, entry, during 
or exit, determines when these actions are performed. Depending on the type, the timing behavior and the 
frequency of the modifications and triggers changes. While the sets of entry and exit actions occur only once 
every time the state is active, the during actions are performed with every simulation step and are therefore 
dependent on the selected solver of the Simulink and Stateflow model. As shown in Figure 1, actions can  
trigger events. To manage the complexity of Stateflow automata, it is possible to model hierarchical states by 
using superstates and substates. If a superstate is triggered, its substates are either executed in an exclusive or a 
parallel fashion, depending on the modeling style chosen by the developer. While in an exclusive composition, only 
one of the mutually exclusive substates can be active at a time, multiple parallel states can be active simultaneously 
in a parallel composition. However, as the execution of parallel states is sequential during simulation, an ordering 
is imposed either explicitly via annotations made by the designer or implicitly via the relative location of the states. 
2.4.2. Events 

Events in Stateflow are a form of trigger mechanism for the execution of states and transitions. As seen in Figure 1, 
the exit action of state A triggers the explicit event D(). Whenever an event is triggered, it is broadcast to the 
parallel states of the current Stateflow chart. 
2.4.3. Transitions 

To design the state change logic of a controller, Stateflow states are connected via transitions. Similar to states, it 
is possible to add guards, trigger events, and actions to transitions. Figure 1 shows an example transition containing 
all three mentioned semantical elements. Event E triggers the evaluation of the guard condition a == 1. As soon 
as this condition evaluates to true, the corresponding guard action b = 3 is executed. Finally, when the transition 
is taken, the transition action c = 2 is executed and state B is marked active. 

2.5. UPPAAL Timed Automata 

Timed automata (TA) [1] are a timed extension of the classical finite state automata. A notion of time is 
introduced by clock variables, which are used in clock constraints to model time-dependent behavior. Systems 
comprising multiple concurrent processes are modeled by networks of TA, which are executed with interleaving 
semantics and synchronize on channels. 
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tion step and are therefore dependent on the selected 
solver of the Simulink and Stateflow model. As shown 
in Figure 1, actions can  trigger events. To manage the 
complexity of Stateflow automata, it is possible to 
model hierarchical states by using superstates and 
substates. If a superstate is triggered, its substates are 
either executed in an exclusive or a parallel fashion, 
depending on the modeling style chosen by the devel-
oper. While in an exclusive composition, only one of the 
mutually exclusive substates can be active at a time, 
multiple parallel states can be active simultaneously 
in a parallel composition. However, as the execution 
of parallel states is sequential during simulation, an 
ordering is imposed either explicitly via annotations 
made by the designer or implicitly via the relative loca-
tion of the states.

2.4.2. Events
Events in Stateflow are a form of trigger mechanism 
for the execution of states and transitions. As seen in 
Figure 1, the exit action of state A triggers the ex-
plicit event D(). Whenever an event is triggered, 
it is broadcast to the parallel states of the current 
Stateflow chart.

2.4.3. Transitions
To design the state change logic of a controller, 
Stateflow states are connected via transitions. Simi-
lar to states, it is possible to add guards, trigger events, 
and actions to transitions. Figure 1 shows an example 
transition containing all three mentioned semantical 
elements. Event E triggers the evaluation of the guard 
condition a == 1. As soon as this condition evaluates 
to true, the corresponding guard action b = 3 is exe-
cuted. Finally, when the transition is taken, the tran-
sition action c = 2 is executed and state B is marked 
active.

2.5. UPPAAL Timed Automata
Timed automata (TA) [1] are a timed extension of the 
classical finite state automata. A notion of time is in-
troduced by clock variables, which are used in clock 
constraints to model time-dependent behavior. Sys-
tems comprising multiple concurrent processes are 
modeled by networks of TA, which are executed with 
interleaving semantics and synchronize on channels.
UPPAAL [3, 4] is a tool suite for modeling, simulation, 
animation, and verification of networks of timed 

automata. The UPPAAL modeling language extends 
timed automata by bounded integer variables, binary 
and broadcast channels, and urgent and committed 
locations. A small example UPPAAL timed automaton 
is shown in Figure 2. The initial location is denoted 
by . The label request? denotes receiving on the 
channel request, while ack! denotes sending on 
channel ack. The clock variable x is first set to 0 and 
then used in two clock conditions: the invariant x <= 
maxtime denotes that the corresponding location 
must be left before x becomes greater than maxtime, 
and the guard x >= mintime enables the corre-
sponding edge if x is greater or equal mintime. The 
symbol     depicts an urgent location and the symbol 

 a committed location. Urgent and committed loca-
tions are used to model locations where no time may 
pass. Leaving a committed location has priority over 
leaving non-committed locations.
The UPPAAL model checker enables fully-automatic 
verification of (unnested) Computation Tree Logic 
(CTL) formulae on a given network of timed automata.

3. Information Flow Analysis of 
Simulink/Stateflow Models
The heterogeneous nature of software models con-
taining both Simulink and Stateflow parts makes 
their analysis hard. The main challenge is to reconcile 
the inherently different semantics of Simulink and 
Stateflow, and in particular their timing.
The semantics of Simulink is defined by the simu-
lation semantics of the solver, where the function-
ality and timing depend on the simulation step size. 
The semantics of Stateflow is defined by evalua-

Figure 2 
UPPAAL example
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UPPAAL [3, 4] is a tool suite for modeling, simulation, animation, and verification of networks of timed 

automata. The UPPAAL modeling language extends timed automata by bounded integer variables, binary and 
broadcast channels, and urgent and committed locations. A small example UPPAAL timed automaton is shown 
in Figure 2. The initial location is denoted by . The label request? denotes receiving on the 
channel request, while ack! denotes sending on channel ack. The clock variable x is first set to 0 and 
then used in two clock conditions: the invariant x <= maxtime denotes that the corresponding location must 
be left before x becomes greater than maxtime, and the guard x >= mintime enables the corresponding 
edge if x is greater or equal mintime. The symbol  depicts an urgent location and the symbol  a 
committed location. Urgent and committed locations are used to model locations where no time may pass. 
Leaving a committed location has priority over leaving non-committed locations. 

The UPPAAL model checker enables fully-automatic verification of (unnested) Computation Tree Logic (CTL) 
formulae on a given network of timed automata. 

 
3. Information Flow Analysis of Simulink/Stateflow Models 

The heterogeneous nature of software models containing both Simulink and Stateflow parts makes their 
analysis hard. The main challenge is to reconcile the inherently different semantics of Simulink and Stateflow, and 
in particular their timing. 

The semantics of Simulink is defined by the simulation semantics of the solver, where the functionality and 
timing depend on the simulation step size. The semantics of Stateflow is defined by evaluation rules that determine 
which transition fires in each step, whereby a step is made whenever one of the input signals is reevaluated, 
i. e., every simulation time step ts. The main idea of our approach for the analysis of the information flow in 
combined, discrete Simulink/Stateflow models is to relate a Stateflow controller with its surrounding Simulink 
model using timed automata in order to enable model checking. For the analysis of information flow in pure 
Simulink components, we make use of our approach previously presented in [18]. There, we compute timed path 
conditions for a given Simulink model by performing a backwards analysis through the model. The timed path 
conditions extracted using our approach describe sufficient conditions for the execution of a given path, i. e., 
they provide a sound over-approximation of the possible information flow. For Stateflow, we utilize an approach 
that translates Stateflow components to a system of UPPAAL timed automata [11, 34]. With that, the semantics 
of a Stateflow component is precisely defined. We make use of this approach to gain a formally well-defined 
representation of the Stateflow components in a combined Simulink/Stateflow model, and to gain access to the 
UPPAAL tool suite, including the UPPAAL model checker. 

To relate the timed path conditions resulting from [18] for Simulink components with the UPPAAL timed 
automata representation of Stateflow components, we assume that a Stateflow controller is embedded into a 
Simulink model and has an effect on some of its components by controlling the execution of paths through the 
surrounding Simulink components. Our approach to analyze the information flow in combined Simulink/Stateflow 
models, shown in Figure 4, is threefold: 

(1) We utilize our algorithm shown in [18, 19] to extract timed path conditions for all paths between a set of model 
elements of interest from the Simulink model (see step (1.a) in Figure 4). Along these paths, the conditions 
for information flow as well as their timing are gathered and expressed as sets of timed path conditions CTP. 
To make this representation compatible with the UPPAAL timed automata representation of the Stateflow 
semantics presented in [19], we propose a timed automata representation of these timed path conditions  
and generate one automaton for each set in CTP (1.b). As we extract timed path conditions for all paths 
between model elements of interest and, on these paths, extract all control flow conditions, we achieve a sound 
over-approximation of the possible information flow through the Simulink model. 
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tion rules that determine which transition fires in 
each step, whereby a step is made whenever one of 
the input signals is reevaluated, i. e., every simula-
tion time step ts. The main idea of our approach for 
the analysis of the information flow in combined, 
discrete Simulink/Stateflow models is to relate a 
Stateflow controller with its surrounding Simulink 
model using timed automata in order to enable mod-
el checking. For the analysis of information flow 
in pure Simulink components, we make use of our 
approach previously presented in [18]. There, we 
compute timed path conditions for a given Simulink 
model by performing a backwards analysis through 
the model. The timed path conditions extracted 
using our approach describe sufficient conditions 
for the execution of a given path, i. e., they provide 
a sound over-approximation of the possible infor-
mation flow. For Stateflow, we utilize an approach 
that translates Stateflow components to a system of  
UPPAAL timed automata [11, 34]. With that, the se-
mantics of a Stateflow component is precisely de-
fined. We make use of this approach to gain a for-
mally well-defined representation of the Stateflow 
components in a combined Simulink/Stateflow 
model, and to gain access to the UPPAAL tool suite, 
including the UPPAAL model checker.
To relate the timed path conditions resulting from [18] 
for Simulink components with the UPPAAL timed au-
tomata representation of Stateflow components, we 
assume that a Stateflow controller is embedded into a 
Simulink model and has an effect on some of its com-
ponents by controlling the execution of paths through 
the surrounding Simulink components. Our approach 
to analyze the information flow in combined Simulink/
Stateflow models, shown in Figure 4, is threefold:
1 We utilize our algorithm shown in [18, 19] to extract 

timed path conditions for all paths between a set of 
model elements of interest from the Simulink mod-
el (see step (1.a) in Figure 4). Along these paths, the 
conditions for information flow as well as their 
timing are gathered and expressed as sets of timed 
path conditions CTP. To make this representation 
compatible with the UPPAAL timed automata rep-
resentation of the Stateflow semantics presented 
in [19], we propose a timed automata representa-
tion of these timed path conditions  and generate 
one automaton for each set in CTP (1.b). As we ex-
tract timed path conditions for all paths between 

model elements of interest and, on these paths, ex-
tract all control flow conditions, we achieve a sound 
over-approximation of the possible information 
flow through the Simulink model.

2 We adapt the method presented in [11, 34] to trans-
late embedded Stateflow components to a system 
of UPPAAL timed automata (2.a). We are confident 
that their translation is sound, as it provides a di-
rect mapping of each Stateflow process into a se-
mantically equivalent timed automata representa-
tion, and explicitly models the execution semantics 
of Stateflow, including the event queue. We extend 
the resulting system with an automaton that pro-
vides arbitrary input signals (2.b). This enables a 
sound and comprehensive analysis of the behavior 
of the Stateflow controller, as we simulate the com-
plete environment, i. e., all possible combinations 
of input signals to the controller.

3 We use the information gathered in the previous 
steps to automatically generate reachability prop-
erties for the UPPAAL model checker (3.a) and start 
the checking process (3.b). In this final step, we ef-
fectively utilize model checking to analyze wheth-
er the timed path conditions derived from Sim-
ulink can be satisfied by the Stateflow controller, 
i. e., if one or multiple of the timed path conditions 
expressed in CTP hold on the translated model of the 
Stateflow controller SFM . If they do not hold, then 
we have safely shown that information flow over 
the paths under analysis is impossible as the path is 
never executed in the Simulink models and that the 
property of non-interference holds.

Note that a Stateflow state machine is connected to 
the surrounding model Simulink model via signals 
SC that can be used as variables inside guards. Vari-
ables modified in state or transition actions inside 
Stateflow state machines form their output signals S 
and are routed to the Simulink model. There, they act 
as control signals that impose conditions on infor-
mation flow paths from the inputs I to the outputs O. 
The evaluation of a Stateflow automaton is performed 
whenever one of the input signals to the automaton is 
reevaluated by the solver. Then, its state is reevaluat-
ed and a one of the possible transitions is taken. We 
can therefore define a minimal time interval between 
every change in the output of a Stateflow automa-
ton. Under the assumption of a uniform sample time 
throughout the model, it is equal to the simulation step 
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size ts. This relation between the discretely-timed 
solver of the Simulink model and the evaluation of the 
Stateflow automaton makes it possible to relate both 
semantics.
In the remainder of this section, we first introduce a 
motivating example for our approach in Section 3.1. 
Then, we introduce the assumptions we impose on 
the models that our approach is able to analyze in Sec-
tion 3.2. In Section 4, we provide an overview of our 
approach to extract timed path conditions from the 
signal-flow oriented Simulink components of com-
bined Simulink/Stateflow models. Subsequently, we 
present our approach to prepare these extracted sets 
of timed path conditions for model checking by con-
verting them into UPPAAL timed automata in Section 
4.1. We then present the generation of networks of UP-
PAAL timed automata from the Stateflow components 
of the models as well as our generalization to support 
arbitrary inputs during the model checking process 
in Section 5. Finally, we present our automatic gen-
eration of properties using the previously extracted 
information and the initiation of the model checking 
process by our algorithm as well as the evaluation of 
its results in Section 6.

3.1. Motivating Example

To illustrate our approach, we use a shared communi-
cation infrastructure , such as commonly found in the 

design of automotive software, as a running example. 
Figure 3 shows the corresponding Simulink model. It 
uses a Memory block as internal buffer and switches 
to route the incoming and outgoing data according to 
their source and target, respectively. Information of 
two different security levels (from the public input 
ip and confidential input ic) is fed into the shared buf-
fer. According to the current operation mode set by a 
controller implemented in Stateflow, confidential or 
public information is saved in the buffer and passed to 
the corresponding output. Although confidential and 
public data share the same memory block as buffer, the 
routing conditions are intended to ensure that confi-
dential input data can never flow to the public output. 
To this end, the operation mode defines which input 
should be routed to the output. The designer did, how-
ever, not take the timing behavior of the Memory block 
into account. When examining the timing, we discover 
that if the operation mode switches from confidential 
to public, the buffer content that is passed to the out-
puts still holds the confidential data for one time unit, 
i. e., the confidential contents are sent to the public 
output. The timed path conditions for the Simulink 
part of this example correctly show that information 
flow is indeed possible from ic to op, as shown in [18]. 
However, as the Stateflow controller is responsible for 
the modification of the system state is, an analysis of 
its behavior in conjunction with the timed path con-
ditions is necessary to evaluate whether the combined 

Figure 3 
Running example
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(2) We adapt the method presented in [11, 34] to translate embedded Stateflow components to a system of UPPAAL 

timed automata (2.a). We are confident that their translation is sound, as it provides a direct mapping of each 
Stateflow process into a semantically equivalent timed automata representation, and explicitly models the 
execution semantics of Stateflow, including the event queue. We extend the resulting system with an automaton 
that provides arbitrary input signals (2.b). This enables a sound and comprehensive analysis of the behavior of 
the Stateflow controller, as we simulate the complete environment, i. e., all possible combinations of input 
signals to the controller. 

(3) We use the information gathered in the previous steps to automatically generate reachability properties for 
the UPPAAL model checker (3.a) and start the checking process (3.b). In this final step, we effectively utilize 
model checking to analyze whether the timed path conditions derived from Simulink can be satisfied by the 
Stateflow controller, i. e., if one or multiple of the timed path conditions expressed in CTP hold on the translated 
model of the Stateflow controller SFM . If they do not hold, then we have safely shown that information flow 
over the paths under analysis is impossible as the path is never executed in the Simulink models and that the 
property of non-interference holds. 

Note that a Stateflow state machine is connected to the surrounding model Simulink model via signals SC 
that can be used as variables inside guards. Variables modified in state or transition actions inside Stateflow state 
machines form their output signals S and are routed to the Simulink model. There, they act as control signals that 
impose conditions on information flow paths from the inputs I to the outputs O. The evaluation of a Stateflow 
automaton is performed whenever one of the input signals to the automaton is reevaluated by the solver. Then, its 
state is reevaluated and a one of the possible transitions is taken. We can therefore define a minimal time 
interval between every change in the output of a Stateflow automaton. Under the assumption of a uniform 
sample time throughout the model, it is equal to the simulation step size ts. This relation between the discretely-
timed solver of the Simulink model and the evaluation of the Stateflow automaton makes it possible to relate 
both semantics. 

In the remainder of this section, we first introduce a motivating example for our approach in Section 3.1. 
Then, we introduce the assumptions we impose on the models that our approach is able to analyze in Section 3.2. 
In Section 4, we provide an overview of our approach to extract timed path conditions from the signal-flow 
oriented Simulink components of combined Simulink/Stateflow models. Subsequently, we present our approach 
to prepare these extracted sets of timed path conditions for model checking by converting them into UPPAAL 
timed automata in Section 4.1. We then present the generation of networks of UPPAAL timed automata from the 
Stateflow components of the models as well as our generalization to support arbitrary inputs during the model 
checking process in Section 5. Finally, we present our automatic generation of properties using the previously 
extracted information and the initiation of the model checking process by our algorithm as well as the evaluation 
of its results in Section 6. 

3.1. Motivating Example 

To illustrate our approach, we use a shared communication infrastructure , such as commonly found in the 
design of automotive software, as a running example. Figure 3 shows the corresponding Simulink model. It uses a 
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Figure 4 
Overall approach

Simulink/Stateflow model suffers from the same se-
curity policy violation.

3.2. Assumptions
Our information flow analysis approach supports dis-
crete Simulink/Stateflow models that satisfy the fol-
lowing assumptions:
1 Only time-discrete, fixed-step solvers are used [18],
2 a uniform sample time is used,
3 no algebraic loops are used,
4 control signals do not depend on any feedback 

loops.
All discrete Simulink/Stateflow models that satisfy 
these assumptions can be safely analyzed using our 
approach. Note that as we analyze the control flow 
of Simulink subsystems, we do not impose any re-
strictions on the data paths, i. e., complex modeling 
elements like integrators and transfer functions, to-
gether with arbitrary feedback loops, may be used on 
the data path. Note also that the existing translation 
mechanism for Stateflow described in [11, 34] does 
not impose any additional restrictions, as a full trans-
lation of all Stateflow features is provided.
Our restriction to purely discrete models is accept-
able, as we target safety-critical embedded software 
systems, which typically do not contain any contin-
uous components. The restriction to a uniform sam-
ple time is mainly for simplicity of presentation and 
could be relaxed. Support for algebraic loops would 
require to incorporate a fixed-point analysis into our 
approach and as they are not present in the case stud-
ies provided by our industrial partners, we left this 
open for future work. The restriction on control sig-
nals (4) is the most serious restriction and we hope to 
relax it in the near future by providing a more sophis-
ticated analysis of the control flow in a given Simulink 
model. However, this assumption was also met by the 
case studies provided by our industrial partners.

4. Extracting Timed Path Conditions 
from Simulink Components
In this section, we provide an overview of the first 
steps (see (1.a) and (1.b) of Figure 4) of our infor-
mation flow analysis approach, in which we use the 

algorithm we have previously published in [18] to 
generate timed path conditions from the dynamic 
signal-flow (i. e., Simulink) components of the mod-
el, and translate them into a UPPAAL timed automa-
ton representation.
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For the computation of timed path conditions from 
the Simulink components of a combined system, we 
use a two-step approach: (1) Statically identify all 
paths in a given Simulink model and collect all path 
conditions on each path. (2) For each path, propagate 
all local control flow conditions backwards through 
the model in order to compute timed path conditions 
that solely depend on input variables.
Using this approach, it is possible to express condi-
tions on paths through Simulink models containing 
time- dependent elements. In general, for a single 
path, these conditions take the following form shown 
in Equation (1):
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There, T  denotes the depth of the path under analysis in time slices [18], 1,..., ns s  denote all control 

signals,and st  denotes the simulation step size. Each path condition ( )jp s  corresponds to a conjunction of the 

atomic control flow conditions that are collected for each control signal in each time slice st l t− ⋅  on the given 

path from i  to o  during the backward analysis. The timed path condition TP ( )c i o→  defines a sufficient 
condition for information to flow through the path starting at data input i  and leading to the data output o . 

From our running example shown in fig:running_example, we are able to extract the following conditions for 
information to flow from the confidential data input ci  to the public data output po :  

TP ( ) = ( == 4) ( == 1)t tt s
c p s sc i o i i −→ ∧  (2) 
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There, T denotes the depth of the path under analy-
sis in time slices [18], 1,..., ns s  denote all control sig-
nals,and st  denotes the simulation step size. Each 
path condition ( )jp s  corresponds to a conjunction of 
the atomic control flow conditions that are collected 
for each control signal in each time slice st l t− ⋅  on the 
given path from i  to o  during the backward analysis. 
The timed path condition TP ( )c i o→  defines a suffi-
cient condition for information to flow through the 
path starting at data input i  and leading to the data 
output o .
From our running example shown in fig:running_ex-
ample, we are able to extract the following conditions 
for information to flow from the confidential data in-
put ci  to the public data output po : 
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paths, i. e., complex modeling elements like integrators and transfer functions, together with arbitrary feedback 
loops, may be used on the data path. Note also that the existing translation mechanism for Stateflow described 
in [11, 34] does not impose any additional restrictions, as a full translation of all Stateflow features is provided. 
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fixed-point analysis into our approach and as they are not present in the case studies provided by our industrial 
partners, we left this open for future work. The restriction on control signals (4) is the most serious restriction 
and we hope to relax it in the near future by providing a more sophisticated analysis of the control flow in a given 
Simulink model. However, this assumption was also met by the case studies provided by our industrial partners. 
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atomic control flow conditions that are collected for each control signal in each time slice st l t− ⋅  on the given 

path from i  to o  during the backward analysis. The timed path condition TP ( )c i o→  defines a sufficient 
condition for information to flow through the path starting at data input i  and leading to the data output o . 

From our running example shown in fig:running_example, we are able to extract the following conditions for 
information to flow from the confidential data input ci  to the public data output po :  

TP ( ) = ( == 4) ( == 1)t tt s
c p s sc i o i i −→ ∧  (2) . (2)

4.1. From Timed Path Conditions to Timed 
Automata
In this step, we present our approach to create com-
patibility between the extracted sets of timed path 
conditions and the Stateflow controllers translated 
into networks of UPPAAL timed automata. Specifical-
ly, our main contribution in this step is the creation of 
observer automata [22] for the information flow paths 
under analysis.
The main purpose of our translation from timed path 
conditions to timed automata is to make our represen-
tation of the timed paths in a Simulink model com-
patible with the network of UPPAAL timed automata 
generated from the Stateflow components. The key 
idea of our translation is to encode the timed path 
condition into an observer automaton, which ob-
serves a timed automata model of a Stateflow compo-
nent and checks whether the timed path conditions 
derived from a Simulink model can be satisfied by the 
Stateflow component. Note that the timed path condi-
tion is satisfiable if the final location of this observer 
automaton is reachable, which can conveniently be 
checked using the UPPAAL model checker.
The translation of Stateflow automata to UPPAAL 
presented in [11, 34] does not utilize clocks. We are 
therefore forced to rely on a different mechanism to 
synchronize the automaton to be created with the 
main system of automata created from the Stateflow 
model. As shown in the following, we make use of 

two variables introduced by the authors of [11, 34] 
that emulate the simulation time found in Simulink/
Stateflow, both globally (t_total) and inside states 
(t_driven).
The input to our generation algorithm is a list of timed 
path conditions,  i. e. , the extracted set of timed path 
conditions TPc  for a path under analysis sorted by 
time slices, as shown in Equation (1). The maximum 
length of this list is the time slice depth of the current 
path T . We perform multiple iterations over the list 
of timed path conditions we receive as an input. First, 
we add an initial state and one location for every entry 
in the list. Second, we create all forward transitions 
between the created locations. Every transition is 
guarded by the correct valuation of the next entry in 
the list. Additionally, whenever the first guard is eval-
uated to true, an internal variable t_start is set to the 
current value of the global time variable t_total and 
is used in all forward transitions to evaluate whether 
the timing requirement between input list conditions 
is met. We then add backward transitions from each 
state back to the initial state. These transitions are 
taken whenever the timing or control signal require-
ment to proceed to the next entry in the set is not met. 
Further, we add backward transitions from every 
state back to the state corresponding to the first entry 
in the list. These transitions are taken whenever the 
timing and data requirements are not fulfilled to enter 
the next state in the list but match its first entry. In the 
next step, we add all required self-loops to the autom-
aton. These self-loops are taken whenever the simu-
lation time has not progressed far enough for the next 
forward transition to be taken or whenever the back-
ward transition guard cannot be evaluated to true. 
Finally, the automaton will be added to the translated  
Stateflow system. We have illustrated our generation 
algorithm using UPPAAL timed automata templates 
shown in Figures 5a and 5b. There, dashed states 
denote placeholders for subsequent iterations of the 
algorithm during generation and the functions ( )p n  
and ( )t n  extract the n th atomic condition and the n
th timing requirement from the input list. Revisiting 
our running example, the automaton created from the 
timed path condition TP ( )c pc i o→ , shown in Figure 
5c. There, we initially wait until == 1si . Whenever 
this condition is satisfied, we check whether == 4si  
in the next time slice. If this happens, we reach the 
final location fl  of our observer automaton, which 
means that the timed path condition can actually be 
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Figure 5 
Observer automata
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satisfied. If == 1si  is satisfied but == 4si  is not satis-
fied in the next step, we reset the observer automaton.

By checking initially whether the timed path condi-
tion that refers to the earliest time slice is satisfied, 
and then subsequently checking whether all timed 
path conditions referring to the subsequent time steps 
are satisfied, we ensure that we detect all sequences of 
outputs of the Stateflow controller which might satis-
fy the overall timed path condition, i. e., our approach 
is sound.

5. Stateflow Controllers as Timed 
Automata
In this section, we present our adaption of an exist-
ing mechanism to translate Stateflow controllers into 
networks of UPPAAL timed automata. The translation 
makes it possible to elevate the analysis of the con-
troller behavior into a formally well-defined repre-
sentation and enables the usage of the UPPAAL model 
checker to verify properties on the controller behav-
ior. Specifically, we aim at combining the generated 
observer automata presented in the previous section 

with the networks of automata created from the con-
troller in order to verify whether the extracted timed 
path conditions are satisfiable. Our main contribu-
tion in this section is the generalization of the execu-
tion behavior to allow model checking of the controller 
for arbitrary inputs. We utilize a technique developed 
in [34] that converts Stateflow automata to UPPAAL 
timed automata. In the following, we briefly introduce 
the concepts behind their work and present our adap-
tations and extensions.

5.1. State Transformation

Every state of the Stateflow automaton is converted 
into four separate automata: (1) a Controller Autom-
aton, handling activation and deactivation of child 
states and activation of time-dependent events, such 
as after(n, sec), (2) a Controller Action Autom-
aton, responsible for performing Entry, During, 
Exit actions for the state, (3) a Condition Automa-
ton, evaluating conditions and performing condition 
actions of outgoing transitions, and finally (4) a Com-
mon Automaton that reacts on conditions generated 
by the Condition Automaton, performs the transition 
actions on outgoing transitions and activates the next 
state.
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5.2. Transition Transformation

For each state, all outgoing transitions are saved in 
an array sorted by the implicit and explicit transition 
priority. From this array, the Condition Automaton 
selects the next transition to be evaluated and taken.

5.3. Time

In Stateflow, time can be modeled absolute or event-
based. As an absolute value, time is used by, e.g.  
after, before, at and every in conjunction with a 
time unit, e. g., after(2, sec). This absolute form 
is based on the simulation time of the surrounding 
Simulink model and can be used to synchronize the 
timing behavior of the Stateflow controller with that 
of its environment. The second form utilizes the same 
keywords but makes use of events inside the Stateflow 
controller, e. g., every(3, e), which executes the 
associated action with every third occurrence of the 
event e. To emulate this behavior in UPPAAL, the au-
thors have implemented a virtual event stack as a 
structured array in UPPAAL. To model the simulation 
time of the Stateflow controller, the authors do not 
rely on clocks, but implemented two distinct integer 
variables: t_total and t_driven. The former im-
plements the simulation time of the overall system, 
while the latter implements simulation time passed 
inside the current state.

5.4. Generalization to Arbitrary Inputs
The translation from Stateflow to UPPAAL does not 
include the possibility to simulate the environment of 
the Stateflow controller. This means that if, for exam-
ple, transitions are guarded by signals driven by the 
Simulink model the controller is embedded into, their 
value will be held as uninitialized and will not be part of 
the verification of the controller. This makes it impos-
sible to utilize the translation in its original form, as 
the signals driving the Stateflow controller are an in-
tegral part of its functionality. We therefore extended 
the translation by a generic tester automaton [25].
A generic tester automaton, in its most basic form, can 
be seen in Figure 6a. There, a timed automaton with 
a single state and two edges is shown. On each edge, a 
Boolean signal, a or b, is set non-deterministically 
to true or false by using the select syntax built 
into UPPAAL. This makes it possible to simulate every 
combination of both signals in every step of the model 
checking process as the tester automaton runs con-
currently to all other automata. Our extension to the 
original translation analyzes all input signals to the 
Stateflow controller as well as their data types. Using 
this information, a tester automaton for the control-
ler under analysis is constructed to simulate arbitrary 
inputs to the controller, thereby acting as the non-de-
terministic environment of the controller.

(a) Basic version (b) Optimized version

Figure 6    
Generic tester automata
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Figure 6.    Generic tester automata 
 

Figure 7. Shared communication infrastructure in a car 
 
 

6.1. Generation of Verification Goals 
In order for the UPPAAL verifier to check whether the timed path conditions can be satisfied by the generated 

system of timed automata, we create appropriate queries. Due to the design of the timed path condition observer 
automata, we only need to create a single CTL query for each automaton to check reachability of its final location. 
As seen in Section 4.1, we save information about the final location, therefore, the necessary queries take the form 
of exists eventually statements for the existence of a path to the final location lf for every automaton. Hence, the 
queries have the form EF (lf ) and are generated automatically. 
6.2. Model Checking Using UPPAAL 

In the final step of our analysis process, the generated queries are verified on the translated UPPAAL timed 
automata model which has been extended with one automaton for each set of timed path conditions and a tester 
automaton to simulate arbitrary inputs. For each entry in the query file, UPPAAL verifies the stated property on the 
complete system, i. e., we check whether the timed path conditions can be satisfied by the Stateflow automaton. 
If so, information is potentially able to flow along the path under analysis. If not, the path does not exist and 
information flow is therefore shown to be impossible. 

 
7. Evaluation 

To evaluate our approach, we have implemented it as an Eclipse plug-in in Java. It utilizes our path 
condition extraction algorithm for Simulink [18] and a Stateflow to UPPAAL conversion [11, 34]. 

7.1. Case Study 
To show the practical applicability of our approach, we have used an industrial case study from the automotive 

domain. Its core is a communication infrastructure over which two distance warners, supplied by our industrial 
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Additionally, we have optimized the behavior of the 
tester automata in combination with the networks      
of UPPAAL timed automata. In the basic implementa-
tion, the tester automaton selects a new value at every 
point in the model checking process. However, due to 
the complex design of the translation from Stateflow 
to UPPAAL, only a small number of transitions directly 
relate to transitions taken in the Stateflow controller. 
We therefore have added a global Boolean variable 
tester_step_allowed, seen in Figure 6b. It is 
added to the guards of the edges and consumed as 
soon as the edge is taken. This flag is raised only when 
input values to the controller are allowed to change,  
i. e., with every (emulated) simulation step.

6. Information Flow Analysis Using 
UPPAAL

In the final step of our algorithm, we combine the 
timed automata generated from the sets of timed path 
conditions in the first step with the translated net-
works of timed automata in the previous step. Using 
information from the first steps, we generate verifica-
tion goals for the UPPAAL model checker in order to 
verify whether the sets of timed path conditions are 
satisfiable by the translated Stateflow controller.

6.1. Generation of Verification Goals
In order for the UPPAAL verifier to check whether the 
timed path conditions can be satisfied by the generat-
ed system of timed automata, we create appropriate 
queries. Due to the design of the timed path condition 
observer automata, we only need to create a single CTL 
query for each automaton to check reachability of its 
final location. As seen in Section 4.1, we save informa-
tion about the final location, therefore, the necessary 
queries take the form of exists eventually statements 
for the existence of a path to the final location lf for ev-
ery automaton. Hence, the queries have the form EF 
(lf ) and are generated automatically.

6.2. Model Checking Using UPPAAL

In the final step of our analysis process, the generated 
queries are verified on the translated UPPAAL timed 
automata model which has been extended with one 
automaton for each set of timed path conditions and 

a tester automaton to simulate arbitrary inputs. For 
each entry in the query file, UPPAAL verifies the stat-
ed property on the complete system, i. e., we check 
whether the timed path conditions can be satisfied by 
the Stateflow automaton. If so, information is poten-
tially able to flow along the path under analysis. If not, 
the path does not exist and information flow is there-
fore shown to be impossible.

7. Evaluation
To evaluate our approach, we have implemented it 
as an Eclipse plug-in in Java. It utilizes our path 
condition extraction algorithm for Simulink [18] and 
a Stateflow to UPPAAL conversion [11, 34].

7.1. Case Study
To show the practical applicability of our approach, we 
have used an industrial case study from the automotive 
domain. Its core is a communication infrastructure 
over which two distance warners, supplied by our in-
dustrial partner Assystem GmbH [2], and a non-crit-
ical component, an odometer, supplied by Model 
Engineering Solutions GmbH [15], send and receive 
data. Figure 7 shows the structure of our case study in 
Simulink/Stateflow. The distance warners, situated 
at the front and at the back of the car, send their analy-
sis results, i. e., proximity alerts, to the receiving com-
ponent, an automated braking system. The odometer 
receives data from sensors on the axes of the car. The 
distance warners together with the automated braking 
system perform inherently safety-critical functions, 
especially under timing aspects, as dropped or delayed 
warning signals either to the driver or an automated 
braking system while traveling at high speeds could 
cause serious accidents. The most important proper-
ty of the design from a security perspective is that the 
design has to guarantee that the braking system only 
receives messages from the distance warners, i. e., 
that information flow from the non-critical odometer 
to the critical braking system is prohibited and, con-
sequently, integrity is ensured. An additional inter-
esting property is that no information flows from the 
distance warners to the odometer, as this may indi-
cate that they are not properly received by the braking 
system. The overall model consists of 905 blocks and 



Information Technology and Control 2019/2/48310

 

 

  
(a) Basic version (b) Optimized version 

Figure 6.    Generic tester automata 
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6.1. Generation of Verification Goals 
In order for the UPPAAL verifier to check whether the timed path conditions can be satisfied by the generated 

system of timed automata, we create appropriate queries. Due to the design of the timed path condition observer 
automata, we only need to create a single CTL query for each automaton to check reachability of its final location. 
As seen in Section 4.1, we save information about the final location, therefore, the necessary queries take the form 
of exists eventually statements for the existence of a path to the final location lf for every automaton. Hence, the 
queries have the form EF (lf ) and are generated automatically. 
6.2. Model Checking Using UPPAAL 

In the final step of our analysis process, the generated queries are verified on the translated UPPAAL timed 
automata model which has been extended with one automaton for each set of timed path conditions and a tester 
automaton to simulate arbitrary inputs. For each entry in the query file, UPPAAL verifies the stated property on the 
complete system, i. e., we check whether the timed path conditions can be satisfied by the Stateflow automaton. 
If so, information is potentially able to flow along the path under analysis. If not, the path does not exist and 
information flow is therefore shown to be impossible. 
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To evaluate our approach, we have implemented it as an Eclipse plug-in in Java. It utilizes our path 
condition extraction algorithm for Simulink [18] and a Stateflow to UPPAAL conversion [11, 34]. 
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To show the practical applicability of our approach, we have used an industrial case study from the automotive 

domain. Its core is a communication infrastructure over which two distance warners, supplied by our industrial 

Figure 7
Shared communication infrastructure in a car

multiple layers of subsystems, making it comparable, 
in size as well as complexity, to models with similar 
functionality used by our industrial partners in the 
automotive domain. Our running example, shown in 
Section 3.1, shows a simplified version of the routing 
mechanism and controller utilized in our case study. 
The main challenge for the analysis of this case study 
is that the correct routing inherently depends on the 
timing of the control flow.
Note that we utilize two versions of the bus and the 
arbitration controller: In the original version, the 
shared infrastructure can only be used by a single 
sending component at a time, while in the extend-
ed second version, which we have implemented for 
demonstration reasons, multiple senders can utilize 
the shared bus at the same time. In both versions, all 
three sending components seen on the left in Figure 7 
utilize the bus to send their unique id to the receiving 
components on the right. Inside the channel, a system 
of switches reacts to the state currently set by the con-
troller and routes the data to and from the communi-
cation channel accordingly. While in the first version 
of the case study, the switches that control inputs and 
outputs to the bus are controlled by the same control 
signal, they are controlled by two control signals in 
the second version.
In the following, we present the analysis results for 
both versions of our case study, i. e., the timed path 
conditions extracted from the Simulink components 
of the bus and the controller translated to UPPAAL as 
well as analysis results and computation times.

7.2. Results
Using our approach, a designer is able to analyze 
arbitrary paths through the model. For this section, 
we chose to analyze two paths on which information 
flow can lead to critical errors in both versions of 
our case study. To this end, we verify the integrity of 
the automated braking system by analyzing wheth-
er information from the odometer can ever reach 
either input of automated braking system (which 
should not happen). Additionally, we check wheth-
er data sent from the front and back distance war-
ners through the bus is able to reach the odometer 
display (which also should not happen). Note that 
the former property is crucial to verify that there is 
no information flow from the non-critical odome-
ter to the safety-critical braking system. The latter 
property is important as information flow between 
the distance warner to the odometer may lead to a 
dropped proximity warning, which in turn may lead 
to a failure to brake by the automated braking sys-
tem. In the following, we present the results of the 
individual steps taken by our algorithm in order to 
prove non-interference on the selected paths.

7.2.1. Paths Under Analysis
As explained above, we aim at analyzing potentially 
critical information flow from the odometer sensors 
to the braking system as well as from both distance 
warners to the odometer display. We denote the paths 
as follows, where I refers to the first version of our 
case study, and II to the second version
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1 1= = (odometer_sensor_out bs_dw_front_data_in)I IIP P P   

2 2= = (odometer_sensor_out bs_dw_back_data_in)I IIP P P   

3 3= = (dw_front_out odometer_wheel_tick_in)I IIP P P   

4 4= = (dw_back_out odometer_wheel_tick_in)I IIP P P  . 

In the next step of our algorithm, the paths are ana-
lyzed and sets of timed path conditions are extracted.

7.2.2. Extracted Timed Path Conditions
The sets of timed path conditions extracted for each 
path are shown in the following:

 

state 

 

7.2.2. Extracted Timed Path Conditions 

The sets of timed path conditions extracted for each path are shown in the following: 
1

TP 1 state state( ) = {( == 1) , ( == 3) }t d tI t sc P s s    

 1
TP 2 state state( ) = {( == 2) , ( == 3) }t d tI t sc P s s    

 1
TP 3 state state( ) = {( == 3) , ( == 1) }t d tI t sc P s s    

 1
TP 4 state state( ) = {( == 3) , ( == 2) }t d tI t sc P s s    

 TP 1 input_state( ) ={( ==1) ,II tc P s  

 2
output_state( == 3) }t d tss    

 TP 2 input_state( ) ={( == 2) ,II tc P s  

 2
output_state( == 3) }t d tss    

 TP 3 input_state( ) = {( == 3) ,II tc P s  

 2
output_state( == 1) }t d tss    

 TP 4 input_state( ) ={( == 3) ,II tc P s  

 2
output_state( == 2) }t d tss  

 

In these sets, d1 and d2 denote the timing depths on the communication channels in time slices [18]. For the 
first version of our case study, it is calculated as 3. For the second version, it is calculated as 5. At this point in 
the analysis, due to their timing behavior, it is impossible to rule out the existence of information flow on these 
paths, as st−n·ts has to be considered a distinct signal for each time slice. It is therefore necessary to continue the 
analysis, i. e., to generate timed automata from each set of timed path conditions and verify whether these sets of 
conditions are satisfiable with the observer automata combined with the translated Stateflow controller. 
7.2.3. Generated Observer Automata 

From each of these sets of path conditions, our approach generates a single UPPAAL timed automaton. As 
explained in Section 4.1, each automaton consists of an initial state as well as one state per entry in the 
condition set, i. e., three states. 
7.2.4. Generated UPPAAL Timed Automata 

In the next step, we translate the controllers of both case studies into networks of UPPAAL timed automata. 
The Stateflow controller of the first version of our case study consists of three states and five transitions 
managing the current state of the shared bus. The controller for the second version consists of two states and 
five transitions, implementing the FIFO-like behavior of the shared bus. The corresponding translated networks 
of UPPAAL automata consist of eleven automata, ranging in size between one and four states with a large number 
of self loops. Ten automata emulate the functionality and semantics of the Stateflow controller and one, the added 
generic tester automaton, acts as the non-deterministic environment. 
7.2.5. Verification Results 

In the final step, our approach combines the translated Stateflow controller with the generated observer 
automata by adding them to the UPPAAL system declaration and generates a single verification goal for each cTP. 
The results of the verification process are shown in Table 1. As can be seen there, the first step of our approach, 
the extraction of constraints from the combined models and the generation of corresponding UPPAAL automata 
takes between approximately 300 and 400 ms1. The translation of the Stateflow controller for the first and 
second version of our case study takes 830 ms and 761 ms, respectively, and only has to be performed once per 
model as we store the translation result for each model revision. Finally, for cases in which the observer 
automaton does not reach its final location lf , namely on P1I  and P2I , the verification of the combined 
controllers takes approximately 10 s 

 

1Tested on a 2.6 GHz Intel Core i7 with 16 GB main memory. 

In these sets, d1 and d2 denote the timing depths on the 
communication channels in time slices [18]. For the 
first version of our case study, it is calculated as 3. For 
the second version, it is calculated as 5. At this point 
in the analysis, due to their timing behavior, it is im-
possible to rule out the existence of information flow 
on these paths, as st−n·ts has to be considered a distinct 
signal for each time slice. It is therefore necessary to 
continue the analysis, i. e., to generate timed autom-
ata from each set of timed path conditions and verify 
whether these sets of conditions are satisfiable with 
the observer automata combined with the translat-
ed Stateflow controller.

7.2.3. Generated Observer Automata
From each of these sets of path conditions, our ap-
proach generates a single UPPAAL timed automaton. 
As explained in Section 4.1, each automaton consists 

of an initial state as well as one state per entry in the 
condition set, i. e., three states.

7.2.4. Generated UPPAAL Timed Automata
In the next step, we translate the controllers of both 
case studies into networks of UPPAAL timed automa-
ta. The Stateflow controller of the first version of our 
case study consists of three states and five transitions 
managing the current state of the shared bus. The con-
troller for the second version consists of two states 
and five transitions, implementing the FIFO-like be-
havior of the shared bus. The corresponding trans-
lated networks of UPPAAL automata consist of eleven 
automata, ranging in size between one and four states 
with a large number of self loops. Ten automata emu-
late the functionality and semantics of the Stateflow 
controller and one, the added generic tester automa-
ton, acts as the non-deterministic environment.

7.2.5. Verification Results
In the final step, our approach combines the translat-
ed Stateflow controller with the generated observer 
automata by adding them to the UPPAAL system decla-
ration and generates a single verification goal for each 
cTP. The results of the verification process are shown 
in Table 1. As can be seen there, the first step of our ap-
proach, the extraction of constraints from the com-
bined models and the generation of corresponding 
UPPAAL automata takes between approximately 300 
and 400 ms1. The translation of the Stateflow control-
ler for the first and second version of our case study 
takes 830 ms and 761 ms, respectively, and only has to 
be performed once per model as we store the transla-
tion result for each model revision. Finally, for cases 
in which the observer automaton does not reach its fi-
nal location lf , namely on P1

I  and P2
I , the verification 

of the combined controllers takes approximately 10 s 
while in all other cases, the property is verified after  
5 s. The respective similarities in verification times 
are due to the complex structure of the Stateflow con-
troller behavior emulation in comparison to the ob-
server automata.
Unfortunately, the composition of large models does 
not generally scale well, as model checking has expo-
nential complexity. However, by only using the timed 
path conditions as an over-approximation of the con-
trol flow within the Uppaal model (and not the com-

1 Tested on a 2.6 GHz Intel Core i7 with 16 GB main memory.

.
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Path
Time

EF (lf )
Extract cTP Build SFM Verification

P1
I 379 ms 830 ms 10.247 s ×

P2
I 327 ms 10.559 s ×

P3
I 354 ms 5.971 s ✓

P4
I 302 ms 5.788 s ✓

P1
II 390 ms 761 ms 5.398 s ✓

P2
II 387 ms 5.279 s ✓

P3
II 349 ms 5.262 s ✓

P4
II 356 ms 5.737 s ✓

plete Simulink model), our approach scales compar-
atively well for the practical examples we have seen 
at our partners from the automotive industry, where 
the Stateflow controllers are typically comparatively 
small. Note that using our optimization described in 
Section 5.4, we were able to decrease the necessary 
verification times from multiple hours to the signifi-
cantly lower values seen in Table 1.
As our analysis shows, our approach successfully ver-
ified the absence of information flow over the critical 
paths P3

I , P4
I , P1

II , P2
II , P3

II , P4
II . For the first version, 

our approach showed that there is information flow 
possible on the first two paths under analysis, i. e., the 
non-critical odometer may have access to the braking 
system. This is a severe violation of the property of 
integrity, which potentially leads to disastrous con-
sequences. To overcome this, we have corrected and 
successfully verified the controller implementation 
as presented in the following.

7.2.6. Correcting the Controller Implementations
As Table 1  shows, we were able to identify informa-
tion flow on P1

I and P2
I . At this point, it is up to the 

designer to identify the source of the error. In our 
case, the original implementation of the controller 
contained faulty timed transition guards, which did 
not correspond to the time slice depth of the shared 
channel. After correcting these guards, the analysis 
correctly shows the absence of information flow on 
both paths with verification times of 5.381 s and 5.293 
s and, with that, the validation of all requirements un-
der analysis.

Table 1 
Evaluation results 8. Related Work

Extensive work has been done in the area of translat-
ing subsets of combined Simulink/Stateflow models 
into formal languages with well-defined semantics, 
especially Lustre and the graphical modeling suite 
SCADE, in order to perform model checking on the 
translated systems [27, 21, 33]. However, as these ap-
proaches rely on a translation of models into a target 
language using functional and timing semantics dif-
ferent to those of Simulink and Stateflow, properties 
of the original systems are lost and the timing of mod-
els cannot be analyzed precisely. Further, the transla-
tion process for industrial-sized models poses strong 
restrictions on their design and is therefore often not 
applicable [32].
Only few authors have addressed the problem of for-
malizing the complete behavior of Stateflow autom-
ata. In [9, 8], the authors have presented operational 
and denotational semantics for a subset of Stateflow. 
While they succeed in representing a wide range of 
the Stateflow functionality, they do not consider the 
timing and  the connection with surrounding Sim-
ulink models. In contrast, the approach for an auto-
matic translation from Stateflow to UPPAAL present-
ed in [11, 34] has the advantage that it captures both the 
functionality and the precise timing of Stateflow and 
enables automatic verification via model checking. 
We utilize this in our approach.
In [24], the authors present an approach for slicing 
Simulink models. Their algorithm identifies model 
parts that influence the computation of a given block. 
However, as their approach does not have the char-
acteristics of an information flow analysis, i. e., does 
neither consider conditions nor timing along model 
paths, it only provides a coarse-grained dependency 
analysis.
A number of model analysis techniques are integrated 
into the Simulink Design Verifier [29]. It offers the de-
signer the possibility to generate test cases and detect 
design errors, such as integer overflows or division by 
zero by utilizing static analysis methods. Its scalability, 
however, is strictly limited as it utilizes a model check-
ing-based approach to analyze the model as a whole. 
Further, it is not possible to formulate information 
flow properties using the provided verification blocks. 
Additionally, the Design Verifier supports the gener-
ation of slices to identify data dependencies through 
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the model. However, it provides only a very strong 
over-approximation as it takes neither control nor 
timing dependencies into account.
Due to the similarities between Stateflow and Stat-
echarts, it is reasonable to analyze previous formal-
ization efforts for such models, most notably [10]. 
However, these similarities are merely superficial, as 
the underlying solver for Stateflow automata works in 
a purely sequential fashion, and their semantic differ-
ences make an elevation of the approach presented in 
this work infeasible.

9. Conclusion
In this paper, we have presented a novel informa-
tion flow analysis for combined Simulink/Stateflow 
models. By being applicable to combined Simulink/
Stateflow models, our approach can be used to ana-
lyze information flow in embedded software models 
that consist of one or more embedded controllers 
(modeled in Stateflow), and a number of dynamic 
signal-flow components (modeled in Simulink). The 
main idea of our approach is to translate timed path 
conditions of the dynamic signal-flow, i. e., of the Sim-
ulink components of a given model, into UPPAAL timed 
automata, and to combine them with a timed automata 
representation of the embedded controllers modeled 
in Stateflow. For the combined model, we automati-
cally generate verification goals which in turn enable 
us to automatically check the absence of information 
flow between arbitrary input and output ports using 
the UPPAAL model checker. The result is a fine-grained 
analysis of the information flow along paths of interest 
through combined Simulink/Stateflow models un-
der both data as well as timing aspects. Note that for 
the computation of timed path conditions of dynamic 
signal-flow components, we utilize our approach pre-
sented in [18], and for the conversion of Stateflow con-

trollers into UPPAAL, we have adapted and extended 
the translation from Stateflow to UPPAAL presented in 
[34, 11]. Our extensions include the addition of generic 
tester automata and optimizations of their interaction 
with the surrounding timed automata.
The verification times necessary to rule out the exis-
tence of safety-threatening paths using our approach 
are largely dependent on the size of the Stateflow 
controller. As these are usually relatively small com-
pared to the surrounding Simulink components, our 
approach scales well for complex Simulink/Stateflow 
models.
We have demonstrated the practical applicability of 
our approach using two versions of a complex indus-
trial case study that implements a shared communi-
cation infrastructure for a safety-critical automotive 
system. There, we have shown that although timed 
path conditions alone detect a safety requirement 
violation, our approach efficiently recognizes it as 
spurious in approximately 6 s.
In the future, we aim at relaxing our assumptions on 
the control flow paths, and at supporting additional
design patterns for the integration of Stateflow con-
trollers into Simulink models, such as scheduling of 
individual Simulink components using Stateflow or 
the integration of Simulink functions into control-
lers. Furthermore, as UPPAAL offers the possibility 
to display counterexamples, i. e., paths in the model 
checking process that led to a violation of the formu-
la under analysis, we are confident that we are able 
to use this information to provide the developer with 
more feedback about the precise sources of possible 
information flow through a model by, e. g., highlight-
ing them directly in the source model.
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